HOMEWORK 8: DETAILS FROM LECTURES 18-20

1. Given any finite-dimensional \mathfrak{g}-representation V, consider an endomorphism $\tilde{s}_{\alpha} \in \operatorname{End}(V)$ defined by $\tilde{s}_{\alpha}=\exp \left(e_{\alpha}\right) \exp \left(-f_{\alpha}\right) \exp \left(e_{\alpha}\right)$. Verify that it maps V_{μ} isomorphically onto $V_{s_{\alpha} \mu}$.
2. Complete the proof of [Lecture 18, Lemma 1] by establishing the following equality:

$$
\sum_{0 \leq a, c \leq i}(-1)^{b+j} q^{ \pm(b-a c-j(i+1))}\left[\begin{array}{c}
i \\
a
\end{array}\right]_{q}\left[\begin{array}{c}
j+c \\
c
\end{array}\right]_{q}\left[\begin{array}{c}
j+a \\
i-c
\end{array}\right]_{q}=1 \text { for any } i, j, b \geq 0
$$

Hint: You may want to prove first $\left[\begin{array}{c}a+b \\ k\end{array}\right]_{q}=\sum_{i=0}^{k} q^{a i-b(k-i)}\left[\begin{array}{l}b \\ i\end{array}\right]_{q}\left[\begin{array}{c}a \\ k-i\end{array}\right]_{q}$ for any $a, b, k \geq 0$. Provide both algebraic and combinatoric proofs of the latter equality.
3. Prove Lemma 4 of Lecture 18.
4. Given $\alpha \neq \beta \in \Pi$, a finite-dimensional $U_{q}(\mathfrak{g})$-representation V, and $v \in V$, verify

$$
T_{\alpha}\left(E_{\beta} v\right)=\left(\operatorname{ad}\left(E_{\alpha}^{(r)}\right) E_{\beta}\right) T_{\alpha}(v), \text { where } r:=-2(\beta, \alpha) /(\alpha, \alpha) .
$$

This is Proposition 1 of Lecture 18:
5. Consider an algebra homomorphism ${ }^{\sigma}$ ad: $U_{q}(\mathfrak{g}) \rightarrow \operatorname{End}_{\mathbf{k}}\left(U_{q}(\mathfrak{g})\right)$ given by $x \mapsto \sigma \circ \operatorname{ad}(x) \circ \sigma$, where σ denotes the anti-automorphism of $U_{q}(\mathfrak{g})$ from Lecture 10 .
(a) Prove $T_{\alpha}\left({ }^{\sigma} \operatorname{ad}\left(E_{\alpha}\right) u\right)=\operatorname{ad}\left(F_{\alpha}\right) T_{\alpha}(u)$ and $T_{\alpha}\left({ }^{\sigma} \operatorname{ad}\left(F_{\alpha}\right) u\right)=\operatorname{ad}\left(E_{\alpha}\right) T_{\alpha}(u)$ for any $u \in U_{q}(\mathfrak{g})$.
(b) Deduce that T_{α} is surjective and obtain explicit formulas for $T_{\alpha}^{-1}\left(E_{\beta}\right)$ and $T_{\alpha}^{-1}\left(F_{\beta}\right)$.
6. Given $\alpha \neq \beta \in \Pi$ such that $s_{\alpha} s_{\beta} \in W$ is of order 4, prove:
(a) $T_{\alpha} T_{\beta} T_{\alpha} T_{\beta}=T_{\beta} T_{\alpha} T_{\beta} T_{\alpha}$ in $\operatorname{Aut}\left(U_{q}(\mathfrak{g})\right)$, cf. [Lecture 19, Theorem 1].
(b) Given $w \in\left\langle s_{\alpha}, s_{\beta}\right\rangle \subset W$ such that $w \alpha>0$, verify that $T_{w}\left(E_{\alpha}\right) \in\left\langle E_{\alpha}, E_{\beta}\right\rangle \subset U_{q}^{+}$and $T_{w}\left(E_{\alpha}\right)=E_{w \alpha}$ if $w \alpha \in \Pi$, cf. [Lecture 19, Lemma 1].
(c) The span of the products $\left({ }^{*}\right)$ in Lecture 20, corresponding to the longest element w of $\left\langle s_{\alpha}, s_{\beta}\right\rangle \subset W$ coincides with the subalgebra $\left\langle E_{\alpha}, E_{\beta}\right\rangle$ of U_{q}^{+}, cf. [Lecture 20, Lemma 1].
7. Given $w \in W$ and $\alpha \neq \beta \in \Pi$ satisfying $w \alpha>0$ and $w \beta<0$, prove that there exists a decomposition $w=w^{\prime} \cdot w^{\prime \prime}$ such that (1) $l(w)=l\left(w^{\prime}\right)+l\left(w^{\prime \prime}\right)$, (2) $w^{\prime \prime} \in\left\langle s_{\alpha}, s_{\beta}\right\rangle$, (3) $w^{\prime} \alpha>0$ and $w^{\prime} \beta>0$ (this result was used in our proof of [Lecture 19, Proposition 1]).
8. Given $\alpha \in \Pi, x \in U^{+}\left[s_{\alpha} w_{0}\right], y \in U^{-}\left[s_{\alpha} w_{0}\right]$ and $i, j \in \mathbb{N}$, verify

$$
\left(T_{\alpha}(y) F_{\alpha}^{i}, T_{\alpha}(x) E_{\alpha}^{j}\right)=\delta_{i, j}\left(T_{\alpha}(y), T_{\alpha}(x)\right)\left(F_{\alpha}^{i}, E_{\alpha}^{i}\right)
$$

This is Lemma 5 of Lecture 20.

