HOMEWORK 3, EXTRA PROBLEMS 1

1. BIALGEBRA $M_q(n)$

Fix $q \in \mathbf{k}^*$ and $n \in \mathbb{Z}_{>0}$. First, let us generalize the notion of the quantum plane.

Definition 1.1. The quantum polynomial algebra $\mathbf{k}_q[x_1, \ldots, x_n]$ is the associative algebra generated by x_1, \ldots, x_n with the defining relations $x_j x_i = q x_i x_j$ for any i < j.

Exercise 1.2. Prove that $\{x_1^{k_1}x_2^{k_2}\dots x_n^{k_n}|k_1,\dots,k_n\in\mathbb{Z}_{\geq 0}\}$ form a k-basis of $\mathbf{k}_q[x_1,\dots,x_n]$. Next, we define the algebra $M_q(n)$ generalizing $M_q(2)$ from the class.

Definition 1.3. Let $M_q(n)$ be the associative algebra generated by $\{t_{i,j}\}_{i,j=1}^n$ with the following defining relations (for any i < j and a < b):

$$(\star) \quad t_{j,a}t_{i,a} = qt_{i,a}t_{j,a}, \quad t_{i,b}t_{i,a} = qt_{i,a}t_{i,b}, \quad t_{i,b}t_{j,a} = t_{j,a}t_{i,b}, \quad [t_{i,a}, t_{j,b}] = (q^{-1} - q)t_{i,b}t_{j,a}.$$

Let us provide an enlightening alternative viewpoint towards $M_q(n)$.

Problem 1.4. Given n^2 elements $\{T_{i,j}\}_{i,j=1}^n$ of an algebra R, let us encode them in a single R-valued $n \times n$ -matrix $T := \sum_{i,j} T_{i,j} E_{i,j}$. Set $R' := R \otimes \mathbf{k}_q[x_1, \ldots, x_n], R'' := \mathbf{k}_q[x_1, \ldots, x_n] \otimes R$. Finally, define elements $\{x'_i\}_{i=1}^n$ and $\{x''_i\}_{i=1}^n$ of R' and R'', respectively, via

$$\begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} = T \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ and } (x''_1, \cdots, x''_n) = (x_1, \cdots, x_n) \cdot T.$$

Assuming $q^2 \neq -1$, prove that the following two conditions are equivalent:

(a) The generators $T_{i,j}$ satisfy the relations (\star) with $t_{i,j}$ replaced by $T_{i,j}$.

(b) We have $x'_i x'_i = q x'_i x'_i$ and $x''_i x''_i = q x''_i x''_i$ for any i < j.

Exercise 1.5. (a) Prove that there exist algebra morphisms $\Delta \colon M_q(n) \to M_q(n) \otimes M_q(n)$ and $\epsilon \colon M_q(n) \to \mathbf{k}$ uniquely determined by $\Delta(T) = T \otimes T$, $\epsilon(T) = I_n$.

(b) Verify that $(M_q(n), \Delta, \epsilon)$ is a bialgebra.

Definition 1.6. The quantum skew polynomial algebra $\Lambda_q[\xi_1, \ldots, \xi_n]$ is the associative algebra generated by ξ_1, \ldots, ξ_n with the defining relations $\xi_i^2 = 0$, $\xi_i \xi_j = -q\xi_j \xi_i$ for any i < j.

Our next result generalizes the one for $M_q(2)$ from [Homework 3, Problem 4].

Problem 1.7. (a) In the context of Problem 1.4, set $\bar{R} := R \otimes \Lambda_q[\xi_1, \ldots, \xi_n]$ and define $\xi'_1, \ldots, \xi'_n \in \bar{R}$ via $\begin{pmatrix} \xi'_1 \\ \vdots \\ \xi'_n \end{pmatrix} = T \cdot \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$. Prove that the assertions of Problem 1.4 are equivalent to $x'_j x'_i = q x'_i x'_j$, $\xi'_i \xi'_j = -q \xi'_j \xi'_i$, $(\xi'_i)^2 = 0$ for any i < j. (b) Find left and right $M_q(n)$ -algebra-comodule structures on $\Lambda_q[\xi_1, \ldots, \xi_n]$. Define the **quantum determinant** of $M_q(n)$ via $\det_q := \sum_{\sigma \in S_n} (-q)^{-l(\sigma)} t_{1,\sigma(1)} \dots t_{n,\sigma(n)}$. Likewise, given elements $\{T_{i,j}\}_{i,j=1}^n$ of an algebra R satisfying (\star) , we define $\operatorname{Det}_q(T) \in R$.

Problem 1.8. (a) In the context of Problem 1.7, prove that $\xi'_1 \dots \xi'_n = \text{Det}_q(T) \cdot \xi_1 \dots \xi_n$. (b) Deduce that \det_q is group-like, that is, $\Delta(\det_q) = \det_q \otimes \det_q$.

