HOMEWORK 5, EXTRA PROBLEMS 1

The goal of this extra homework is to provide examples with explicit constructions of simple finite dimensional $U_{q}(\mathfrak{g})$-representations.

1. Explicit construction of representations $L\left(r \omega_{1}\right)$ in type A_{n}.

Consider a polynomial algebra $S=\mathbf{k}\left[x_{1}, \ldots, x_{n+1}\right]$ in $n+1$ indeterminates $\left\{x_{i}\right\}_{i=1}^{n+1}$. For every $1 \leq i \leq n+1$, we define endomorphisms $\mathcal{D}_{i}, \mathcal{M}_{i}, X_{i}$ of S via

$$
\begin{aligned}
& \mathcal{D}_{i}: x_{1}^{m_{1}} \cdots x_{n+1}^{m_{n+1}} \mapsto\left[m_{i}\right]_{q} \cdot x_{1}^{m_{1}} \cdots x_{i}^{m_{i}-1} \cdots x_{n+1}^{m_{n+1}}, \\
& \mathcal{M}_{i}: x_{1}^{m_{1}} \cdots x_{n+1}^{m_{n+1}} \mapsto q^{m_{i}} \cdot x_{1}^{m_{1}} \cdots x_{n+1}^{m_{n+1}}, \\
& X_{i}: x_{1}^{m_{1}} \cdots x_{n+1}^{m_{n+1}} \mapsto x_{1}^{m_{1}} \cdots x_{i}^{m_{i}+1} \cdots x_{n+1}^{m_{n+1}} .
\end{aligned}
$$

(a) Verify $\mathcal{D}_{i} \circ \mathcal{M}_{j}=q^{\delta_{i, j}} \mathcal{M}_{j} \circ \mathcal{D}_{i}$ and $X_{i} \circ \mathcal{M}_{j}=q^{-\delta_{i, j}} \mathcal{M}_{j} \circ X_{i}$.
(b) Verify $\mathcal{D}_{i} \circ X_{j}=X_{j} \circ \mathcal{D}_{i}(i \neq j)$ and $\mathcal{D}_{i} \circ X_{i}=q^{-1} X_{i} \circ \mathcal{D}_{i}+\mathcal{M}_{i}$.

For any $1 \leq i \leq n$, define endomorphisms e_{i}, f_{i}, k_{i} of S via

$$
e_{i}=X_{i} \circ \mathcal{D}_{i+1}, f_{i}=X_{i+1} \circ \mathcal{D}_{i}, k_{i}=\mathcal{M}_{i} \circ \mathcal{M}_{i+1}^{-1} .
$$

(c) Let us label the simple roots $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of $\mathfrak{s l}_{n+1}$ in the standard way. Show that the assignment $E_{\alpha_{i}} \mapsto e_{i}, F_{\alpha_{i}} \mapsto f_{i}, K_{\alpha_{i}} \mapsto k_{i}$ gives rise to the action of $U_{q}\left(\mathfrak{s l}_{n+1}\right)$ on S.
(d) Let $S^{r} \subset S$ be the subspace of all degree r polynomials. Verify that S^{r} is a $U_{q}\left(\mathfrak{s l}_{n+1}\right)$ submodule of S. Prove $S \simeq L\left(r \omega_{1}\right)$, where ω_{1} denotes the first fundamental weight of $\mathfrak{s l}_{n+1}$.
2. Explicit construction of representations $L(\lambda)$ for minuscule dominant weights λ.

Recall that a dominant weight $\lambda \in P_{+} \backslash\{0\}$ is called minuscule if $(\lambda, \alpha) \in\left\{-d_{\alpha}, 0, d_{\alpha}\right\}$ for every root $\alpha \in \Delta$, where we define $d_{\alpha}:=\frac{(\alpha, \alpha)}{2}$ as always.
(a) Verify that the weights of the simple $U_{q}(\mathfrak{g})$-module $L(\lambda)$ with the highest weight λ are precisely the conjugates of λ under the Weyl group W, each occurring with multiplicity 1.

