HOMEWORK 9: DETAILS FROM LECTURES 21-22

- 1. Verify the Key Theorem of Lecture 21 in the following two cases:
- (a) $\mathfrak{g} = \mathfrak{sl}_2$ and $\lambda \in P_+$,
- (b) \mathfrak{g} is arbitrary, but $\lambda \in P_+$ is minuscule.

2. Given a simple root $\alpha \in \Pi$, prove that any element $y \in U_q^-$ can be uniquely written in the form $y = \sum_{n \ge 0} F_{\alpha}^{(n)} y_n$ with $r'_{\alpha}(y_n) = 0$. This is [Lecture 21, Lemma 2].

3. Prove Theorem 1 of Lecture 22 for $\mathfrak{g} = \mathfrak{sl}_3$ (to which a general case of \mathfrak{g} was reduced).

4. Verify the formulas from Lecture 22, which relate the collection of exponents **a** to **a'** so that $F_{\mathbf{i}}^{\mathbf{a}}$ coincides with $F_{\mathbf{i}'}^{\mathbf{a}'}$ modulo q for $\mathbf{i'}$ obtained from \mathbf{i} by a 3-term braid move.