HOMEWORK 7: DETAILS FROM LECTURES 16-17

1. Complete the proof of [Lecture 16, Proposition 1] by:
(a) Working out computational details in the proof of $\left\langle\operatorname{ad}\left(E_{\alpha}\right) v, v^{\prime}\right\rangle=\left\langle v, \operatorname{ad}\left(S\left(E_{\alpha}\right)\right) v^{\prime}\right\rangle$.
(b) Deduce the equality $\left\langle\operatorname{ad}\left(F_{\alpha}\right) v, v^{\prime}\right\rangle=\left\langle v, \operatorname{ad}\left(S\left(F_{\alpha}\right)\right) v^{\prime}\right\rangle$ by verifying:

$$
\omega \circ S \circ \operatorname{ad}\left(F_{\alpha}\right)=q_{\alpha}^{2} \operatorname{ad}\left(E_{\alpha}\right) \circ \omega \circ S, \omega \circ S \circ \operatorname{ad}\left(S\left(F_{\alpha}\right)\right)=q_{\alpha}^{2} \operatorname{ad}\left(-E_{\alpha} K_{\alpha}^{-1}\right) \circ \omega \circ S .
$$

2. Verify that the assignment $u \mapsto \operatorname{tr}_{L(\lambda)}\left(u K_{-2 \rho}\right)$ gives rise to a $U_{q}(\mathfrak{g})$-morphism $U_{q}(\mathfrak{g}) \rightarrow \mathbf{k}$, where the left-hand-side carries the adjoint action, while the right-hand-side is endowed with a trivial module structure (thus completing our argument in [Lecture 16, Lemma 2]).
3. Complete the proof of [Lecture 17, Lemma 2] by verifying the following equality:

$$
\left(1 \otimes F_{\alpha}\right) \Theta_{\mu}+\left(F_{\alpha} \otimes K_{\alpha}^{-1}\right) \Theta_{\mu-\alpha}=\Theta_{\mu}\left(1 \otimes F_{\alpha}\right)+\Theta_{\mu-\alpha}\left(F_{\alpha} \otimes K_{\alpha}\right) .
$$

4. Work out details in the proof of [Lecture 17, Theorem 1].
5. Complete the proof of [Lecture 17, Lemma 3] by verifying the following equality:

$$
(1 \otimes \Delta) \Theta_{\mu}=\sum_{0 \leq \nu \leq \mu}\left(\Theta_{\mu-\nu}\right)_{12}\left(1 \otimes K_{\nu} \otimes 1\right)\left(\Theta_{\nu}\right)_{13} .
$$

6. Following discussions of Lecture 17, consider the simplest case $\mathfrak{g}=\mathfrak{s l}_{2}, M=M^{\prime}=V=$ $L(1,+)$ with $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbf{k}$ determined by $f(1,1)=q^{-1}$.
(a) Verify that $R^{2}=\left(q^{-1}-q\right) R+1$, or equivalently, $\left(q R^{-1}\right)^{2}=\left(q^{2}-1\right)\left(q R^{-1}\right)+q^{2}$.
(b) Deduce that the operators $\left\{R_{i}^{\prime}\right\}_{i=1}^{r-1} \subset \operatorname{End}\left(V^{\otimes r}\right)$ given by $V_{i}^{\prime}=q R_{i}^{-1}$ satisfy

$$
R_{i}^{\prime} R_{i+1}^{\prime} R_{i}^{\prime}=R_{i+1}^{\prime} R_{i}^{\prime} R_{i+1}^{\prime}, R_{i}^{\prime} R_{j}^{\prime}=R_{j}^{\prime} R_{i}^{\prime}(j \neq i, i \pm 1),\left(R_{i}^{\prime}\right)^{2}=\left(q^{2}-1\right) R_{i}^{\prime}+q^{2}
$$

In other words, $\left\{R_{i}^{\prime}\right\}_{i=1}^{r-1}$ define a representation of the type A_{r-1} Hecke algebra on $V^{\otimes r}$.
7. Assuming \mathbf{k} contains appropriate roots of q, determine all maps $f: P \times P \rightarrow \mathbf{k}$ satisfying

$$
\begin{aligned}
& f(\lambda+\eta, \mu)=q^{-(\eta, \mu)} f(\lambda, \mu), f(\lambda, \mu+\eta)=q^{-(\eta, \lambda)} f(\lambda, \mu), \\
& f(\lambda+\nu, \mu)=f(\lambda, \mu) f(\nu, \mu), f(\lambda, \mu+\nu)=f(\lambda, \mu) f(\lambda, \nu)
\end{aligned}
$$

for any $\lambda, \mu, \nu \in P, \eta \in Q$ (under such choices both Theorems 1 and 3 of Lecture 17 do hold).
8. Prove that $k_{q}[G]$ has a Hopf algebra structure (see suggested formulas in the notes).
9. In the simplest case $G=\operatorname{SL}(2)$, verify:
(a) $k_{q}[\mathrm{SL}(2)]$ is generated by the matrix coefficients corresponding to $M=L(1,+)$.
(b) Verify that the corresponding four matrix coefficients satisfy the defining relations of $\mathrm{SL}_{q^{-1}}(2)$, thus giving rise to a surjective homomorphism $\phi: \mathrm{SL}_{q^{-1}}(2) \rightarrow k_{q}[\mathrm{SL}(2)]$.
(c)* Verify that the homomorphism ϕ of part (b) is actually an isomorphism.

