HOMEWORK 9 (DUE APRIL 18)

1. Prove that every integrable module V of finite length in category \mathcal{O} over a Kac-Moody algebra is a direct sum of irreducible modules L_{λ} ($\lambda \in P_{+}$).

Hint: Use the Casimir operator.

2. Show that Verma module M_{λ} over an extended Kac-Moody algebra $\mathfrak{g}_{\text{ext}}(A)$ is irreducible for generic $\lambda \in P$. Specify a countable collection of hyperplanes outside of which it is true. *Hint: Use the Casimir operator.*

3. Let V be a module over an extended Kac-Moody algebra $\mathfrak{g}_{\text{ext}}(A)$ from category O. Show that for a Weil generic $\lambda \in P$ (more precisely, for λ outside of a countable collection of hyperplanes) the module $M_{\lambda} \otimes V$ is semisimple, and describe its decomposition into irreducibles.

4. Vertex Operator Construction

Let a_i be the standard generators of the Heisenberg algebra \mathcal{A} . Let F_{μ} be the Fock representation over \mathcal{A} , and set $F := \bigoplus_{m \in \mathbb{Z}} F_{\sqrt{2}m}$. Define vertex operators on F:

$$X_{\pm}(u) := \exp\left(\mp\sqrt{2}\sum_{n<0}\frac{a_n}{n}u^{-n}\right)\exp\left(\mp\sqrt{2}\sum_{n>0}\frac{a_n}{n}u^{-n}\right)S^{\pm 1}u^{\pm\sqrt{2}a_0},$$

where S is the operator of shift $m \to m+1$ (cf. $\Gamma(u), \Gamma^*(u)$ of Lecture 8).

(a) Show that

$$X_a(u)X_b(v) = (u-v)^{2ab} : X_a(u)X_b(v) : \text{ for any } a, b \in \{\pm\}$$

(by abuse of notations, we identify \pm with ± 1 above). In particular,

$$X_a(u)X_b(v) = X_b(v)X_a(u)$$

in the sense that the matrix elements of both sides are series in u, v which converge (but in different regions!) to the same rational functions (note that in the case of $\Gamma(u), \Gamma^*(u)$, there was a minus sign; thus, while $\Gamma(u), \Gamma^*(u)$ are "fermions", $X_+(u), X_-(u)$ are "bosons"!).

(b) Calculate $\langle 1, X_+(u_1) \cdots X_+(u_n) X_-(v_1) \cdots X_-(v_n) 1 \rangle$ for a highest weight vector $1 \in F_0$.

- (c) Find the commutation relation between $X_{\pm}(u)$ and a_n .
- (d) Show that the assignment

$$e(u) = \sum_{n \in \mathbb{Z}} e[n] u^{-n-1} \mapsto X_+(u), \ f(u) = \sum_{n \in \mathbb{Z}} f[n] u^{-n-1} \mapsto X_-(u), \ h[n] \mapsto \sqrt{2}a_n, \ K \mapsto \mathrm{Id}_F$$

defines an action of the affine Kac-Moody algebra $\widehat{\mathfrak{sl}}_2$ on F. Show that this is a level one highest weight representation of $\widehat{\mathfrak{sl}}_2$ with the highest weight 0 with respect to \mathfrak{sl}_2 .

(e) Show that F is an irreducible $\widehat{\mathfrak{sl}}_2$ -representation. Compute its character, i.e. $\operatorname{Tr}_F(e^{zh}q^d)$, where h is the generator of \mathfrak{sl}_2 and d is the degree operator defined by the conditions d(1) = 0 and [d, x[n]] = nx[n] for any $x \in \mathfrak{sl}_2$.