HOMEWORK 1 (DUE JANUARY 31)

1. (a) Verify that the bilinear map $\omega \colon W \otimes W \to \mathbb{C}$ defined via $\omega(L_n, L_m) = (n^3 - n)\delta_{n,-m}$ defines a 2-cocycle on the Witt algebra W. Prove that it is not a 2-coboundary.

(b) Let \mathfrak{g} be a finite dimensional Lie algebra with a nontrivial invariant symmetric bilinear form (\cdot, \cdot) . Verify that the bilinear map $\omega \colon \mathfrak{g}[t, t^{-1}] \otimes \mathfrak{g}[t, t^{-1}] \to \mathbb{C}$ defined via $\omega(F, G) = \operatorname{Res}_{t=0}(dF, G)$ for $F, G \in \mathfrak{g}[t, t^{-1}]$ defines a 2-cocycle on the loop algebra $\mathfrak{g}[t, t^{-1}]$. Prove that it is not a 2-coboundary.

2. Show that the Witt algebra W is a simple Lie algebra (i.e. it has no proper 2-sided ideals). Deduce that W has no nontrivial finite dimensional representations.

3. For $\alpha, \beta \in \mathbb{C}$, let $V_{\alpha,\beta}$ be the vector space of formal expressions $g(t)t^{\alpha}(dt)^{\beta}$ with $g \in \mathbb{C}[t, t^{-1}]$ (*tensor fields* of rank β and branching α on the punctured complex plane \mathbb{C}^{\times}).

(a) Show that the formula

$$f\partial_t \circ gt^{\alpha}(dt)^{\beta} = (fg' + \alpha t^{-1}fg + \beta f'g)t^{\alpha}(dt)^{\beta}$$

defines an action of W on $V_{\alpha,\beta}$.

(b) Choose a basis $\{v_k\}_{k\in\mathbb{Z}}$ of $V_{\alpha,\beta}$ via $v_k := t^{k+\alpha} (dt)^{\beta}$. Verify

$$L_n(v_k) = -(k + \alpha + (n+1)\beta)v_{k+n}.$$

4. (a) Find the necessary and sufficient conditions on $(\alpha, \beta, \alpha', \beta')$ under which $V_{\alpha,\beta}$ is isomorphic to $V_{\alpha',\beta'}$.

(b) Find the necessary and sufficient conditions on (α, β) under which $V_{\alpha,\beta}$ is irreducible.

5. (a) Let \mathfrak{a} be a Lie algebra, \mathfrak{b} be a Lie subalgebra of \mathfrak{a} , M be a \mathfrak{b} -module, N be an \mathfrak{a} -module. Prove that

$$\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{a}}(M) \otimes N \simeq \operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{a}}(M \otimes \operatorname{Res}_{\mathfrak{b}}^{\mathfrak{a}}(N))$$
 as \mathfrak{a} -modules.

(b) Let \mathfrak{c} be a Lie algebra, $\mathfrak{a}, \mathfrak{b}$ be two Lie subalgebras of \mathfrak{c} such that $\mathfrak{a} + \mathfrak{b} = \mathfrak{c}$. Note that $\mathfrak{a} \cap \mathfrak{b}$ is also a Lie subalgebra of \mathfrak{c} . Let M be a \mathfrak{b} -module. Prove that

 $\operatorname{Res}_{\mathfrak{a}}^{\mathfrak{c}}(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{c}}(M)) \simeq \operatorname{Ind}_{\mathfrak{a} \cap \mathfrak{b}}^{\mathfrak{a}}(\operatorname{Res}_{\mathfrak{a} \cap \mathfrak{b}}^{\mathfrak{b}}(M))$ as \mathfrak{a} -modules.