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Article history: This paper concerns the relation between the quantum toroidal algebras and

gece@ej _24 Ja{mag% 201813 Avril the affine Yangians of sl,, denoted by Ué?),hm and %:)hz hys Tespectively. Our
eeelved In revised form pri motivation arises from the milestone work [11], where a similar relation between

2018 . .
Available online 24 May 2018 the quantum loop algebra U,(Lg) and the Yangian Yﬁ(g) has bein Aestabhshed
Communicated by S. Donkin by constructing an isomorphism of C[[A]]-algebras ®: Uexp(n)(Lg)—Yr(g) (with

~ standing for the appropriate completions). These two completions model the
behavior of the algebras in the formal neighborhood of h = 0. The same
construction can be applied to the toroidal setting with ¢; = exp(h;) for 1 = 1,2,3
(see [11,22]). In the current paper, we are interested in the more general relation:
@ = wmneM/™ g = eM2/™ g5 = w;ﬁleh-?/m, where m,n > 1 and wm, is an

mn-th root of 1. Assuming w’?, is a primitive n-th root of unity, we construct

mn
i o i i (m)
a homomorphism ®%m» between the completions of the formal versions of Ug\g,,q,

and ’fJ(m")

hi/mmn,hy/mn,hs/mn"*

© 2018 Elsevier B.V. All rights reserved.

0. Introduction

Given a simple Lie algebra g, one can associate to it two interesting Hopf algebras: the quantum loop
algebra U,(Lg) and the Yangian Y, (g). Their classical limits, corresponding to the limits ¢ — 1 or h — 0,
recover the universal enveloping algebras U(g[z, z71]) and U(g[w]), respectively. The representation theories
of Uy(Lg) and Y3, (g) have a lot of common features:

— the descriptions of finite dimensional simple representations involve Drinfeld polynomials,
— these algebras act on the equivariant K-theories/cohomologies of Nakajima quiver varieties.
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However, there was no explicit justification for that until the recent construction from [11] (also cf. [9,
Section 5]). In [11], the authors construct a C[[A]]-algebra isomorphism

®: Uun(Lg)—5Yn(g)

of the appropriately completed formal versions of these algebras. Taking the limit h — 0 corresponds
to factoring by (%) in the formal setting. The classical limit of the above isomorphism is induced by
lim C[z, 27! /(z — 1)""5lim Clw]/(w)" ~ C[[w]] with z*1 s etv.

— —

In the current paper, we generalize this construction to the case of the quantum toroidal algebras and
the affine Yangians of sl,, and gl;. To make our notations uniform, we use u,(;f?qm% to denote the quantum
toroidal algebra of sl,, (if n > 2) and of gl; (if n = 1). This algebra depends on three nonzero parameters
q1, 92, q3 such that g1g2q3 = 1. We also use 92?,)12,113 to denote the affine Yangian of s, (if n > 2) and of
gl; (if n = 1). This algebra depends on three parameters hy, ho, hg such that hy + he + hy = 0. For n > 2,
these algebras were introduced long time ago by [10,9].) However, the quantum toroidal algebra and the
affine Yangian of gl; appeared only recently in the works of different people, see [14,7,20,15,21,22].

The main result of this paper, Theorem 3.1, provides a homomorphism

wmn . (m yWmn s A(mn)
(I) uh1 R yhl,h2

from the completion of the formal version of UEIT?D,% to the completion of the formal version of Y hT,Z)z,hg'
Formal versions mean that we consider these algebras over the ring Cl[#1, iig]] with

hy ha 1 hs
hi = hy/mn, he = hiz/mn, hg = hz/mn and ¢ = wmpe™, @ =€m, g3 =w, €™,

where A3 = —h; — ho and wy € C* is an N-th root of unity. For n = 1 = w,,,, we recover an analogue of
the homomorphism ® applied in the toroidal setting (see [22] for m = n = wy,, = 1). In contrast to [11,22],
our new feature is that we construct homomorphisms between formal versions of quantum and Yangian
algebras corresponding to different Lie algebras. Another difference is that ¢; is in the formal neighborhood
of a root of unity, not necessarily equal to 1.

