HOMEWORK 10 (DUE APRIL 25)

1. Let $F := Q \otimes_{\mathbb{Z}} \mathbb{C}$ and $P := \mathfrak{h}^* \oplus F$. In Lecture 16, we constructed a particular isomorphism $\varphi \colon P \to \mathfrak{h}_{ext}^*$ and introduced a symmetric nondegenerate bilinear form $(\cdot, \cdot) \colon P \times P \to \mathbb{C}$.

(a) Show that the induced pairing $(\cdot, \cdot) \colon \mathfrak{h}_{ext} \times \mathfrak{h}_{ext} \to \mathbb{C}$ is given by

$$(h_{\alpha_i}, h_{\alpha_j}) = d_i^{-1} a_{ij}, \ (D_i, h_{\alpha_j}) = (h_{\alpha_j}, D_i) = \delta_{ij}, \ (D_i, D_j) = 0.$$

(b) Extend the invariant pairing on $\mathfrak{g}(A)$ to an invariant nondegenerate pairing on $\mathfrak{g}_{\text{ext}}(A)$.

2. Let $\mathfrak{g}(A) = \hat{\mathfrak{g}}$ be the affinization of a simple finite dimensional Lie algebra \mathfrak{g} .

(a) Define the category \mathcal{O} over $\tilde{\mathfrak{g}} := \mathbb{C}d \ltimes \hat{\mathfrak{g}}$. Explain why it is basically equivalent to the category \mathcal{O} over $\mathfrak{g}_{\text{ext}}(A)$ as defined in Lecture 16.

(b) For a module $V \in \mathcal{O}$ of level k, verify the following relation between the actions of the Casimir operator Δ (of Lecture 17) and the Sugawara operator L_0 (of Lecture 13) on V:

$$\Delta = 2(k+h^{\vee})(L_0+d).$$

3. Let M_{λ}^+ (resp. M_{λ}^-) be the highest weight (resp. lowest weight) Verma module over a finite dimensional simple Lie algebra \mathfrak{g} . Let V be any \mathfrak{h} -diagonalizable module over \mathfrak{g} . Establish the isomorphism $\operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}^+ \otimes M_{\mu}^-, V) \simeq V[\lambda + \mu]$.

- 4. Let $\Theta_{n,m}(\tau,z) := \Theta_{n,m}(\tau,z,0)$ with τ in the upper half of the complex plane.
- (a) Show that for a fixed τ , this is a holomorphic function in z for all z.
- (b) Relate $\Theta_{n,m}$ with $\Theta_{0,1}$.
- (c) Find the zeros of $\Theta_{n,m}$ and their multiplicities. Hint: Use Jacobi triple product to factorize $\Theta_{0,1}$.