HOMEWORK 9 (DUE APRIL 18)

1. Prove that every integrable module V of finite length in category \mathcal{O} over a Kac-Moody algebra is a direct sum of irreducible modules $L_{\lambda}\left(\lambda \in P_{+}\right)$.

Hint: Use the Casimir operator.
2. Show that Verma module M_{λ} over an extended Kac-Moody algebra $\mathfrak{g}_{\text {ext }}(A)$ is irreducible for generic $\lambda \in P$. Specify a countable collection of hyperplanes outside of which it is true.

Hint: Use the Casimir operator.
3. Let V be a module over an extended Kac-Moody algebra $\mathfrak{g}_{\text {ext }}(A)$ from category \mathcal{O}. Show that for a Weil generic $\lambda \in P$ (more precisely, for λ outside of a countable collection of hyperplanes) the module $M_{\lambda} \otimes V$ is semisimple, and describe its decomposition into irreducibles.

4. Vertex Operator Construction

Let a_{i} be the standard generators of the Heisenberg algebra \mathcal{A}. Let F_{μ} be the Fock representation over \mathcal{A}, and set $F:=\oplus_{m \in \mathbb{Z}} F_{\sqrt{2} m}$. Define vertex operators on F :

$$
X_{ \pm}(u):=\exp \left(\mp \sqrt{2} \sum_{n<0} \frac{a_{n}}{n} u^{-n}\right) \exp \left(\mp \sqrt{2} \sum_{n>0} \frac{a_{n}}{n} u^{-n}\right) S^{ \pm 1} u^{ \pm \sqrt{2} a_{0}},
$$

where S is the operator of shift $m \rightarrow m+1$ (cf. $\Gamma(u), \Gamma^{*}(u)$ of Lecture 8).
(a) Show that

$$
X_{a}(u) X_{b}(v)=(u-v)^{2 a b}: X_{a}(u) X_{b}(v): \text { for any } a, b \in\{ \pm\}
$$

(by abuse of notations, we identify \pm with ± 1 above). In particular,

$$
X_{a}(u) X_{b}(v)=X_{b}(v) X_{a}(u)
$$

in the sense that the matrix elements of both sides are series in u, v which converge (but in different regions!) to the same rational functions (note that in the case of $\Gamma(u), \Gamma^{*}(u)$, there was a minus sign; thus, while $\Gamma(u), \Gamma^{*}(u)$ are "fermions", $X_{+}(u), X_{-}(u)$ are "bosons"!).
(b) Calculate $\left\langle 1, X_{+}\left(u_{1}\right) \cdots X_{+}\left(u_{n}\right) X_{-}\left(v_{1}\right) \cdots X_{-}\left(v_{n}\right) 1\right\rangle$ for a highest weight vector $1 \in F_{0}$.
(c) Find the commutation relation between $X_{ \pm}(u)$ and a_{n}.
(d) Show that the assignment

$$
e(u)=\sum_{n \in \mathbb{Z}} e[n] u^{-n-1} \mapsto X_{+}(u), f(u)=\sum_{n \in \mathbb{Z}} f[n] u^{-n-1} \mapsto X_{-}(u), h[n] \mapsto \sqrt{2} a_{n}, K \mapsto \operatorname{Id}_{F}
$$

defines an action of the affine Kac-Moody algebra $\widehat{\mathfrak{s l}}_{2}$ on F. Show that this is a level one highest weight representation of $\widehat{\mathfrak{s l}}_{2}$ with the highest weight 0 with respect to $\mathfrak{s l}_{2}$.
(e) Show that F is an irreducible $\widehat{\mathfrak{s l}}_{2}$-representation. Compute its character, i.e. $\operatorname{Tr}_{F}\left(e^{z h} q^{d}\right)$, where h is the generator of $\mathfrak{S l}_{2}$ and d is the degree operator defined by the conditions $d(1)=0$ and $[d, x[n]]=n x[n]$ for any $x \in \mathfrak{s l}_{2}$.