The structures of formulas for ®jmn are similar to those in [11]. Let {ei,k,fi,k,hi,k}giam , be the

generators of U%T)h‘;’"" and {xi’,rvfi’,r}ggjgmnq be the generators of H%Tgl Let ‘jg?%l% - %::L,Z)Q,hg e
the subalgebra generated by & .. Then, we have:

0<i'<mn oo 0<i'<mn oo
Winn g(mn),0 mn ( W ( (k)
e (hig) € Yy g+ o (€4k) g E gl/ rm,/ o Qo (fik) E E oo
i’=1 r=0 V=1 r=0

m m

for certain g( ) S H%T;Z’O the completion of Y},

(k )

(m") 0 with respect to the natural N-grading. These formulas

as well as exphmt formulas for g;,". were found followmg the arguments of [11] as well as understanding the
classical limit first (see Theorem 2.2 and Proposition 3.2). However, in contrast to [11], we are not aware
of the direct proof of the compatibility of this assignment with the Serre relations. Instead, we propose
two indirect proofs. In the first one, we construct an isomorphism between faithful representations of the
algebras in the question, compatible with the defining formulas for ®3m». In the second one, we utilize the
shuffle approach.

Our motivation partially comes from [1], where a 4d AGT relation on the ALE space X, (minimal

resolution of A,,_; singularity C2?/Z,) was studied. The main tool in [1] was the limit of K-theoretic

L Actually, we will need to modify slightly their construction in the n = 2 case.
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(5 dimensional) AGT relation on C2, where q; — w,,q2 — 1. Recall that the quantum toroidal algebra
ug&?q%% acts on the equivariant K-theory of the moduli spaces of torsion free sheaves on C2, while the affine
Yangian Y h?) hy.hs aCts on the equivariant cohomologies of the moduli spaces of torsion free sheaves on X,,.

Therefore, it was conjectured in [1] that the limit of Uégq%qg as g1 — wn, g2 — 1 should be related to the
affine Yangian of sl,. The m = 1 case of our Theorem 3.1 can be viewed as a precise formulation of this
idea. We also refer an interested reader to [12] for the related work.

This paper is organized as follows:

o In Section 1, we recall the definition of the quantum toroidal algebra Ut(ﬁ,)qz,qs and the affine Yangian
%hl hohs Of 8ln (if n > 2) and gl; (if n = 1). They depend on n € Zs( and continuous parameters
q1,92,q93 € C* or hy, ho, hy € C satisfying q1g2q3 = 1 and hy + ho + hg = 0. We also explain the way one

can view the algebras Hﬁ:i)hz h, & additivizations of uS,T?q2,q3.

We recall a family of Fock ug??qz7q3—representations FP(u) (p € Z/nZ, uw € C*) from [5] and introduce a
similar class of Fock 9;:3,12yhs—representations *FP(v) (p € Z/nZ,v € C).

e In Section 2, we introduce the formal versions of these algebras and study their classical limits. Let
9({3% be an associative algebra over C[[hq, fi2]] with the same collections of the generators and the defining

relations as for ‘z}g)’h%_hl_h,z with hy ~ hy/n and hg ~ kg /n.

One can similarly define the formal versions of u,(h ,)12 a3, but this heavily depends on the presentation of

q1,92,q3 € C[[h1, h2]]. In this paper we are interested in the behavior of the algebras qu”qQ ¢ and Y h??hg, hs
as qq =+ wn,q2 — 1,93 — wN and hy, ho, hs — 0, respectively. Therefore, we will be mainly concerned with

the following relation between {hs} and {g}:

q1 = wy - exp(h1/m), g2 = exp(ha/m), g3 = wy' exp(hz/m).

The formal version of the corresponding u((,h()]z,qa will be denoted by Uhl “N

Taking the limit hy — 0 corresponds to factoring by (%z) in the formal setting. According to [23], the
classical limits u(m)’“’N = U%T%;”N (h2) and ‘3;:) = yg‘)m/(hg) are closely related to the matrix algebras
with values in the rlngs of difference or differential operators on C*, respectively. In Theorem 2.14, we show

that the algebras Hﬁ ', and u"”)ng are flat C[[h2]]-deformations of the corresponding limit algebras H("
and u(m)’”N We also prove that the direct sum of all finite tensor products of Fock modules (which are not

in resonance) for either Bﬁ o umw form a faithful representation of the corresponding algebra.
e In Section 3, we present the main result of this paper. We construct the homomorphism

