HOMEWORK 2, EXTRA PROBLEMS 2

1. Coalgebra A°

Let (A, μ, η) be an algebra. We define the set $A^{\circ} \subset A^{*}$ as follows:

$$
A^{\circ}:=\left\{\alpha \in A^{*} \mid \operatorname{Ker}(\alpha) \text { contains a cofinite ideal }\right\},
$$

where an ideal $J \subset A$ is called cofinite if $\operatorname{dim}(A / J)<\infty$.
Exercise 1.1. Verify that A° is a vector subspace of A. Show that $A^{\circ}=A^{*}$ if $\operatorname{dim}(A)<\infty$.
Problem 1.2. Let $\left(A, \mu_{A}, \eta_{A}\right)$ and $\left(B, \mu_{B}, \eta_{B}\right)$ be two algebras.
(a) For any algebra morphism $f: A \rightarrow B$, show that $f^{*}\left(B^{\circ}\right) \subset A^{\circ}$.
(b) Recall the natural embedding $A^{*} \otimes B^{*} \subset(A \otimes B)^{*}$. Prove $A^{\circ} \otimes B^{\circ}=(A \otimes B)^{\circ}$.
(c) Verify $\mu_{A}^{*}\left(A^{\circ}\right) \subset A^{\circ} \otimes A^{\circ}$.

Recall that if (A, μ, η) is a finite-dimensional algebra, then its dual A^{*} has a natural coalgebra structure. In general, the dual A^{*} is not a coalgebra, but the above subspace $A^{\circ} \subset A^{*}$ has a natural coalgebra structure, due to the following problem.
Problem 1.3. Let $\Delta: A^{\circ} \rightarrow A^{\circ} \otimes A^{\circ}$ be the restriction of μ_{A}^{*} (see Problem 1.2(c)), while $\epsilon: A^{\circ} \rightarrow \mathbf{k}$ be the restriction of η_{A}^{*} (i.e., $\epsilon(\alpha):=\alpha(1)$). Verify that $\left(A^{\circ}, \Delta, \epsilon\right)$ is a coalgebra.

Actually, A° is the maximal coalgebra of A^{*} with coproduct induced by μ_{A}^{*} :
Problem 1.4. Let A be an algebra and A^{*} be endowed with a natural $A-A$-bimodule structure via $(a . \alpha . b)(x)=\alpha(b x a)$ for any $a, b, x \in A, \alpha \in A^{*}$. Fix $f \in A^{*}$. The following are equivalent:
(a) $f \in A^{\circ}$.
(b) $\mu_{A}^{*}(f) \subset A^{*} \otimes A^{*}$.
(c) A.f is finite-dimensional.
(d) $f . A$ is finite-dimensional.
(e) A.f.A is finite-dimensional.

The following problem gives a more conceptual viewpoint towards ($)^{\circ}$.
Problem 1.5. Prove that $\left(()^{*},()^{\circ}\right)$ is a pair of adjoint functors between Coalg and $\mathrm{Alg}^{\mathrm{op}}$.
Hint: Given an algebra A, a coalgebra C, an algebra morphism $f \in \operatorname{Hom}_{\text {Alg }}\left(A, C^{*}\right)$, and a coalgebra morphism $g \in \operatorname{Hom}_{\text {Coalg }}\left(C, A^{\circ}\right)$, define $G(f) \in \operatorname{Hom}_{\text {Coalg }}\left(C, A^{\circ}\right)$ and $F(g) \in$ $\operatorname{Hom}_{\mathrm{Alg}}\left(A, C^{*}\right)=\operatorname{Hom}_{\mathrm{Alg} \text { op }}\left(C^{*}, A\right)$ via

$$
G(f): C \longrightarrow\left(C^{*}\right)^{\circ} \xrightarrow{f^{\circ}} A^{\circ} \text { and } F(g): A \longrightarrow A^{* *} \longrightarrow\left(A^{\circ}\right)^{*} \xrightarrow{g^{*}} C^{*},
$$

where we used the fact that the image of the natural map $C \rightarrow C^{* *}$ is in $\left(C^{*}\right)^{\circ}$ (prove this!).
Exercise 1.6. Verify that if H is a bialgebra (respectively, a Hopf algebra), then H° has a natural bialgebra (respectively, Hopf algebra) structure.

