
HOMEWORK 2, EXTRA PROBLEMS 2

1. Coalgebra A◦

Let (A,µ, η) be an algebra. We define the set A◦ ⊂ A∗ as follows:

A◦ := {α ∈ A∗|Ker(α) contains a cofinite ideal},
where an ideal J ⊂ A is called cofinite if dim(A/J) <∞.

Exercise 1.1. Verify that A◦ is a vector subspace of A. Show that A◦ = A∗ if dim(A) <∞.

Problem 1.2. Let (A,µA, ηA) and (B,µB, ηB) be two algebras.

(a) For any algebra morphism f : A→ B, show that f∗(B◦) ⊂ A◦.
(b) Recall the natural embedding A∗ ⊗B∗ ⊂ (A⊗B)∗. Prove A◦ ⊗B◦ = (A⊗B)◦.

(c) Verify µ∗A(A◦) ⊂ A◦ ⊗A◦.
Recall that if (A,µ, η) is a finite-dimensional algebra, then its dual A∗ has a natural

coalgebra structure. In general, the dual A∗ is not a coalgebra, but the above subspace
A◦ ⊂ A∗ has a natural coalgebra structure, due to the following problem.

Problem 1.3. Let ∆: A◦ → A◦ ⊗ A◦ be the restriction of µ∗A (see Problem 1.2(c)), while
ε : A◦ → k be the restriction of η∗A (i.e., ε(α) := α(1)). Verify that (A◦,∆, ε) is a coalgebra.

Actually, A◦ is the maximal coalgebra of A∗ with coproduct induced by µ∗A:

Problem 1.4. Let A be an algebra and A∗ be endowed with a natural A−A-bimodule structure
via (a.α.b)(x) = α(bxa) for any a, b, x ∈ A,α ∈ A∗. Fix f ∈ A∗. The following are equivalent:

(a) f ∈ A◦.
(b) µ∗A(f) ⊂ A∗ ⊗A∗.
(c) A.f is finite-dimensional.

(d) f.A is finite-dimensional.

(e) A.f.A is finite-dimensional.

The following problem gives a more conceptual viewpoint towards ( )◦.

Problem 1.5. Prove that (( )∗, ( )◦) is a pair of adjoint functors between Coalg and Algop.

Hint: Given an algebra A, a coalgebra C, an algebra morphism f ∈ HomAlg(A,C∗), and
a coalgebra morphism g ∈ HomCoalg(C,A◦), define G(f) ∈ HomCoalg(C,A◦) and F (g) ∈
HomAlg(A,C∗) = HomAlgop(C∗, A) via

G(f) : C −→ (C∗)◦
f◦
−→ A◦ and F (g) : A −→ A∗∗ −→ (A◦)∗

g∗−→ C∗,

where we used the fact that the image of the natural map C → C∗∗ is in (C∗)◦ (prove this!).

Exercise 1.6. Verify that if H is a bialgebra (respectively, a Hopf algebra), then H◦ has a
natural bialgebra (respectively, Hopf algebra) structure.
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2. Cofree coalgebras

Using the functor ( )◦ we can now construct the cofree (cocommutative) coalgebras.

Definition 2.1. Given a vector space V , a pair (C, π) of a coalgebra and a linear map
π : C → V is called a cofree coalgebra on V if for any coalgebra D and any linear map
f : D → V , there exists a unique coalgebra morphism F : D → C such that π ◦ F = f .

Clearly, a cofree coalgebra on V is unique (up to an isomorphism) if it exists.

Problem 2.2. Let V be a vector space and T (V ∗) be the tensor algebra of the dual vec-
tor space. Prove that (T (V ∗)◦, π) is the cofree coalgebra on V ∗∗, where π is defined as the

composition T (V ∗)◦ ↪→ T (V ∗)∗
i∗→ V ∗∗ and i : V ∗ ↪→ T (V ∗) is the canonical inclusion.

The following is almost tautological:

Exercise 2.3. Let (C, π) be the cofree coalgebra on the vector space W and V be a vector
subspace of W . Define D ⊂ C as the sum of all subcoalgebras E of C such that π(E) ⊂ V .
Prove that (D,π|D) is the cofree coalgebra on V .

Combining Problem 2.2 with Exercise 2.3 applied to W = V ∗∗, we deduce:

Theorem 2.4. For any vector space V , the cofree coalgebra on V exists.

Let us now dualize the notion of a symmetric algebra S(V ) on a vector space V .

Definition 2.5. Given a vector space V , a pair (C, π) of a cocommutative coalgebra and
a linear map π : C → V is called a cofree cocommutative coalgebra on V if for any
cocommutative coalgebra D and any linear map f : D → V , there exists a unique coalgebra
morphism F : D → C such that π ◦ F = f .

The existence of cofree cocommutative coalgebras follows from Theorem 2.4, due to:

Exercise 2.6. Let V be a vector space and (C̃, π̃) be the cofree coalgebra on V . Define C

as the sum of all cocommutative subcoalgebras E of C̃. Prove that (C, π := π̃|C ) is the cofree
cocommutative coalgebra on V .

Use [Homework 1, Problem 4] to deduce the following result:

Problem 2.7. Let (C1, π1) and (C2, π2) be cofree cocommutative coalgebras on the vector
spaces V1, V2. Prove that (C1⊗C2, π) is the cofree cocommutative coalgebra on V1⊕V2, where
π : C1 ⊗ C2 → V1 ⊕ V2 is defined via π(c1 ⊗ c2) = (π1(c1)εC2(c2), π2(c2)εC1(c1)).

If V is a vector space, let C(V ) denote the cofree cocommutative coalgebra on V .

Exercise 2.8. For any linear map f : V → W , there is a unique “induced” coalgebra mor-
phism C(f) : C(V )→ C(W ) such that π ◦ F = f ◦ π. Moreover C(f ◦ g) = C(f) ◦ C(g).

Using this result, we can finally endow C(V ) with a Hopf algebra structure.

Problem 2.9. Consider the linear maps diag : V → V ⊕ V, m : V ⊕ V → V, ι : V → V
defined by diag(v) = (v, v), m((v, w)) = v + w, ι(v) = −v and let a : V → {0}, b : {0} → V
be the trivial linear maps. Verify that the induced maps C(diag), C(a), C(m), C(b), C(ι) (see
Exercise 2.8) endow C(V ) with a Hopf algebra structure.