WWLn . (m),wm" \ A(mn)
(I) uhl 2] yhl,hZ

for any m,n > 1 and an mn-th root of unity wy,, = exp(2rki/mn) with k € Z, ged(k,n) = 1. We compute
the classical limit of ®%m» using the above identification of uﬁ{f)’“m" and ’z},::m) with matrix algebras over
the rings of difference or differential operators on C*, see Theorem 2.2. In Section 3.3, following [11], w
provide a straightforward verification of the compatibility of @} with all the defining relations, except the
most complicated Serre relations, for which the argument of [1 1] fails. We propose two alternatives proofs
in Sections 4, 5.

e In Section 4, we construct isomorphisms between tensor products of the Fock modules for U%T)h’;‘)m”

and H(hrlm,g which are compatible with the defining formulas for ®m». Combining this result with the
faithfulness statement from Section 2, we obtain a proof of Theorem 3.1. In Section 4.3, we recall the
geometric realization of tensor products of the Fock modules for the quantum toroidal algebra and the
affine Yangian of sl,,, and provide a geometric interpretation of the aforementioned isomorphism of tensor
products of the Fock modules.

o In Section 5, we recall the shuffle realization of the positive halves u(m) “mm > and H(mn) = due to [17-19],

5,
see Theorems 5.2, 5.4. In Theorem 5.5, we construct the homomorphlsm between the completions of the
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corresponding shuffle algebras and show that it is compatible with the restriction of ®%m». This implies the
compatibility of the latter with the Serre relations, and therefore completes our direct proof of Theorem 3.1
initiated in Section 3.3.

1. Basic definitions and constructions

In this section, we introduce the key actors of this paper: the quantum toroidal algebra and the affine
Yangian of sl,,. We also recall the Fock representations of these algebras.

1.1. Quantum toroidal algebras of sl,, (n > 2) and gl

The quantum toroidal algebras of sl, (n > 2), depending on ¢,d € C*, were first introduced in [10].
The quantum toroidal algebra of gl; was introduced much later in the works of different people, see [14,7,
20]. Finally, a similar definition of the quantum tor01dal algebra of sly was proposed in [6]. To make our
exposition shorter, we use the uniform notation uql,q%% for such algebras, where n € Z-o and ¢; = d/q,
q2 = ¢%, g3 = 1/dq, so that g1q2q3 = 1. This algebra coincides with the quotient of the algebra &, from [6]
by ¢¢ = 1. Since the former was called the quantum toroidal algebra of gl,, in [6], we will refer to Ug, gs,qs
as the quantum toroidal algebra of s, (see the above explanation for the cases of n =1,2).

For n € Z>0, we set [n] == {0,1,...,n — 1} which will be viewed as a set of mod n residues. Let
A= (aw) be the Cartan matrix of type A( ; for n > 2 and a zero matrix for n = 1. Consider two
more matrlces (dw )i Ee[[:]] and (m; ;)] 6[[71] defined by

d¥l if j=i+1landn>2, 1 if j=i—1landn>2,
dij:=< -1 if j#£iand n=2, m;;:=q—1 if j=i+1andn > 2,
1 otherwise, 0 otherwise.
Finally, we define a collection of polynomials {g; ;(z, w) z ee[[:]] as follows:
z — qaid M if n>2,
Z — qow if n=2and:=j,
9i5(2,w) = . o
(z — qw)(z — qgsw) if n=2andi# j,

(z —qw)(z — ew)(z — @aw) if n=1.

The algebra uql 42,q5 18 the unital associative C-algebra generated by {e; i, fi.k, Vi ks 1/)2 o fee[i] with the
defining relations (T0-T6) to be given below:

$io- Vg = Yio - Yio = 1 [0 (2), 95 (w)] = 0, [ (2), 45 (w)] =0, (T0)
lei(2), fi(w)] = . 51; - O(w/2) (W] (w) — ¢ (2)), (T1)
’L]Q’LJ(Z w)ez(z)ej (w) _gj,i(waz)ej(w)ei(z)a (TQ)

j idj, 1(11) Z)fl(z)fj(w) gi,j(sz)fj(w)fi(z)7 (TS)

di jgi (2, w7 (2)ej(w) = —gj.i(w, 2)e; (w)ehi (2), (T4)
djigsi(w, 2)07 (2) fi(w) = —gi (2, w) f;(w)¥;(2), (T5)

where these generating series are defined as follows:
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Z €i7kzik, fi(z Z fikz k, wi : +Z¢z 2T, 6(2) = Z 2",
k=—o00 k=—o00

r>0 k=—o0

Let us now specify the Serre relations (T6) in each of the cases: n > 2,n = 2,n = 1. Set [a, b]

while Sym will stand for the symmetrization in 21,

z = ab—x-ba,
ey Zp
21,00y Zp

e Case n > 2. Then, we impose:

