HOMEWORK 1 : COALGEBRAS AND BIALGEBRAS

1. Let $H=(H, \mu, \eta, \Delta, \epsilon)$ be a bialgebra. Verify that

$$
H^{\mathrm{op}}=\left(H, \mu^{\mathrm{op}}, \eta, \Delta, \epsilon\right), H^{\mathrm{cop}}=\left(H, \mu, \eta, \Delta^{\mathrm{op}}, \epsilon\right), H^{\mathrm{op}, \mathrm{cop}}=\left(H, \mu^{\mathrm{op}}, \eta, \Delta^{\mathrm{op}}, \epsilon\right)
$$

are also bialgebras (here $\Delta^{\mathrm{op}}:=\tau_{H, H} \circ \Delta, \mu^{\mathrm{op}}:=\mu \circ \tau_{H, H}$ with $\tau_{H, H}$ flipping the factors).
2. Let G be a finite group. We identify the vector space $\mathbf{k}(G)$ of \mathbf{k}-valued functions on G with $\mathbf{k}[G]$ via $\mathbf{k}(G) \ni f \mapsto \sum_{g \in G} f(g) g$. Write down explicit formulas for the unit, product, counit, and coprodcut on $\mathbf{k}(G)$, induced by the bialgebra structure on $\mathbf{k}[G]$ (which we discussed in the class). The resulting product on $\mathbf{k}(G)$ is called the convolution product.
3. (An example of neither commutative nor cocommutative bialgebra) Let H be the quotient of the free algebra $k\{x, t\}$ by the two-sided ideal generated by $t^{2}-1, x^{2}, x t+t x$. Prove that $\operatorname{dim}(H)=4$ and that it has a natural bialgebra structure with

$$
\Delta(x)=1 \otimes x+x \otimes t, \Delta(t)=t \otimes t, \epsilon(x)=0, \epsilon(t)=1 .
$$

4. (a) Given two coalgebras (C, Δ, ϵ) and $\left(C^{\prime}, \Delta^{\prime}, \epsilon^{\prime}\right)$, verify that the linear maps

$$
\pi: C \otimes C^{\prime} \rightarrow C \text { given by } c \otimes c^{\prime} \mapsto \epsilon^{\prime}\left(c^{\prime}\right) c \text { and } \pi^{\prime}: C \otimes C^{\prime} \rightarrow C^{\prime} \text { given by } c \otimes c^{\prime} \mapsto \epsilon(c) c^{\prime}
$$ are coalgebra morphisms.

(b) (Universal property of the tensor product of coalgebras) Prove that for any cocommutative coalgebra D and any pair of coalgebra morphisms $f: D \rightarrow C, f^{\prime}: D \rightarrow C^{\prime}$, there is a unique coalgebra morphism $f \otimes f^{\prime}: D \rightarrow C \otimes C^{\prime}$ such that $\pi \circ\left(f \otimes f^{\prime}\right)=f$ and $\pi^{\prime} \circ\left(f \otimes f^{\prime}\right)=f^{\prime}$.
5. (a) Given a vector space V, show that there is a unique bialgebra structure on the tensor algebra $T(V)$ such that $\Delta(v)=v \otimes 1+1 \otimes v$ and $\epsilon(v)=0$ for any $v \in V$. Verify that this bialgebra is cocommutative. Prove the following formulas for any $v_{1}, \ldots, v_{n} \in V(n>0)$:

$$
\begin{aligned}
& \epsilon\left(v_{1} \ldots v_{n}\right)=0, \\
& \Delta\left(v_{1} \ldots v_{n}\right)=v_{1} \ldots v_{n} \otimes 1+1 \otimes v_{1} \ldots v_{n}+\sum_{p=1}^{n-1} \sum_{\sigma-\text { shuffle }} v_{\sigma(1)} \ldots v_{\sigma(p)} \otimes v_{\sigma(p+1)} \ldots v_{\sigma(n)},
\end{aligned}
$$

where a permutation $\sigma \in S_{n}$ is $a(p, n-p)$-shuffle if $\sigma(1)<\ldots<\sigma(p), \sigma(p+1)<\ldots<\sigma(n)$.
(b) Recall the symmetric algebra $S(V)$, which is a quotient of $T(V)$ by the two-sided ideal generated by $\{x y-y x \mid x, y \in V\}$. Verify that the kernel $I:=\operatorname{Ker}(T(V) \rightarrow S(V))$ is a coideal of $T(V)$. In particular, the bialgebra structure on $T(V)$ from (a) induces the one on $S(V)$.
(c) In the particular case of one-dimensional V, identify $S(V)$ with the polynomial algebra $k[t]$, so that $t^{m} \cdot t^{n}=t^{m+n}$ and $\Delta\left(t^{n}\right)=\sum_{k=0}^{n}\binom{n}{k} t^{k} \otimes t^{n-k}$.
(d) (Divided powers) If $\operatorname{char}(\mathbf{k})=0$ and $\operatorname{dim}(V)=1$, find another identification (as vector spaces) of $S(V)$ and $k[t]$, such that $t^{m} \cdot t^{n}=\binom{m+n}{m} t^{m+n}$ and $\Delta\left(t^{n}\right)=\sum_{k=0}^{n} t^{k} \otimes t^{n-k}$.

