HOMEWORK 5 (DUE FEBRUARY 28)

1. Recall the set $M(\infty)=\mathrm{Id}+\mathfrak{g l}_{\infty}$ and its subset $\mathrm{GL}(\infty) \subset M(\infty)$ consisting of invertible elements, introduced in Lecture 9.
(a) Show that the matrix multiplication makes $M(\infty)$ into a monoid and $\mathrm{GL}(\infty)$ into a group.
(b) Verify that the formula $A\left(v_{i_{0}} \wedge v_{i_{1}} \wedge v_{i_{2}} \wedge \cdots\right)=\left(A v_{i_{0}}\right) \wedge\left(A v_{i_{1}}\right) \wedge\left(A v_{i_{2}}\right) \wedge \cdots$ defines an action of the monoid $M(\infty)$ and a group GL(∞) on $\mathcal{F}^{(m)}=\Lambda^{\frac{\infty}{2}, m} V$.
2. For $\tau \in \mathcal{F}^{(0)} \backslash\{0\}$, show that $\tau \in \Omega$ iff $S(\tau \otimes \tau)=0$ (thus proving Theorem 5 of Lecture 9).
3. Prove that $\tau=\tau\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ satisfies the first nontrivial equation of the KP hierarchy

$$
\left(\left(\partial_{z_{1}}^{4}+3 \partial_{z_{2}}^{2}-4 \partial_{z_{1}} \partial_{z_{3}}\right) \tau(x-z) \tau(x+z)\right)_{\mid z=0}=0
$$

if and only if $u:=2 \partial_{x}^{2} \log \tau\left(x, y, t, c_{4}, c_{5}, \cdots\right)$ satisfies the KP equation

$$
\frac{3}{4} \partial_{y}^{2} u=\partial_{x}\left(\partial_{t} u-\frac{3}{2} u \cdot \partial_{x} u-\frac{1}{4} \partial_{x}^{3} u\right)
$$

(thus proving Proposition 1 of Lecture 10).
4. Let d be the degree operator in the Fock space $\mathcal{B}^{(0)}=F_{0}$ (so that d multiplies each homogeneous element by its degree, where $\left.\operatorname{deg}\left(x_{i}\right)=i\right)$. Let $\Gamma(u, v)$ be the operator on $\mathcal{B}^{(0)}$ introduced in Lecture 8 (see also Lecture 10). Prove the following equality of formal series:

$$
\operatorname{Tr}_{\mathcal{B}^{(0)}}\left(\Gamma(u, v) q^{d}\right)=\prod_{n \geq 1} \frac{1-q^{n}}{\left(1-q^{n} u / v\right)\left(1-q^{n} v / u\right)} .
$$

