HOMEWORK 8 (DUE APRIL 11)

1. Let $A=\left(a_{i j}\right)_{i, j=1}^{n} \in \operatorname{Mat}_{n \times n}(\mathbb{C})$. Let $\widetilde{\mathfrak{g}}(A)$ be the Lie algebra of Lecture 14, and $\widetilde{\mathfrak{h}}, \widetilde{\mathfrak{n}}_{+}, \widetilde{\mathfrak{n}}_{-}$ be the Lie subalgebras of $\widetilde{\mathfrak{g}}(A)$ generated by $\left\{h_{i}\right\}_{i=1}^{n},\left\{e_{i}\right\}_{i=1}^{n},\left\{f_{i}\right\}_{i=1}^{n}$, respectively.
(a) Let $\tilde{\mathfrak{n}}_{+}^{\prime}$ be the free Lie algebra generated by $\left\{e_{i}\right\}_{i=1}^{n}$. Show that the universal enveloping $U\left(\widetilde{\mathfrak{n}}_{+}^{\prime}\right)$ is a free associative algebra in $\left\{e_{i}\right\}_{i=1}^{n}$.
(b) Let $\widetilde{\mathfrak{h}}^{\prime}$ be an abelian Lie algebra with a basis $\left\{h_{i}\right\}_{i=1}^{n}$. Construct an action of $\widetilde{\mathfrak{h}}^{\prime}$ on $\widetilde{\mathfrak{n}}_{+}^{\prime}$ via derivations, so that $h_{i}\left(e_{j}\right)=a_{i j} e_{j}$.
(c) Construct an action of $\widetilde{\mathfrak{g}}(A)$ on $U\left(\widetilde{\mathfrak{h}}^{\prime} \ltimes \widetilde{\mathfrak{n}}_{+}^{\prime}\right)$.
(d) Deduce the Lie algebra isomorphisms $\widetilde{\mathfrak{h}} \simeq \widetilde{\mathfrak{h}}^{\prime}$ and $\widetilde{\mathfrak{n}}_{+} \simeq \widetilde{\mathfrak{n}}_{+}^{\prime}$.
(e) Show that the assignment $e_{i} \mapsto f_{i}, f_{i} \mapsto e_{i}, h_{i} \mapsto-h_{i}$ gives rise to a Lie algebra automorphism of $\widetilde{\mathfrak{g}}(A)$. Deduce that $\widetilde{\mathfrak{n}}_{-}$is isomorphic to the free Lie algebra in $\left\{f_{i}\right\}_{i=1}^{n}$.
2. (a) Establish an isomorphism $\mathfrak{g}(A) \simeq \mathfrak{g}\left(A^{\prime}\right)$ if $A^{\prime}=\sigma A \sigma^{-1}$ for a permutation matrix σ.
(b) Establish an isomorphism $\mathfrak{g}(A) \simeq \mathfrak{g}\left(A^{\prime}\right) \oplus \mathfrak{g}\left(A^{\prime \prime}\right)$ if $A=A^{\prime} \oplus A^{\prime \prime}$ (that is, A has a block diagonal form with two blocks $A^{\prime}, A^{\prime \prime}$ on the diagonal).
3. (a) Compute explicitly the generalized Cartan matrices and the corresponding Dynkin diagrams for $\widehat{\mathfrak{g}}$ with \mathfrak{g} being a classical simple finite dimensional Lie algebra (series $A B C D$).
(b) Compute explicitly the generalized Cartan matrices and the corresponding Dynkin diagrams for $\widehat{\mathfrak{g}}$ with \mathfrak{g} being an exceptional simple finite dimensional Lie algebra (types $E F G$).
4. Prove that the positive part \mathfrak{n}_{+}of the Lie algebras $\mathfrak{s l}_{3}, \mathfrak{s p}_{4}$ is generated by e_{1}, e_{2} subject to the corresponding two Serre relations.
5. Establish (in a straightforward way) Serre relations for affinizations $\widehat{\mathfrak{g}}$ of simple finite dimensional Lie algebras \mathfrak{g}.
6. Let \mathfrak{g} be a simple finite dimensional Lie algebra and $L \mathfrak{g}=\mathfrak{g}\left[t, t^{-1}\right]$. For a \mathfrak{g}-representation V and $z \in \mathbb{C}^{\times}$, define an evaluation representation $V(z)$ (whose underlying vector space equals V) of $L \mathfrak{g}$ as a composition of $L \mathfrak{g} \rightarrow \mathfrak{g}, a t^{n} \mapsto z^{n} \cdot a(a \in \mathfrak{g}, n \in \mathbb{Z})$ and $\mathfrak{g} \rightarrow \operatorname{End}(V)$.
(a) Let V_{1}, \ldots, V_{n} be irreducible nontrivial \mathfrak{g}-representations. Show that the $L \mathfrak{g}$-representation $V_{1}\left(z_{1}\right) \otimes \ldots \otimes V_{n}\left(z_{n}\right)$ is irreducible if and only if $z_{i} \neq z_{j}$ for $i \neq j$.
(b) When are two such irreducible representations isomorphic?
(c) Show that any irreducible finite dimensional $L \mathfrak{g}$-representation has the form as in (a).

Hint: For an irreducible finite dimensional $L \mathfrak{g}$-module V, show that $L \mathfrak{g}$-action on V factors through the action of the finite dimensional Lie algebra $\mathfrak{g} \otimes\left(\mathbb{C}\left[t, t^{-1}\right] / I\right)$, where $I \subset \mathbb{C}\left[t, t^{-1}\right]$ is an ideal of finite codimension. Apply the primary decomposition of I and Lie's theorem.

