
HOMEWORK 4, EXTRA PROBLEMS 1

1. Ore extensions

Given an algebra R, let us describe all possible algebra structures on the vector space R[t],
which satisfy the following two properties:

(1) the natural inclusion R ↪→ R[t] (given by x 7→ x · t0, x ∈ R) is an algebra morphism,
(2) deg(PQ) = deg(P ) + deg(Q) for any P,Q ∈ R[t] (we assume deg(0) = −∞).

Exercise 1.1. Assume that an algebra structure on R[t] satisfying the above two properties
is given. Prove that R has no zero-divisors and there exists a unique injective algebra endo-
morphism α of R and a unique α-derivation δ of R (that is, δ is a linear endomorphism of
R satisfying δ(ab) = δ(a)b+ α(a)δ(b)), such that

(?) ta = α(a)t+ δ(a) for any a ∈ R.
The inverse is also true.

Problem 1.2. Let R be an algebra without zero-divisors. Given an injective algebra en-
domorphism α of R and an α-derivation δ of R, prove that there exists a unique algebra
structure on R[t] satisfying the above properties (1), (2), and the formula (?).

Definition 1.3. The algebra constructed in Problem 1.2 is denoted R[t;α, δ] and is called
the Ore extension.

A few basic properties of these algebras are summarized in the next two problems.

Problem 1.4. In the setup of Problem 1.2, show that R[t;α, δ] has no zero-divisors. Verify
that as a left R-module, it is free with a basis {tk|k ∈ Z≥0}. Assuming α to be an automor-
phism, prove that R[t;α, δ] is also a right free R-module with the same basis {tk|k ∈ Z≥0}.

Recall that a ring A is called left Noetherian if either of the equivalent conditions hold:
◦ any left ideal I of A is finitely generated;
◦ any strictly ascending sequence of left ideals I1 ( I2 ( · · · of A is finite.

Problem 1.5. Let α be an algebra automorphism of R and δ be an α-derivation of R. Prove
that if R is left Noetherian, then so is the Ore extension R[t;α, δ].

Hint: Given a left ideal I of R[t;α, δ], consider a collection of subsets {Id}d∈Z≥0
of R, con-

sisting of 0 and the leading coefficients of degree d elements of I. Prove that they are left
ideals, giving rise to the ascending sequence I0 ⊆ α−1(I1) ⊆ α−2(I2) ⊆ · · · of left ideals in R.

Recall that a ring A is Noetherian if it is left Noetherian and the opposite ring Aop is
also left Noetherian (equivalently, A is right Noetherian).

Exercise 1.6. (a) Let R be an algebra without zero-divisors, α be the algebra automorphism
of R and δ be the α-derivation of R. Verify that δα−1 is an α−1-derivation of the opposite
algebra Rop and prove the following algebra isomorphism: R[t;α, δ]op ∼= Rop[t;α−1,−δα−1].
(b) Deduce that R[t;α, δ] is Noetherian if R is.
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2. PBW bases

The above theory of Ore extensions can be used to deduce the ring-theoretical properties
of the algebras we encountered so far in the class: kq[x, y], Mq(2), Uq(sl2).

Exercise 2.1. Let α be the automorphism of the polynomial ring k[x] determined by α(x) =
qx. Prove that kq[x, y] ∼= k[x][y;α, 0]. Deduce that that the quantum plane kq[x, y] is Noe-

therian, has no zero-divisors, and the set of monomials {xkyl|k, l ∈ Z≥0} is its k-basis.

To prove similar properties for the quantum algebra Mq(2), we present it as an iterated
Ore extension of k.

Problem 2.2. Define the algebras A1, A2, A3 as follows:

A1 := k[a], A2 := k〈a, b〉/(ba− qab), A3 := k〈a, b, c〉/(ba− qab, ca− qac, cb− bc).
(a) Let α1 be the automorphism of A1 determined by α1(a) = qa. Prove that A2

∼= A1[b;α1, 0].
Deduce that {akbl|k, l ∈ Z≥0} is a k-basis of A2 (this essentially coincides with Exercise 2.1).

(b) Let α2 be the automorphism of A2 determined by α2(a) = qa, α2(b) = b. Prove that
A3
∼= A2[c;α2, 0]. Deduce that {akblcm|k, l,m ∈ Z≥0} is a k-basis of A3.

(c) Show that there is a unique algebra automorphism α3 of A3 such that α3(a) = a, α3(b) =
qb, α3(c) = qc. Verify that the linear endomorphism δ of A3, defined on the basis by

δ(blcm) = 0 and δ(akblcm) = −q−1(1− q2k)ak−1bl+1cm+1 for k > 0

is an α3-derivation of A3. Prove that Mq(2) ∼= A3[d;α3, δ].

(d) Deduce that Mq(2) is Noetherian, has no zero-divisors, and the set {akblcmdn}k,l,m,n∈Z≥0

is a k-basis of Mq(2).

In the same spirit, one can present Uq(sl2) as an iterated Ore extension, thus yielding
alternative proofs of the results from Lecture 6.

Problem 2.3. Define the algebras A1, A2 as follows:

A1 := k[K,K−1], A2 := k〈K,K−1, F 〉/(K±1 ·K∓1 − 1,KF − q−2FK).

(a) Let α1 be the automorphism of A1 determined by α1(K) = q2K. Prove that A2
∼=

A1[F ;α1, 0]. Deduce that {F lKm|l ∈ Z≥0,m ∈ Z} is a k-basis of A2.

(b) Let α2 be the automorphism of A2 determined by α2(K) = q−2K, α2(F ) = F . Verify
that the linear endomorphism δ of A2, defined on the basis by

δ(Km) = 0 and δ(F lKm) = F l−1
l−1∑
i=0

q−2iK − q2iK−1

q − q−1
Km for l > 0

is an α2-derivation of A2. Prove that Uq(sl2) ∼= A2[E;α2, δ].

(c) Deduce that Uq(sl2) is Noetherian, has no zero-divisors, and the set {EkF lKm}m∈Zk,l∈Z≥0
is

a k-basis of Uq(sl2).

Recall the algebras kq[x1, . . . , xn] and Mq(n) from [Homework 3, Extra Problems 1].

Problem 2.4. (a) Realize kq[x1, . . . , xn] as an iterated Ore extension of k.

(b)* Realize Mq(n) as an iterated Ore extension of k.