Let us now provide an explicit construction of such $L(\lambda)$. Consider a vector space L with a basis $\left\{x_{\mu}\right\}_{\mu \in W(\lambda)}$. We define endomorphisms $e_{\alpha}, f_{\alpha}, k_{\alpha}(\alpha \in \Pi)$ of L as follows:

$$
k_{\alpha}\left(x_{\mu}\right)=q^{(\alpha, \mu)} x_{\mu}, e_{\alpha}\left(x_{\mu}\right)=\left\{\begin{array}{ll}
x_{\mu+\alpha} & \text { if }(\mu, \alpha)=-d_{\alpha} \\
0 & \text { otherwise }
\end{array}, f_{\alpha}\left(x_{\mu}\right)= \begin{cases}x_{\mu-\alpha} & \text { if }(\mu, \alpha)=d_{\alpha} \\
0 & \text { otherwise }\end{cases}\right.
$$

for any $\mu \in W(\lambda)$.
(b) Show that the assignment $E_{\alpha} \mapsto e_{\alpha}, F_{\alpha} \mapsto f_{\alpha}, K_{\alpha} \mapsto k_{\alpha}$ defines the action of $U_{q}(\mathfrak{g})$ on L.
(c) Prove that $L \simeq L(\lambda)$. Verify that L is simple even if q is a root of unity.
(d) Derive explicit formulas for the vector representations in the classical types $A_{n}, B_{n}, C_{n}, D_{n}$ (actually, those are just $L\left(\omega_{1}\right)$).
3. Explicit construction of quantum analogues of the adjoint representations.

Consider a vector space L with a basis $\left\{x_{\gamma}\right\}_{\gamma \in \Delta} \cup\left\{h_{\beta}\right\}_{\beta \in \Pi}$. Define endomorphism k_{α} of L via $k_{\alpha}\left(h_{\beta}\right)=h_{\beta}, k_{\alpha}\left(x_{\gamma}\right)=q^{(\alpha, \gamma)} x_{\gamma}$. Next, we define endomorphisms e_{α}, f_{α} of L as follows:

- $e_{\alpha}\left(x_{\alpha}\right)=0, e_{\alpha}\left(x_{-\alpha}\right)=h_{\alpha}, e_{\alpha}\left(h_{\alpha}\right)=[2]_{\alpha} x_{\alpha}, e_{\alpha}\left(h_{\gamma}\right)=\left[-d_{\gamma}^{-1}(\alpha, \gamma)\right]_{\gamma} \cdot x_{\alpha}$ for $\gamma \neq \alpha$,
- $f_{\alpha}\left(x_{\alpha}\right)=h_{\alpha}, f_{\alpha}\left(x_{-\alpha}\right)=0, f_{\alpha}\left(h_{\alpha}\right)=[2]_{\alpha} x_{-\alpha}, f_{\alpha}\left(h_{\gamma}\right)=\left[-d_{\gamma}^{-1}(\alpha, \gamma)\right]_{\gamma} \cdot x_{-\alpha}$ for $\gamma \neq \alpha$,
- All the remaining roots $\Delta \backslash\{ \pm \alpha\}$ split into α-strings of the form $\{\gamma, \gamma-\alpha, \ldots, \gamma-m \alpha\}$ with $\gamma+\alpha, \gamma-(m+1) \alpha \notin \Delta$ (note that $m=d_{\alpha}^{-1} \cdot(\gamma, \alpha)$). For each such α-string, we define

$$
\begin{gathered}
e_{\alpha}\left(x_{\gamma-i \alpha}\right)=\left\{\begin{array}{ll}
{[m+1-i]_{\alpha} \cdot x_{\gamma-(i-1) \alpha}} & \text { if } 0<i \leq m \\
0 & \text { if } i=0
\end{array},\right. \\
f_{\alpha}\left(x_{\gamma-i \alpha}\right)= \begin{cases}{[i+1]_{\alpha} \cdot x_{\gamma-(i+1) \alpha}} & \text { if } 0 \leq i<m \\
0 & \text { if } i=m\end{cases}
\end{gathered}
$$

Show that the assignment $E_{\alpha} \mapsto e_{\alpha}, F_{\alpha} \mapsto f_{\alpha}, K_{\alpha} \mapsto k_{\alpha}$ defines the action of $U_{q}(\mathfrak{g})$ on L. This is the quantum analogue of the adjoint representation.

