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1. Bialgebra Mq(n)

Fix q ∈ k∗ and n ∈ Z>0. First, let us generalize the notion of the quantum plane.

Definition 1.1. The quantum polynomial algebra kq[x1, . . . , xn] is the associative algebra
generated by x1, . . . , xn with the defining relations xjxi = qxixj for any i < j.

Exercise 1.2. Prove that {xk11 x
k2
2 . . . xknn |k1, . . . , kn ∈ Z≥0} form a k-basis of kq[x1, . . . , xn].

Next, we define the algebra Mq(n) generalizing Mq(2) from the class.

Definition 1.3. Let Mq(n) be the associative algebra generated by {ti,j}ni,j=1 with the follow-

ing defining relations (for any i < j and a < b):

(?) tj,ati,a = qti,atj,a, ti,bti,a = qti,ati,b, ti,btj,a = tj,ati,b, [ti,a, tj,b] = (q−1 − q)ti,btj,a.

Let us provide an enlightening alternative viewpoint towards Mq(n).

Problem 1.4. Given n2 elements {Ti,j}ni,j=1 of an algebra R, let us encode them in a single R-

valued n×n-matrix T :=
∑

i,j Ti,jEi,j. Set R′ := R⊗kq[x1, . . . , xn], R′′ := kq[x1, . . . , xn]⊗R.

Finally, define elements {x′i}ni=1 and {x′′i }ni=1 of R′ and R′′, respectively, viax
′
1
...
x′n

 = T ·

x1...
xn

 and
(
x′′1, · · · , x′′n

)
=
(
x1, · · · , xn

)
· T.

Assuming q2 6= −1, prove that the following two conditions are equivalent:
(a) The generators Ti,j satisfy the relations (?) with ti,j replaced by Ti,j.
(b) We have x′jx

′
i = qx′ix

′
j and x′′jx

′′
i = qx′′i x

′′
j for any i < j.

Exercise 1.5. (a) Prove that there exist algebra morphisms ∆: Mq(n) → Mq(n) ⊗Mq(n)
and ε : Mq(n)→ k uniquely determined by ∆(T ) = T ⊗ T, ε(T ) = In.

(b) Verify that (Mq(n),∆, ε) is a bialgebra.

Definition 1.6. The quantum skew polynomial algebra Λq[ξ1, . . . , ξn] is the associative
algebra generated by ξ1, . . . , ξn with the defining relations ξ2i = 0, ξiξj = −qξjξi for any i < j.

Our next result generalizes the one for Mq(2) from [Homework 3, Problem 4].

Problem 1.7. (a) In the context of Problem 1.4, set R̄ := R ⊗ Λq[ξ1, . . . , ξn] and define

ξ′1, . . . , ξ
′
n ∈ R̄ via

ξ
′
1
...
ξ′n

 = T ·

ξ1...
ξn

. Prove that the assertions of Problem 1.4 are equivalent

to x′jx
′
i = qx′ix

′
j , ξ

′
iξ
′
j = −qξ′jξ′i, (ξ′i)

2 = 0 for any i < j.

(b) Find left and right Mq(n)-algebra-comodule structures on Λq[ξ1, . . . , ξn].
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Define the quantum determinant of Mq(n) via detq :=
∑

σ∈Sn(−q)−l(σ)t1,σ(1) . . . tn,σ(n).
Likewise, given elements {Ti,j}ni,j=1 of an algebra R satisfying (?), we define Detq(T ) ∈ R.

Problem 1.8. (a) In the context of Problem 1.7, prove that ξ′1 . . . ξ
′
n = Detq(T ) · ξ1 . . . ξn.

(b) Deduce that detq is group-like, that is, ∆(detq) = detq ⊗ detq.

(c) Show that detq =
∑

σ∈Sn(−q)−l(σ)tσ(1),1 . . . tσ(n),n.

More generally, given I = {i1, i2, . . . , ik} and J = {j1, j2, . . . , jk} with 1 ≤ i1 < . . . < ik ≤
n, 1 ≤ j1 < . . . < jk ≤ n, define the quantum minor t̃IJ :=

∑
σ∈Sk(−q)−l(σ)ti1,jσ(1) . . . tik,jσ(k) .

Problem 1.9. Recall the two coactions of Mq(n) on Λq[ξ1, . . . , ξn] from Problem 1.7(b).

(a) Write down the formulas for the images of ξI := ξi1 . . . ξik under both coactions.

(b) Define t̃j,i := (−q)i−j · t̃{1,...,n}\{i}{1,...,n}\{j}. Prove the equalities
∑

j ti,j t̃j,k = δi,k ·detq =
∑

j t̃i,jtj,k.

(c) Deduce that detq is a central element of Mq(n).

2. Hopf algebras GLq(n) and SLq(n)

Using the aforementioned group-like central element detq, we can make the key definition.

Definition 2.1. Define GLq(n) := Mq(n)[t]/(t detq −1) and SLq(n) := Mq(n)/(detq −1).

Due to Problems 1.8 and 1.9, the bialgebra structure on Mq(n) together with the standard
bialgebra structure on k[t] give rise to bialgebra structures on GLq(n) and SLq(n).

Problem 2.2. Prove that GLq(n) and SLq(n) are Hopf algebras with antipode S given by

S(ti,j) = det−1q ·t̃i,j.

Note that the algebras Mq(n), GLq(n), SLq(n) are well-defined for q = 1, and are isomor-
phic to the classical bialgebras M(n), GL(n), SL(n) (by abuse of our notations, those stay
for the algebras of regular functions on the corresponding loci).

3. Bialgebras Mp,q(n), GLp,q(n), SLp,q(n)

In this section, we discuss 1-parameter generalization of the aforementioned constructions.
Fix p, q ∈ k∗ such that pq 6= −1. Consider two quantum polynomial algebras kq[x1, . . . , xn]
and kp[y1, . . . , yn]. Let us be given n2 elements {Ti,j}ni,j=1 of an algebra R, encoded into a

single matrix T :=
∑

i,j Ti,jEi,j . Define R′ := R⊗kq[x1, . . . , xn] and R′′ := kp[y1, . . . , yn]⊗R.

Finally, define elements {x′i}ni=1 and {y′i}ni=1 of R′ and R′′, respectively, viax
′
1
...
x′n

 = T ·

x1...
xn

 and
(
y′1, · · · , y′n

)
=
(
y1, · · · , yn

)
· T.

Problem 3.1. Assuming pq 6= −1, provide a list of
(
n2

2

)
relations on Ti,j which are equivalent

to x′jx
′
i = qx′ix

′
j and y′jy

′
i = py′iy

′
j for any i < j (and coincide with (?) for p = q).

Definition 3.2. Let Mp,q(n) be the associative algebra generated by {ti,j}ni,j=1 subject to the
defining relations obtained in Problem 3.1.
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Problem 3.3. (a) Prove that Mp,q(n) is a bialgebra with the coproduct ∆ and the counit ε
defined by the same formulas as for Mq(n) in Exercise 1.5.

(b) Verify that t1,1t2,2 − p−1t1,2t2,1 is a central element of Mp,q(2). Use it to define algebras
GLp,q(2) and SLp,q(2). Endow both with Hopf algebra structures, i.e., determine antipodes.

(c)* Generalize (b) to an arbitrary n.


