HOMEWORK 1 : COALGEBRAS AND BIALGEBRAS

1. Let $H = (H, \mu, \eta, \Delta, \epsilon)$ be a bialgebra. Verify that

 $H^{\mathrm{op}} = (H, \mu^{\mathrm{op}}, \eta, \Delta, \epsilon), \ H^{\mathrm{cop}} = (H, \mu, \eta, \Delta^{\mathrm{op}}, \epsilon), \ H^{\mathrm{op, cop}} = (H, \mu^{\mathrm{op}}, \eta, \Delta^{\mathrm{op}}, \epsilon)$

are also bialgebras (here $\Delta^{\text{op}} := \tau_{H,H} \circ \Delta$, $\mu^{\text{op}} := \mu \circ \tau_{H,H}$ with $\tau_{H,H}$ flipping the factors).

2. Let G be a finite group. We identify the vector space $\mathbf{k}(G)$ of \mathbf{k} -valued functions on G with $\mathbf{k}[G]$ via $\mathbf{k}(G) \ni f \mapsto \sum_{g \in G} f(g)g$. Write down explicit formulas for the unit, product, counit, and coproduct on $\mathbf{k}(G)$, induced by the bialgebra structure on $\mathbf{k}[G]$ (which we discussed in the class). The resulting product on $\mathbf{k}(G)$ is called the *convolution product*.

3. (An example of neither commutative nor cocommutative bialgebra) Let H be the quotient of the free algebra $k\{x,t\}$ by the two-sided ideal generated by $t^2 - 1, x^2, xt + tx$. Prove that $\dim(H) = 4$ and that it has a natural bialgebra structure with

$$\Delta(x) = 1 \otimes x + x \otimes t, \ \Delta(t) = t \otimes t, \ \epsilon(x) = 0, \ \epsilon(t) = 1.$$

4. (a) Given two coalgebras (C, Δ, ϵ) and (C', Δ', ϵ') , verify that the linear maps

6

$$\pi \colon C \otimes C' \to C$$
 given by $c \otimes c' \mapsto \epsilon'(c')c$ and $\pi' \colon C \otimes C' \to C'$ given by $c \otimes c' \mapsto \epsilon(c)c'$

are coalgebra morphisms.

(b) (Universal property of the tensor product of coalgebras) Prove that for any cocommutative coalgebra D and any pair of coalgebra morphisms $f: D \to C, f': D \to C'$, there is a unique coalgebra morphism $f \otimes f': D \to C \otimes C'$ such that $\pi \circ (f \otimes f') = f$ and $\pi' \circ (f \otimes f') = f'$.

5. (a) Given a vector space V, show that there is a unique bialgebra structure on the *tensor* algebra T(V) such that $\Delta(v) = v \otimes 1 + 1 \otimes v$ and $\epsilon(v) = 0$ for any $v \in V$. Verify that this bialgebra is cocommutative. Prove the following formulas for any $v_1, \ldots, v_n \in V$ (n > 0):

$$v(v_1\ldots v_n)=0,$$

$$\Delta(v_1 \dots v_n) = v_1 \dots v_n \otimes 1 + 1 \otimes v_1 \dots v_n + \sum_{p=1}^{n-1} \sum_{\sigma - \text{shuffle}} v_{\sigma(1)} \dots v_{\sigma(p)} \otimes v_{\sigma(p+1)} \dots v_{\sigma(n)},$$

where a permutation $\sigma \in S_n$ is a (p, n-p)-shuffle if $\sigma(1) < \ldots < \sigma(p), \ \sigma(p+1) < \ldots < \sigma(n)$.

(b) Recall the symmetric algebra S(V), which is a quotient of T(V) by the two-sided ideal generated by $\{xy - yx | x, y \in V\}$. Verify that the kernel $I := \text{Ker}(T(V) \twoheadrightarrow S(V))$ is a coideal of T(V). In particular, the bialgebra structure on T(V) from (a) induces the one on S(V).

(c) In the particular case of one-dimensional V, identify S(V) with the polynomial algebra k[t], so that $t^m \cdot t^n = t^{m+n}$ and $\Delta(t^n) = \sum_{k=0}^n {n \choose k} t^k \otimes t^{n-k}$.

(d) (*Divided powers*) If char(\mathbf{k}) = 0 and dim(V) = 1, find another identification (as vector spaces) of S(V) and k[t], such that $t^m \cdot t^n = \binom{m+n}{m} t^{m+n}$ and $\Delta(t^n) = \sum_{k=0}^n t^k \otimes t^{n-k}$.