HOMEWORK 5, EXTRA PROBLEMS 1

The goal of this extra homework is to provide examples with explicit constructions of simple finite dimensional $U_q(\mathfrak{g})$ -representations.

1. Explicit construction of representations $L(r\omega_1)$ in type A_n .

Consider a polynomial algebra $S = \mathbf{k}[x_1, \dots, x_{n+1}]$ in n+1 indeterminates $\{x_i\}_{i=1}^{n+1}$. For every $1 \le i \le n+1$, we define endomorphisms $\mathcal{D}_i, \mathcal{M}_i, X_i$ of S via

$$\mathcal{D}_{i} \colon x_{1}^{m_{1}} \cdots x_{n+1}^{m_{n+1}} \mapsto [m_{i}]_{q} \cdot x_{1}^{m_{1}} \cdots x_{i}^{m_{i}-1} \cdots x_{n+1}^{m_{n+1}},$$

$$\mathcal{M}_{i} \colon x_{1}^{m_{1}} \cdots x_{n+1}^{m_{n+1}} \mapsto q^{m_{i}} \cdot x_{1}^{m_{1}} \cdots x_{n+1}^{m_{n+1}},$$

$$X_{i} \colon x_{1}^{m_{1}} \cdots x_{n+1}^{m_{n+1}} \mapsto x_{1}^{m_{1}} \cdots x_{i}^{m_{i}+1} \cdots x_{n+1}^{m_{n+1}}.$$

- (a) Verify $\mathcal{D}_i \circ \mathcal{M}_j = q^{\delta_{i,j}} \mathcal{M}_j \circ \mathcal{D}_i$ and $X_i \circ \mathcal{M}_j = q^{-\delta_{i,j}} \mathcal{M}_j \circ X_i$.
- (b) Verify $\mathcal{D}_i \circ X_j = X_j \circ \mathcal{D}_i \ (i \neq j)$ and $\mathcal{D}_i \circ X_i = q^{-1}X_i \circ \mathcal{D}_i + \mathcal{M}_i$.

For any $1 \le i \le n$, define endomorphisms e_i, f_i, k_i of S via

$$e_i = X_i \circ \mathcal{D}_{i+1}, \ f_i = X_{i+1} \circ \mathcal{D}_i, \ k_i = \mathcal{M}_i \circ \mathcal{M}_{i+1}^{-1}.$$

- (c) Let us label the simple roots $\Pi = \{\alpha_1, \dots, \alpha_n\}$ of \mathfrak{sl}_{n+1} in the standard way. Show that the assignment $E_{\alpha_i} \mapsto e_i, F_{\alpha_i} \mapsto f_i, K_{\alpha_i} \mapsto k_i$ gives rise to the action of $U_q(\mathfrak{sl}_{n+1})$ on S.
- (d) Let $S^r \subset S$ be the subspace of all degree r polynomials. Verify that S^r is a $U_q(\mathfrak{sl}_{n+1})$ -submodule of S. Prove $S \simeq L(r\omega_1)$, where ω_1 denotes the first fundamental weight of \mathfrak{sl}_{n+1} .
- 2. Explicit construction of representations $L(\lambda)$ for minuscule dominant weights λ . Recall that a dominant weight $\lambda \in P_+ \setminus \{0\}$ is called minuscule if $(\lambda, \alpha) \in \{-d_\alpha, 0, d_\alpha\}$ for every root $\alpha \in \Delta$, where we define $d_\alpha := \frac{(\alpha, \alpha)}{2}$ as always.
- (a) Verify that the weights of the simple $U_q(\mathfrak{g})$ -module $L(\lambda)$ with the highest weight λ are precisely the conjugates of λ under the Weyl group W, each occurring with multiplicity 1.