[ei(z)a ej(w)} = 07 [fl(z)v fj(w)] =0 if Q5 = 0,
Sy [ (20, (2. eca ()l -+ = 0, Sym (i), i) fsa ()l = 0. (T6)

21,22

e Case n = 2. Then, we impose

Sym  [e;(21), [ei(22), [ei(23), eit1(w)]g2]lg—2 = 0,

21,%2,23
(T6)
Sym  [fi(21), [fi(22), [fi(23), fir1(w)]q2]]g-2 = 0.
21,%72,%3
e (Casen = 1. Then, we impose
z z
Sym  =[eg(21), [eo(22), eo(23)]] = 0, Sym = [fo(21), [fo(22), fo(zs)]] = 0. (T6)
21,22,23 <3 21,22,23 <3
Remark 1.1. For any n > 1 and w, = {/1 € CX, there exists an algebra isomorphism U™, 00—
(n) : , (=i ,
uwn'ql,qz,wilqa given by 61<2) = el(wn Z)afz( ) = fz(w Z) 7/) ( ) = '@[J ( )
It will be convenient to use the generators {h; k};cee[i]\{O} instead of {1, k}keZ\{O} defined by
exp( =g ")) hite2 ™" ) = PF(2) = VT ¢F(2), hisr € ClTg, ¥ a1, ¥ita, .. -
r>0
Then, the relations (T4, T5) are equivalent to the following (we use notation [m], := q;":qq:lm ):
Vi€ = q"ejiio, [hik,eji] =bn(i,jik) - ejiqp for k #0, (T4')
Viofin =a " fjaio0s [hig, fi1] = —bn(i, ji k) - fiuek for k #0, (T5)
where the constants b, (i, j; k) are given explicitly by:
[ka;‘c,j]q . dFkmi if n> 2,
bn(iaj; k) = [2:]4(5j77; — & . (dk + dik)(Sj’iJrl if n= 2, (].)
%-(qu—’f—d’f—d—’f) if n=1.

We equip the algebra U((ﬁ,)qz7q3 with the principal Z-grading by assigning

deg(eix) =1, deg(fix) = —1, deg(¢s ) =0 for all i € [n], k € Z.



872 M. Bershtein, A. Tsymbaliuk / Journal of Pure and Applied Algebra 223 (2019) 867-899

Following [4, Theorem 2.1], we endow u,(ﬁ,)q%qg with a formal coproduct by assigning

Alei(2)) = ei(z) @1+ 47 (2) @ ei(2), A(fi(2)) = fi(z) @ ¢ (2) +1 @ fil2),
A(WE(2)) = ¥E(2) @ ¥ (2).

1.2. Affine Yangians of sl, (n > 2) and gly

The affine Yangians of sl, (n > 2), denoted by ?5\75 (A, B € C), were first introduced in [9]. Their
counterpart for n = 2 is introduced below. Finally, the affine Yangian of gl; has recently appeared in the
works of Maulik-Okounkov [15] and Schiffmann—Vasserot [21]. In the present paper, we will need the loop
presentation of the latter algebra from [22].

To make our exposition shorter, we call such algebras the affine Yangians of sl, and use the uniform
notation Hgn)h s for them, Where n € Zsgand hy = 8 —h, ho = 2h, h3 = — — h with 8, h € C, so that
h1 4+ ho + hy = 0. The algebra Hh ho.hy 1S the unital associative C-algebra generated by {xl &, T}T@:] with
the defining relations (Y0-Y5) to be given below.

The first two relations are independent of n € Z~:

[fi,r;fj,s] = 0, (YO)
[.’EZ_T, x;S] = 6i7j . €i,r+s- (Yl)

Let us now specify (Y2-Y5) in each of the cases: n > 2, n =2, n = 1. Set {a,b} := ab+ ba.

