HOMEWORK 2, EXTRA PROBLEMS 2

1. Coalgebra A°

Let (A, μ, η) be an algebra. We define the set $A^{\circ} \subset A^{*}$ as follows:

 $A^{\circ} := \{ \alpha \in A^* | \text{Ker}(\alpha) \text{ contains a cofinite ideal} \},\$

where an ideal $J \subset A$ is called *cofinite* if $\dim(A/J) < \infty$.

Exercise 1.1. Verify that A° is a vector subspace of A. Show that $A^{\circ} = A^{*}$ if dim $(A) < \infty$.

Problem 1.2. Let (A, μ_A, η_A) and (B, μ_B, η_B) be two algebras.

(a) For any algebra morphism $f: A \to B$, show that $f^*(B^\circ) \subset A^\circ$.

(b) Recall the natural embedding $A^* \otimes B^* \subset (A \otimes B)^*$. Prove $A^\circ \otimes B^\circ = (A \otimes B)^\circ$.

(c) Verify $\mu_A^*(A^\circ) \subset A^\circ \otimes A^\circ$.

Recall that if (A, μ, η) is a finite-dimensional algebra, then its dual A^* has a natural coalgebra structure. In general, the dual A^* is not a coalgebra, but the above subspace $A^\circ \subset A^*$ has a natural coalgebra structure, due to the following problem.

Problem 1.3. Let $\Delta: A^{\circ} \to A^{\circ} \otimes A^{\circ}$ be the restriction of μ_{A}^{*} (see Problem 1.2(c)), while $\epsilon: A^{\circ} \to \mathbf{k}$ be the restriction of η_{A}^{*} (i.e., $\epsilon(\alpha) := \alpha(1)$). Verify that $(A^{\circ}, \Delta, \epsilon)$ is a coalgebra.

Actually, A° is the maximal coalgebra of A^{*} with coproduct induced by μ_{A}^{*} :

Problem 1.4. Let A be an algebra and A^* be endowed with a natural A-A-bimodule structure via $(a.\alpha.b)(x) = \alpha(bxa)$ for any $a, b, x \in A, \alpha \in A^*$. Fix $f \in A^*$. The following are equivalent:

$$(a) \ f \in A$$
.

- (b) $\mu_A^*(f) \subset A^* \otimes A^*$.
- (c) A.f is finite-dimensional.
- (d) f.A is finite-dimensional.
- (e) A.f.A is finite-dimensional.

The following problem gives a more conceptual viewpoint towards $()^{\circ}$.

Problem 1.5. Prove that $(()^*, ()^\circ)$ is a pair of adjoint functors between Coalg and Alg^{op}. *Hint:* Given an algebra A, a coalgebra C, an algebra morphism $f \in \text{Hom}_{Alg}(A, C^*)$, and a coalgebra morphism $g \in \text{Hom}_{Coalg}(C, A^\circ)$, define $G(f) \in \text{Hom}_{Coalg}(C, A^\circ)$ and $F(g) \in$ $\text{Hom}_{Alg}(A, C^*) = \text{Hom}_{Alg^{op}}(C^*, A)$ via

$$G(f)\colon C\longrightarrow (C^*)^\circ \xrightarrow{f^\circ} A^\circ \text{ and } F(g)\colon A\longrightarrow A^{**}\longrightarrow (A^\circ)^* \xrightarrow{g^*} C^*,$$

where we used the fact that the image of the natural map $C \to C^{**}$ is in $(C^*)^\circ$ (prove this!). **Exercise 1.6.** Verify that if H is a bialgebra (respectively, a Hopf algebra), then H° has a natural bialgebra (respectively, Hopf algebra) structure.

HOMEWORK 2, EXTRA PROBLEMS 2

2. Cofree coalgebras

Using the functor $()^{\circ}$ we can now construct the cofree (cocommutative) coalgebras.

Definition 2.1. Given a vector space V, a pair (C, π) of a coalgebra and a linear map $\pi: C \to V$ is called a **cofree coalgebra on** V if for any coalgebra D and any linear map $f: D \to V$, there exists a unique coalgebra morphism $F: D \to C$ such that $\pi \circ F = f$.

Clearly, a cofree coalgebra on V is unique (up to an isomorphism) if it exists.

Problem 2.2. Let V be a vector space and $T(V^*)$ be the tensor algebra of the dual vector space. Prove that $(T(V^*)^\circ, \pi)$ is the cofree coalgebra on V^{**} , where π is defined as the composition $T(V^*)^\circ \hookrightarrow T(V^*)^* \xrightarrow{i^*} V^{**}$ and $i: V^* \hookrightarrow T(V^*)$ is the canonical inclusion.

The following is almost tautological:

Exercise 2.3. Let (C, π) be the cofree coalgebra on the vector space W and V be a vector subspace of W. Define $D \subset C$ as the sum of all subcoalgebras E of C such that $\pi(E) \subset V$. Prove that $(D, \pi|_D)$ is the cofree coalgebra on V.

Combining Problem 2.2 with Exercise 2.3 applied to $W = V^{**}$, we deduce:

Theorem 2.4. For any vector space V, the cofree coalgebra on V exists.

Let us now dualize the notion of a symmetric algebra S(V) on a vector space V.

Definition 2.5. Given a vector space V, a pair (C, π) of a cocommutative coalgebra and a linear map $\pi: C \to V$ is called a **cofree cocommutative coalgebra on** V if for any cocommutative coalgebra D and any linear map $f: D \to V$, there exists a unique coalgebra morphism $F: D \to C$ such that $\pi \circ F = f$.

The existence of cofree cocommutative coalgebras follows from Theorem 2.4, due to:

Exercise 2.6. Let V be a vector space and $(C, \tilde{\pi})$ be the cofree coalgebra on V. Define C as the sum of all cocommutative subcoalgebras E of \tilde{C} . Prove that $(C, \pi := \tilde{\pi}_{|_C})$ is the cofree cocommutative coalgebra on V.

Use [Homework 1, Problem 4] to deduce the following result:

Problem 2.7. Let (C_1, π_1) and (C_2, π_2) be cofree cocommutative coalgebras on the vector spaces V_1, V_2 . Prove that $(C_1 \otimes C_2, \pi)$ is the cofree cocommutative coalgebra on $V_1 \oplus V_2$, where $\pi: C_1 \otimes C_2 \to V_1 \oplus V_2$ is defined via $\pi(c_1 \otimes c_2) = (\pi_1(c_1)\epsilon_{C_2}(c_2), \pi_2(c_2)\epsilon_{C_1}(c_1))$.

If V is a vector space, let C(V) denote the cofree cocommutative coalgebra on V.

Exercise 2.8. For any linear map $f: V \to W$, there is a unique "induced" coalgebra morphism $C(f): C(V) \to C(W)$ such that $\pi \circ F = f \circ \pi$. Moreover $C(f \circ g) = C(f) \circ C(g)$.

Using this result, we can finally endow C(V) with a Hopf algebra structure.

Problem 2.9. Consider the linear maps diag: $V \to V \oplus V$, $m: V \oplus V \to V$, $\iota: V \to V$ defined by diag(v) = (v, v), m((v, w)) = v + w, $\iota(v) = -v$ and let $a: V \to \{0\}, b: \{0\} \to V$ be the trivial linear maps. Verify that the induced maps $C(\text{diag}), C(a), C(m), C(b), C(\iota)$ (see Exercise 2.8) endow C(V) with a Hopf algebra structure.