## HOMEWORK 4: $U_{q}\left(\mathfrak{s l}_{2}\right)$ AND ROOTS OF UNITY

1. For any $m, n \in \mathbb{Z}_{\geq 0}$, verify the following identity (which we used in Lecture 6 ):

$$
E^{m} F^{n}=\sum_{i=0}^{\min (m, n)}\left[\begin{array}{c}
m \\
i
\end{array}\right]\left[\begin{array}{c}
n \\
i
\end{array}\right][i]!\cdot F^{n-i} \cdot \prod_{j=1}^{i}[K ; i+j-(m+n)] \cdot E^{m-i} .
$$

2. Assume that $F^{N}$ acts trivially on a $U_{q}\left(\mathfrak{s l}_{2}\right)$-representation $V$. For $0 \leq r \leq N$, define

$$
h_{r}:=\prod_{j=1-r}^{r-1}[K ; r-N+j] .
$$

Prove that $F^{N-r} h_{r}$ acts trivially on $V$ for any $0 \leq r \leq N$.
In Problems 3-5, $q$ is assumed to be a primitive $d$-th root of unity $(d>2)$. We also define

$$
e:= \begin{cases}d & \text { if } d \text { is odd } \\ d / 2 & \text { if } d \text { is even }\end{cases}
$$

3. Prove that the center of $U_{q}\left(\mathfrak{s l}_{2}\right)$ is generated by $E^{e}, F^{e}, K^{e}, K^{-e}, C$.
4. Recall the $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules $W(\lambda, b)$ introduced in the class (here $\lambda \in \mathbf{k}^{\times}, b \in \mathbf{k}$ ).
(a) Prove that $W(\lambda, b)$ is simple if $b \neq 0$ or $\lambda^{2 e} \neq 1$.
(b) Prove that $W\left( \pm q^{n}, 0\right)(0 \leq n<e)$ is simple if and only if $n=e-1$.
(c) Prove that $W\left( \pm q^{n}, 0\right)(0 \leq n<e-1)$ has a unique nontrivial submodule $W^{\prime}$.
(d) Verify that the unique irreducible quotient of $W\left( \pm q^{n}, 0\right)(0 \leq n<e)$ is isomorphic to $L(n, \pm)$ from the class.
5. Recall the vector space $V(\lambda, a, b)$ and its endomorphisms $E, F, K^{ \pm 1}$ introduced in the class (here $\lambda \in \mathbf{k}^{\times}, a, b \in \mathbf{k}$ ).
(a) Verify that these endomorphisms define a $U_{q}\left(\mathfrak{s l}_{2}\right)$-action on $V(\lambda, a, b)$.
(b) Prove that $V(\lambda, a, b)$ is simple if $b \neq 0$.