2. Cofree coalgebras

Using the functor ($)^{\circ}$ we can now construct the cofree (cocommutative) coalgebras.
Definition 2.1. Given a vector space V, a pair (C, π) of a coalgebra and a linear map $\pi: C \rightarrow V$ is called a cofree coalgebra on V if for any coalgebra D and any linear map $f: D \rightarrow V$, there exists a unique coalgebra morphism $F: D \rightarrow C$ such that $\pi \circ F=f$.

Clearly, a cofree coalgebra on V is unique (up to an isomorphism) if it exists.
Problem 2.2. Let V be a vector space and $T\left(V^{*}\right)$ be the tensor algebra of the dual vector space. Prove that $\left(T\left(V^{*}\right)^{\circ}, \pi\right)$ is the cofree coalgebra on $V^{* *}$, where π is defined as the composition $T\left(V^{*}\right)^{\circ} \hookrightarrow T\left(V^{*}\right)^{*} \xrightarrow{i^{*}} V^{* *}$ and $i: V^{*} \hookrightarrow T\left(V^{*}\right)$ is the canonical inclusion.

The following is almost tautological:
Exercise 2.3. Let (C, π) be the cofree coalgebra on the vector space W and V be a vector subspace of W. Define $D \subset C$ as the sum of all subcoalgebras E of C such that $\pi(E) \subset V$. Prove that $\left(D, \pi_{\left.\right|_{D}}\right)$ is the cofree coalgebra on V.

Combining Problem 2.2 with Exercise 2.3 applied to $W=V^{* *}$, we deduce:
Theorem 2.4. For any vector space V, the cofree coalgebra on V exists.
Let us now dualize the notion of a symmetric algebra $S(V)$ on a vector space V.
Definition 2.5. Given a vector space V, a pair (C, π) of a cocommutative coalgebra and a linear map $\pi: C \rightarrow V$ is called a cofree cocommutative coalgebra on V if for any cocommutative coalgebra D and any linear map $f: D \rightarrow V$, there exists a unique coalgebra morphism $F: D \rightarrow C$ such that $\pi \circ F=f$.

The existence of cofree cocommutative coalgebras follows from Theorem 2.4, due to:
Exercise 2.6. Let V be a vector space and $(\tilde{C}, \tilde{\pi})$ be the cofree coalgebra on V. Define C as the sum of all cocommutative subcoalgebras E of \tilde{C}. Prove that $\left(C, \pi:=\tilde{\pi}_{\mid C}\right)$ is the cofree cocommutative coalgebra on V.

Use [Homework 1, Problem 4] to deduce the following result:
Problem 2.7. Let $\left(C_{1}, \pi_{1}\right)$ and $\left(C_{2}, \pi_{2}\right)$ be cofree cocommutative coalgebras on the vector spaces V_{1}, V_{2}. Prove that $\left(C_{1} \otimes C_{2}, \pi\right)$ is the cofree cocommutative coalgebra on $V_{1} \oplus V_{2}$, where $\pi: C_{1} \otimes C_{2} \rightarrow V_{1} \oplus V_{2}$ is defined via $\pi\left(c_{1} \otimes c_{2}\right)=\left(\pi_{1}\left(c_{1}\right) \epsilon_{C_{2}}\left(c_{2}\right), \pi_{2}\left(c_{2}\right) \epsilon_{C_{1}}\left(c_{1}\right)\right)$.

If V is a vector space, let $C(V)$ denote the cofree cocommutative coalgebra on V.
Exercise 2.8. For any linear map $f: V \rightarrow W$, there is a unique"induced" coalgebra morphism $C(f): C(V) \rightarrow C(W)$ such that $\pi \circ F=f \circ \pi$. Moreover $C(f \circ g)=C(f) \circ C(g)$.

Using this result, we can finally endow $C(V)$ with a Hopf algebra structure.
Problem 2.9. Consider the linear maps diag: $V \rightarrow V \oplus V, m: V \oplus V \rightarrow V, \iota: V \rightarrow V$ defined by $\operatorname{diag}(v)=(v, v), m((v, w))=v+w, \iota(v)=-v$ and let $a: V \rightarrow\{0\}, b:\{0\} \rightarrow V$ be the trivial linear maps. Verify that the induced maps $C(\operatorname{diag}), C(a), C(m), C(b), C(\iota)$ (see Exercise 2.8) endow $C(V)$ with a Hopf algebra structure.