e (Case n > 2. Then, we impose

[:L'z:",:r-i-l? xjjs] - [1'?,:7-7 x;'ljs—i-l] Jﬂ[ i\70 j 5] + a%]h{x ,7 ] 5}7 (Y2)
(i1 5] = (i ] = =i Bl 25) £ aigh{&r, 25}, (Y3)
[€i.0, 75,] = £ai jais, (Y4)
§1Y£I21 [x'?,:rl? [:L'z:",:rz’ ‘r;til,s]] =0 and [‘T;tﬂ j s] =0 if a; Jo— =0. (Y5)
e (Case n = 2. Then, we impose
[mfrJrl’ ‘rzi,s] - [xii,r’ ‘rii,erl] ih’Q{xz g s} (Y21)
+ + + + + 4+
(27 42015, s — 2[z; 10T, 1] T [ oLy, a2l = (Y2.2)
- h1h3[ 1,77 j s] + hQ({xz 7‘+17 7 s} {xz s ] s+1}) for .] 7& Z
[51 r+1, Ly, s] [gz r> g s+1} ihQ{giﬂ”’ £Ei,s}’ (Y31)
[€i7T+2? zfs] - [E’i,T+17xfs+l] + [giarﬂ‘r;%s-‘rﬂ = (Y3 2)
- h1h3 [é‘i,rv ‘,'C;tg] :F h‘2({§i,’r’+17 x_;lfs} - {57;,7‘7 x;’%g—‘,—l}) fOr j 7& i)
G0, 23] = Fai oy, (G2 ) = FQrh o + he{bio 25 L)), (Y4)
Sym [ ?,:7"1’ [x?,:rga [x’i:7"37 x;t+17s]]] =0. (Y5)
T1,72,73
e (Case n = 1. Then, we impose
+ + + + + + + +
[xO,r+37x0,s] - 3[‘r0,r+27m0,s+1] + 3[xo,r+1»$0,5+2] - [xO,T7xO,s+3] = (Y2)

+ + + L+ + 4+
- ‘72([$0,7»+17$0,5] - [1‘0,7» xo,s+1]> + 03{x0,r"r0,s}’
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(€043, T3] — BlCo,rt2, T 1) + 3l€0.r11, T g yn] — [E0urs TG ops] =

(Y3)

- 02([50,7‘-&-17 xlis] - [50,7'; x()i,s-‘,-l]) + 0'3{50,7'5 x(fs}v
[5070’ ‘roi,s] =0, [50,1, xoi,s] =0, [50 2, Xy, s] :I:2h1h3'r0 59 (Y4)
Sym [‘:C(:)t,m? [x(:)t,rg? x(:)t,r3+1H = 0> (Y5)

T1,72,73

where we set g9 = hlhg + h1h3 + hghg, g3 1= hlhghg.

Remark 1.2. (a) For n > 2, the algebras y(n Iy h n, coincide with those of [9]. Explicitly, we have an isomor-
phlSm ghl ha,—hi—hs — Yh2’2 277(2h1+h2)
(b) Our definition of ‘éh )h h, coincides with the corrected version of Y_j; _p, (sl2) from [12].

(c) Our definition of y Iy ha.hy 1St appeared in [22] under the name “the affine Yangian of gl, "
1.3. Affine Yangians as additivizations of quantum toroidal algebras

The algebras %g),hz, n, can be considered as natural additivizations of the algebras u(({f?qm% in the same
way as Y3,(g) is an additivization of U,(Lg). We explain this by rewriting (Y0-Y5) in a form similar to the
defining relations (T0-T6). We also define an algebra CDHEZ),,W h-

Let us introduce the generating series:

* z) = Zw?;z—’”_l, &i(2):=14+hs Z£i7rz_r_1

r>0 r>0
We also define a collection of polynomials {p; ;(z, w) i ee[[z]] as follows:
z—w+m; ;B —a;h if n>2,
z—w—hy if n=2andi=j,
pzw) =4 " | 7
(=1)%1(z —w — h1)(z —w — h3) if n=2andi# j,

(z—w—h))(z—w—hy)(z—w—nhg) if n=1.

Let Y(»):< yYy(n).0 Yy(n).> he the subalgebras of }'jh ha.h, enerated by {z;, TEN {fl - :EG[I:], and {a:;rr ZEG[I:],

respectively. Let Yn),2 and YOS he the subalgebras of ghl,hz,hrs generated by Y ")’O,‘g}(" > and
Y(n),0 y(n).< respectively. The following result is standard:

Proposition 1.3. (a) Y™):0 is isomorphic to a polynomial algebm in the generators {&; , ren

i€[n]”’
b) Y2 are isomorphic to the algebras generated by a: "N subject to (Y2, Y5).
[n]

(c) y! .2 are isomorphic to the algebras generated by {@ it 3TN subject to (Y0, Y2-Y5).

