HOMEWORK 6: DETAILS FROM LECTURES 13-15

1. Recall the setup of Lecture $13: K=\mathbb{Q}(v) \supset \mathbb{Q}\left[v, v^{-1}\right]=A, V$ is either $L(\lambda)$ or $\widetilde{L}(\lambda)(\lambda \in$ P-dominant weight), and $V_{A}:=\sum_{I} A F_{I} v_{\lambda}, V_{\mu, A}:=\sum_{I: \mathrm{wt}(I)=\lambda-\mu} A F_{I} v_{\lambda}, \bar{V}_{\mu}:=V_{\mu, A} /(v-1)$. Verify that V_{μ} and $V_{\mu, A}$ are free A-modules. Show that $V_{\mu, A} \otimes_{A} K \rightarrow V_{\mu}$ are isomorphisms. Deduce the equalities $\operatorname{dim}_{K}\left(V_{\mu}\right)=\operatorname{rk}_{A}\left(V_{A, \mu}\right)=\operatorname{dim}_{\mathbb{C}}\left(\bar{V}_{\mu}\right)$.
2. Consider an embedding $\mathbb{Q}(v) \hookrightarrow \mathbf{k}$ given by $v \mapsto q \in \mathbf{k}$, where q is transcendental over \mathbb{Q}. For a dominant weight $\lambda \in P$, verify that $L(\lambda)_{\mathbb{Q}(v)} \otimes_{\mathbb{Q}(v)} \mathbf{k}$ is a simple $U_{\mathbb{Q}(v)} \otimes_{\mathbb{Q}(v)} \mathbf{k} \cong U_{\mathbf{k}^{-}}$ module. Deduce the equality $L(\lambda)_{\mathbb{Q}(v)} \otimes_{\mathbb{Q}(v)} \mathbf{k} \cong L(\lambda)_{\mathbf{k}}$ (thus completing the proof of [Theorem 1 of Lecture 13]).
3. Complete the arguments in our proof of [Theorem 2 of Lecture 13] by proving
(a) $L(\lambda)^{*} \cong L\left(-w_{0} \lambda\right)$ for dominant $\lambda \in P$,
(b) exhibiting an explicit formula for the isomorphism $V \xrightarrow{\sim}\left(V^{*}\right)^{*}$ of $U_{q}(\mathfrak{g})$-modules.
4. (a) Generalize the results on $\widetilde{U}_{q}\left(\mathfrak{s l}_{2}\right)$ of Lecture 5 by defining an algebra $\widetilde{U}_{q}(\mathfrak{g})$ generated by $\left\{E_{\alpha}, F_{\alpha}, K_{\alpha}^{ \pm 1}, L_{\alpha}\right\}_{\alpha \in \Pi}$ with an explicit list of the defining relations such that

- If $q^{d_{\alpha}} \neq 1(\forall \alpha \in \Pi)$, then the assignment $E_{\alpha} \mapsto E_{\alpha}, F_{\alpha} \mapsto F_{\alpha}, K_{\alpha} \mapsto K_{\alpha}$ gives rise to an isomorphism $U_{q}(\mathfrak{g}) \xrightarrow{\sim} \widetilde{U}_{q}(\mathfrak{g})$,
- For $q=1$, we have an isomorphism $\widetilde{U}_{q=1}(\mathfrak{g}) \cong U(\mathfrak{g})\left[\left\{K_{\alpha}\right\}_{\alpha \in \Pi}\right] /\left(\left\{K_{\alpha}^{2}-1\right\}_{\alpha \in \Pi}\right)$.
(b) Verify that the latter induces a Hopf algebra isomorphism $\widetilde{U}_{q=1}(\mathfrak{g}) /\left(\left\{K_{\alpha}-1\right\}_{\alpha \in \Pi}\right) \simeq U(\mathfrak{g})$.

5. Prove Lemma 5 of Lecture 14: $f_{J}\left(E_{I} K_{\mu}\right)=f_{J}\left(E_{I}\right)$ and $f_{J}\left(E_{I}\right)=0$ if $\mathrm{wt}(I) \neq \mathrm{wt}(J)$.
6. (a) Verify the equality $(\sigma(y), \sigma(x))=(y, x)$ for any $y \in U_{q}^{-}, x \in U_{q}^{+}$(here σ is the anti-automorphism of $U_{q}(\mathfrak{g})$ determined by $\left.E_{\alpha} \mapsto E_{\alpha}, F_{\alpha} \mapsto F_{\alpha}, K_{\alpha} \mapsto K_{\alpha}^{-1}\right)$.
(b) Verify the equality $(S(y), S(x))=(y, x)$ for any $y \in U_{q}^{\leq}, x \in U_{q}^{\geq}$(here S is the antipode).
7. Prove Lemma 6 of Lecture 15, that is,

$$
\begin{aligned}
\operatorname{ad}\left(E_{\alpha}\right)\left(y K_{\lambda} x\right) & =y K_{\lambda}\left(q^{-(\lambda, \alpha)} E_{\alpha} x-q^{(\mu-\nu, \alpha)} x E_{\alpha}\right)+\frac{\left(q^{-(\nu-\alpha, \alpha)} r_{\alpha}(y) K_{\lambda+\alpha}-r_{\alpha}^{\prime}(y) K_{\lambda-\alpha}\right) x}{q_{\alpha}-q_{\alpha}^{-1}} \\
\operatorname{ad}\left(F_{\alpha}\right)\left(y K_{\lambda} x\right) & =q^{-(\mu, \alpha)}\left(F_{\alpha} y-q^{-(\lambda, \alpha)} y F_{\alpha}\right) K_{\lambda+\alpha} x+\frac{y\left(q^{-(\mu-\alpha, \alpha)} K_{\lambda} r_{\alpha}^{\prime}(x)-q^{-2(\mu-\alpha, \alpha)} K_{\lambda+2 \alpha} r_{\alpha}(x)\right)}{q_{\alpha}-q_{\alpha}^{-1}}
\end{aligned}
$$

for any $\alpha \in \Pi, \lambda \in Q, x \in\left(U_{q}^{+}\right)_{\mu}, y \in\left(U_{q}^{-}\right)_{-\nu}$.
8. Verify that Proposition 2 of Lecture 15 is equivalent to the following result: the linear $\operatorname{map} U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g}) \rightarrow \mathbf{k}$ given by $v \otimes v^{\prime} \mapsto\left(v, v^{\prime}\right)$ is a $U_{q}(\mathfrak{g})$-morphism.

