HOMEWORK 8: DETAILS FROM LECTURES 18-20

1. Given any finite-dimensional g-representation V, consider an endomorphism $\tilde{s}_{\alpha} \in \text{End}(V)$ defined by $\tilde{s}_{\alpha} = \exp(e_{\alpha}) \exp(-f_{\alpha}) \exp(e_{\alpha})$. Verify that it maps V_{μ} isomorphically onto $V_{s_{\alpha}\mu}$.

2. Complete the proof of [Lecture 18, Lemma 1] by establishing the following equality:

$$\sum_{0 \le a, c \le i} (-1)^{b+j} q^{\pm (b-ac-j(i+1))} \begin{bmatrix} i \\ a \end{bmatrix}_q \begin{bmatrix} j+c \\ c \end{bmatrix}_q \begin{bmatrix} j+a \\ i-c \end{bmatrix}_q = 1 \text{ for any } i, j, b \ge 0.$$

Hint: You may want to prove first $\begin{bmatrix} a+b\\k \end{bmatrix}_q = \sum_{i=0}^k q^{ai-b(k-i)} \begin{bmatrix} b\\i \end{bmatrix}_q \begin{bmatrix} a\\k-i \end{bmatrix}_q$ for any $a, b, k \ge 0$. Provide both algebraic and combinatoric proofs of the latter equality.

3. Prove Lemma 4 of Lecture 18.

4. Given $\alpha \neq \beta \in \Pi$, a finite-dimensional $U_q(\mathfrak{g})$ -representation V, and $v \in V$, verify

$$T_{\alpha}(E_{\beta}v) = \left(\operatorname{ad}(E_{\alpha}^{(r)})E_{\beta}\right)T_{\alpha}(v), \text{ where } r := -2(\beta, \alpha)/(\alpha, \alpha)$$

This is Proposition 1 of Lecture 18:

5. Consider an algebra homomorphism $^{\sigma}ad: U_q(\mathfrak{g}) \to \operatorname{End}_{\mathbf{k}}(U_q(\mathfrak{g}))$ given by $x \mapsto \sigma \circ \operatorname{ad}(x) \circ \sigma$, where σ denotes the anti-automorphism of $U_q(\mathfrak{g})$ from Lecture 10.

(a) Prove $T_{\alpha}({}^{\sigma}\mathrm{ad}(E_{\alpha})u) = \mathrm{ad}(F_{\alpha})T_{\alpha}(u)$ and $T_{\alpha}({}^{\sigma}\mathrm{ad}(F_{\alpha})u) = \mathrm{ad}(E_{\alpha})T_{\alpha}(u)$ for any $u \in U_q(\mathfrak{g})$.

(b) Deduce that T_{α} is surjective and obtain explicit formulas for $T_{\alpha}^{-1}(E_{\beta})$ and $T_{\alpha}^{-1}(F_{\beta})$.

6. Given $\alpha \neq \beta \in \Pi$ such that $s_{\alpha}s_{\beta} \in W$ is of order 4, prove:

(a) $T_{\alpha}T_{\beta}T_{\alpha}T_{\beta} = T_{\beta}T_{\alpha}T_{\beta}T_{\alpha}$ in Aut $(U_q(\mathfrak{g}))$, cf. [Lecture 19, Theorem 1].

(b) Given $w \in \langle s_{\alpha}, s_{\beta} \rangle \subset W$ such that $w\alpha > 0$, verify that $T_w(E_{\alpha}) \in \langle E_{\alpha}, E_{\beta} \rangle \subset U_q^+$ and $T_w(E_\alpha) = E_{w\alpha}$ if $w\alpha \in \Pi$, cf. [Lecture 19, Lemma 1].

(c) The span of the products (*) in Lecture 20, corresponding to the longest element w of $\langle s_{\alpha}, s_{\beta} \rangle \subset W$ coincides with the subalgebra $\langle E_{\alpha}, E_{\beta} \rangle$ of U_q^+ , cf. [Lecture 20, Lemma 1].

7. Given $w \in W$ and $\alpha \neq \beta \in \Pi$ satisfying $w\alpha > 0$ and $w\beta < 0$, prove that there exists a decomposition $w = w' \cdot w''$ such that (1) l(w) = l(w') + l(w''), (2) $w'' \in \langle s_{\alpha}, s_{\beta} \rangle$, (3) $w'\alpha > 0$ and $w'\beta > 0$ (this result was used in our proof of [Lecture 19, Proposition 1]).

8. Given
$$\alpha \in \Pi, x \in U^+[s_\alpha w_0], y \in U^-[s_\alpha w_0]$$
 and $i, j \in \mathbb{N}$, verify
 $(T_\alpha(y)F^i_\alpha, T_\alpha(x)E^j_\alpha) = \delta_{i,j}(T_\alpha(y), T_\alpha(x))(F^i_\alpha)$

$$T_{\alpha}(y)F_{\alpha}^{i}, T_{\alpha}(x)E_{\alpha}^{j} = \delta_{i,j}\left(T_{\alpha}(y), T_{\alpha}(x)\right)\left(F_{\alpha}^{i}, E_{\alpha}^{i}\right).$$

This is Lemma 5 of Lecture 20.