HOMEWORK 6 (DUE MARCH 7)

1. Prove the formula of Lecture 11 for the coefficient of the leading power of h in $\operatorname{det}_{m}(c, h)$:

$$
K_{m}=\prod_{r, s \geq 1}^{r s \leq m}\left((2 r)^{s} \cdot s!\right)^{m(r, s)}, \text { where } m(r, s)=p(m-r s)-p(m-r(s+1))
$$

2. (a) Prove that $\mathcal{F}=\Lambda^{\frac{\infty}{2}} V$ is an irreducible representation of the Clifford algebra generated by $\left\{\hat{v}_{j}, \check{v}_{j}\right\}_{j \in \mathbb{Z}}$.
(b) Compute $\operatorname{Tr}_{\mathcal{F}}\left(q^{\mathrm{d}} z^{\mathrm{m}}\right)$, where m is the operator multiplying elements of $\mathcal{F}^{(m)}$ by the number m, while d is the operator multiplying homogeneous elements by their degree, defined via

$$
\operatorname{deg}\left(\psi_{0}\right)=0, \operatorname{deg}\left(\hat{v}_{j}\right)=j, \operatorname{deg}\left(\check{v}_{j}\right)=-j .
$$

3. (a) Using the boson-fermion isomorphism $\mathcal{F} \simeq \mathcal{B}$, compute the answer to Problem 2(b) using the bosonic realization.
(b) Deduce the Jacobi triple product identity

$$
\prod_{n \geq 0}\left(1-q^{n} z\right)\left(1-q^{n+1} z^{-1}\right)\left(1-q^{n+1}\right)=\sum_{m \in \mathbb{Z}}(-z)^{m} q^{\frac{m(m-1)}{2}} .
$$

(c) Substitute $q=z^{3}$ to obtain the Euler's pentagonal identity

$$
\prod_{n \geq 1}\left(1-z^{n}\right)=1+\sum_{k \geq 1}(-1)^{k}\left(z^{\frac{k(3 k+1)}{2}}+z^{\frac{k(3 k-1)}{2}}\right) .
$$