Let us now provide an explicit construction of such $L(\lambda)$. Consider a vector space L with a basis $\{x_{\mu}\}_{{\mu}\in W(\lambda)}$. We define endomorphisms $e_{\alpha}, f_{\alpha}, k_{\alpha} \ (\alpha \in \Pi)$ of L as follows:

$$k_{\alpha}(x_{\mu}) = q^{(\alpha,\mu)}x_{\mu}, e_{\alpha}(x_{\mu}) = \begin{cases} x_{\mu+\alpha} & \text{if } (\mu,\alpha) = -d_{\alpha} \\ 0 & \text{otherwise} \end{cases}, f_{\alpha}(x_{\mu}) = \begin{cases} x_{\mu-\alpha} & \text{if } (\mu,\alpha) = d_{\alpha} \\ 0 & \text{otherwise} \end{cases}$$

for any $\mu \in W(\lambda)$.

- (b) Show that the assignment $E_{\alpha} \mapsto e_{\alpha}, F_{\alpha} \mapsto f_{\alpha}, K_{\alpha} \mapsto k_{\alpha}$ defines the action of $U_q(\mathfrak{g})$ on L.
- (c) Prove that $L \simeq L(\lambda)$. Verify that L is simple even if q is a root of unity.
- (d) Derive explicit formulas for the vector representations in the classical types A_n, B_n, C_n, D_n (actually, those are just $L(\omega_1)$).

3. Explicit construction of quantum analogues of the adjoint representations.

Consider a vector space L with a basis $\{x_{\gamma}\}_{{\gamma}\in\Delta}\cup\{h_{\beta}\}_{{\beta}\in\Pi}$. Define endomorphism k_{α} of L via $k_{\alpha}(h_{\beta})=h_{\beta}, k_{\alpha}(x_{\gamma})=q^{(\alpha,\gamma)}x_{\gamma}$. Next, we define endomorphisms e_{α}, f_{α} of L as follows:

- $e_{\alpha}(x_{\alpha}) = 0$, $e_{\alpha}(x_{-\alpha}) = h_{\alpha}$, $e_{\alpha}(h_{\alpha}) = [2]_{\alpha}x_{\alpha}$, $e_{\alpha}(h_{\gamma}) = [-d_{\gamma}^{-1}(\alpha, \gamma)]_{\gamma} \cdot x_{\alpha}$ for $\gamma \neq \alpha$,
- $f_{\alpha}(x_{\alpha}) = h_{\alpha}$, $f_{\alpha}(x_{-\alpha}) = 0$, $f_{\alpha}(h_{\alpha}) = [2]_{\alpha}x_{-\alpha}$, $f_{\alpha}(h_{\gamma}) = [-d_{\gamma}^{-1}(\alpha, \gamma)]_{\gamma} \cdot x_{-\alpha}$ for $\gamma \neq \alpha$,
- All the remaining roots $\Delta \setminus \{\pm \alpha\}$ split into α -strings of the form $\{\gamma, \gamma \alpha, \ldots, \gamma m\alpha\}$ with $\gamma + \alpha, \gamma (m+1)\alpha \notin \Delta$ (note that $m = d_{\alpha}^{-1} \cdot (\gamma, \alpha)$). For each such α -string, we define

$$e_{\alpha}(x_{\gamma-i\alpha}) = \begin{cases} [m+1-i]_{\alpha} \cdot x_{\gamma-(i-1)\alpha} & \text{if } 0 < i \leq m \\ 0 & \text{if } i = 0 \end{cases},$$

$$f_{\alpha}(x_{\gamma-i\alpha}) = \begin{cases} [i+1]_{\alpha} \cdot x_{\gamma-(i+1)\alpha} & \text{if } 0 \leq i < m \\ 0 & \text{if } i = m \end{cases}.$$

Show that the assignment $E_{\alpha} \mapsto e_{\alpha}, F_{\alpha} \mapsto f_{\alpha}, K_{\alpha} \mapsto k_{\alpha}$ defines the action of $U_q(\mathfrak{g})$ on L. This is the quantum analogue of the adjoint representation.