(b) Denace that des_q is group time, that is, $\Delta(\operatorname{des}_q) = \operatorname{des}_q \otimes \mathbb{I}$

(c) Show that $\det_q = \sum_{\sigma \in S_n} (-q)^{-l(\sigma)} t_{\sigma(1),1} \dots t_{\sigma(n),n}$.

More generally, given $I = \{i_1, i_2, \ldots, i_k\}$ and $J = \{j_1, j_2, \ldots, j_k\}$ with $1 \le i_1 < \ldots < i_k \le n$, $1 \le j_1 < \ldots < j_k \le n$, define the **quantum minor** $\tilde{t}_J^I := \sum_{\sigma \in S_k} (-q)^{-l(\sigma)} t_{i_1, j_{\sigma(1)}} \cdots t_{i_k, j_{\sigma(k)}}$.

Problem 1.9. Recall the two coactions of $M_q(n)$ on $\Lambda_q[\xi_1, \ldots, \xi_n]$ from Problem 1.7(b).

(a) Write down the formulas for the images of $\xi_I := \xi_{i_1} \dots \xi_{i_k}$ under both coactions.

(b) Define $\tilde{t}_{j,i} := (-q)^{i-j} \cdot \tilde{t}_{\{1,\dots,n\}\setminus\{j\}}^{\{1,\dots,n\}\setminus\{i\}}$. Prove the equalities $\sum_j t_{i,j} \tilde{t}_{j,k} = \delta_{i,k} \cdot \det_q = \sum_j \tilde{t}_{i,j} t_{j,k}$.

(c) Deduce that \det_q is a central element of $M_q(n)$.

2. Hopf algebras $GL_q(n)$ and $SL_q(n)$

Using the aforementioned group-like central element det_q , we can make the key definition.

Definition 2.1. Define $GL_q(n) := M_q(n)[t]/(t \det_q -1)$ and $SL_q(n) := M_q(n)/(\det_q -1)$.

Due to Problems 1.8 and 1.9, the bialgebra structure on $M_q(n)$ together with the standard bialgebra structure on $\mathbf{k}[t]$ give rise to bialgebra structures on $GL_q(n)$ and $SL_q(n)$.

Problem 2.2. Prove that $GL_q(n)$ and $SL_q(n)$ are Hopf algebras with antipode S given by $S(t_{i,j}) = \det_q^{-1} \cdot \tilde{t}_{i,j}$.

Note that the algebras $M_q(n)$, $GL_q(n)$, $SL_q(n)$ are well-defined for q = 1, and are isomorphic to the classical bialgebras M(n), GL(n), SL(n) (by abuse of our notations, those stay for the algebras of regular functions on the corresponding loci).

3. BIALGEBRAS
$$M_{p,q}(n)$$
, $GL_{p,q}(n)$, $SL_{p,q}(n)$

In this section, we discuss 1-parameter generalization of the aforementioned constructions. Fix $p, q \in \mathbf{k}^*$ such that $pq \neq -1$. Consider two quantum polynomial algebras $\mathbf{k}_q[x_1, \ldots, x_n]$ and $\mathbf{k}_p[y_1, \ldots, y_n]$. Let us be given n^2 elements $\{T_{i,j}\}_{i,j=1}^n$ of an algebra R, encoded into a single matrix $T := \sum_{i,j} T_{i,j} E_{i,j}$. Define $R' := R \otimes \mathbf{k}_q[x_1, \ldots, x_n]$ and $R'' := \mathbf{k}_p[y_1, \ldots, y_n] \otimes R$. Finally, define elements $\{x'_i\}_{i=1}^n$ and $\{y'_i\}_{i=1}^n$ of R' and R'', respectively, via

$$\begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} = T \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ and } (y'_1, \cdots, y'_n) = (y_1, \cdots, y_n) \cdot T.$$

Problem 3.1. Assuming $pq \neq -1$, provide a list of $\binom{n^2}{2}$ relations on $T_{i,j}$ which are equivalent to $x'_j x'_i = qx'_i x'_j$ and $y'_j y'_i = py'_i y'_j$ for any i < j (and coincide with (\star) for p = q).

Definition 3.2. Let $M_{p,q}(n)$ be the associative algebra generated by $\{t_{i,j}\}_{i,j=1}^n$ subject to the defining relations obtained in Problem 3.1.

Problem 3.3. (a) Prove that $M_{p,q}(n)$ is a bialgebra with the coproduct Δ and the counit ϵ defined by the same formulas as for $M_q(n)$ in Exercise 1.5.

(b) Verify that $t_{1,1}t_{2,2} - p^{-1}t_{1,2}t_{2,1}$ is a central element of $M_{p,q}(2)$. Use it to define algebras $GL_{p,q}(2)$ and $SL_{p,q}(2)$. Endow both with Hopf algebra structures, i.e., determine antipodes. (c)* Generalize (b) to an arbitrary n.