HOMEWORK 3: $\mathbf{k}_{q}[x, y], M_{q}(2)$, and $U(\mathfrak{g})$

1. Let \mathbb{F} be a finite field of order q.
(a) Show that $\binom{n}{k}_{q}$ equals the number of k-dimensional subspaces in \mathbb{F}^{n}.
(b) Use part (a) to deduce the following equalities (Lemma 1 of Lecture 5):

$$
\binom{n}{k}_{q}=\binom{n}{n-k}_{q} \text { and }\binom{n-1}{k-1}_{q}+q^{k}\binom{n-1}{k}_{q}=\binom{n}{k}_{q}=\binom{n-1}{k}_{q}+q^{n-k}\binom{n-1}{k-1}_{q} .
$$

2. Consider the linear endomorphisms Z, τ_{q}, δ_{q} of algebras $\mathbf{k}[z]$ and $\mathbf{k}[[z]]$ defined by

$$
(Z f)(z)=z f(z),\left(\tau_{q} f\right)(z)=f(q z),\left(\delta_{q} f\right)(z)=(f(q z)-f(z)) /(q z-z)
$$

(a) Verify the following equalities: $\delta_{q} \tau_{q}=q \tau_{q} \delta_{q},\left[\delta_{q}, Z\right]=\tau_{q}, \delta_{q} Z-q Z \delta_{q}=1$.
(b) Show that any τ_{q}-derivation δ of $\mathbf{k}[z]$ (that is $\delta(f g)=\delta(f) g+\tau_{q}(f) \delta(g)$ for any $\left.f, g \in \mathbf{k}[z]\right)$ is of the form $\delta=P \delta_{q}$ for some polynomial P. If $\delta \tau_{q}=q \tau_{q} \delta$, then P must be a constant.
(c) Assume that q is not a root of unity. Prove that the q-exponential $e_{q}(z)$ is, up to a multiplicative constant, the only formal series solution of the equation $\delta_{q}(f)=f$.
3. Assume $y x=q x y$, where q is a root of unity of order d. Prove $(x+y)^{d}=x^{d}+y^{d}$.
4. Let $\Lambda_{q}[\xi, \eta]$ be the algebra $\mathbf{k}\langle\xi, \eta\rangle /\left(\xi^{2}, \eta^{2}, \xi \eta+q \eta \xi\right)$. Set

$$
\binom{\xi^{\prime}}{\eta^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\xi}{\eta}
$$

where the variables a, b, c, d commute with ξ, η. Assume $q^{2} \neq-1$.
(a) Prove that a, b, c, d satisfy the defining six relations of $M_{q}(2)$ if and only if

$$
y^{\prime} x^{\prime}=q x^{\prime} y^{\prime} \text { and }\left(\xi^{\prime}\right)^{2}=\left(\eta^{\prime}\right)^{2}=\xi^{\prime} \eta^{\prime}+q \eta^{\prime} \xi^{\prime}=0 .
$$

(b) Check that $(a \xi+b \eta)(c \xi+d \eta)=\operatorname{det}_{q} \cdot \xi \eta$. Let R be an algebra and m, m^{\prime} be two R-points of $M_{q}(2)$ such that the entries of m^{\prime} pairwise commute with the entries of m. Deduce the equality $\operatorname{Det}_{q}\left(m^{\prime} m\right)=\operatorname{Det}_{q}\left(m^{\prime}\right) \operatorname{Det}_{q}(m)\left(\right.$ Proposition 2(ii) of Lecture 4) 2.
(c) Find a $M_{q}(2)$-comodule-algebra structure on $\Lambda_{q}[\xi, \eta]$.
5. Assume that q is not a root of unity. Prove that the center of $M_{q}(2)$ is generated by det_{q}.
6. (a) For a Lie algebra \mathfrak{g} over a field \mathbf{k} of zero characteristic, prove $\operatorname{Prim}(U(\mathfrak{g}))=\mathfrak{g}$.
(b) Let $\mathbf{k}\langle X\rangle$ denote the free algebra on a set X. Assuming $\operatorname{char}(\mathbf{k})=0$, describe $\operatorname{Prim}(\mathbf{k}\langle X\rangle)$.
7. (a) Let $\operatorname{char}(\mathbf{k})=p>2$. Prove that the center of $U\left(\mathfrak{s l}_{2}\right)$ is generated by 4 elements.
(b)* Determine all the defining relations between the generators found in part (a).