i,rJi€[n]

+
Jir+6i 5

well-defined due to Proposition 1.3(c). Let u: ‘z}hl haohs @ ‘z}hl hoohs ‘z}hl ha.hs D€ the multlphcation map.
The following is straightforward:

Consider the homomorphisms o3 H(n = - H(” < defined by &, — &,z JT — @ . These are

Proposition 1.4. (a) The relation (Y0) is equivalent to [£;(z), & (w)] =0
(b) The relation (Y1) is equivalent to hg - (w — z)[a:j'(z),x]_ (w)] = 0i,;(&i(2) — &(w)).
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(¢) The relations (Y3, Y4) are equivalent to
pz’,j(Z’U;r)fz‘(Z)xIs = _pj,i(a;_7z)xj:s§i(z)a pj,i(aj_vz)gi(z) = —pi;(z, 0 )fcj_,s&(z)~

(d) The relation (Y2) is equivalent to

O 1 (g (2,0 P (2) @ 0l 4+ pyalo) W, 2)at, @t () =0,

deg; .., -, — —
02 i (pyalo %) @)@, +pig(z0; Vg, @17 () =0,
— (1) — (2 — +

where we set deg, ;.,, := deg(p; j(z,w)), 0;" (a@b) := ( )®@b, 0;7 7 (a®b) :=a®0;(b).

Remark 1.5. Let DH hy, h2 n, D€ the unital associative C-algebra generated by {sr:lik, &k fgﬁ] with the defining
relations (YO-Y5). A similar construction for Y3 (g) was first introduced in [3] (see also [13]). We equip
@yﬁ;‘)hz n, With a formal coproduct by assigning

AT (2) =

K2

A(EF(2))

~E + —k—1 ¢ —r—1 ¢— — —s—
where F7(2) 1= Xpep 2™ T () = 14 X0 62T T 6 (2) = 1= B0 G2 T

T () @1+ () ©F] (2), AF; () =77 (2) @& (2) + 10T (2),

. 3
HCEO! @

1.4. Fock representations

For p € [n] and u € C*, let FP(u) be a C-vector space with the basis {|\)} labeled by all partitions A.
Given such A = (A1, Ag,...) and s € Zg, let At 1, := (A1,...,As=1,...) and define ¢;(\) :=p+s— s € Z.
We also write a = b if a — b is divisible by n and set ga,b := d0q,=p. We write g(z)i for the expansion of a
rational function g(z) in 271, respectively. Set 1(z) := (¢ — ¢~ '2)/(1 — z). The following result is due to [6,
Section 2.5].

Proposition 1.6. (a) For n > 1, the following formulas define an action of u((;f,)q%% on FP(u):

_ cs(N)=j cs(N)=j+1
A+ Lle; ()N =benger ] wla ™M™ [ @ e ) (e dh /=),
1<s<l 1<s<l
e()‘) =J =j+1
A @A+ 1) =000 [ ela ™1™ l) H (g %) 0(art s u/2),
s>l s>1
cs(N)=j cs(A)=j+1
AoFEN = 1] v e vz I eE/a e v
s>1 s>1

while all other matriz coefficients are set to be zero.
(b) For n =1, the same formulas with the matriz coefficient of fo(z) multiplied by <

Ofug?qz,qs on FO(U)'

1—
( %) define an action

Remark 1.7. (a) If A+1; (resp. A) is not a partition, while A (resp. A+1;) is a partition, then the right-hand
side of the first (resp. second) formula is zero, hence, the equality is vacuous.

(b) The above infinite products can be simplified to finite products, due to ¥(1/2)1(g22) = 1.

(c) The Fock representations F?(u) were originally constructed from the “vector representations” by using
the semi-infinite wedge construction and the formal coproduct (2) on ul(l??q27q3.
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Let us define analogous Fock representations of Hgﬁ?hg’hg. For p € [n] and v € C, let “FP(v) be a C-vector
space with the basis {|\)}. We also set ¢(z) := L2 and 5+ (2) := > o, 2"

Proposition 1.8. (a) For n > 1, the following formulas define an action of yﬁ:?hz,hg on *FP(v):

5 N cs(N)=j cs(N)=j+1
A+ Lfaf () = =22 T o =N = Dhn+ (s=Dhs) [T 0l = A)ha + (1 = 5)ha)
1<s<l 1<s<l
X (5+(()\lh1 + (I —1)hs+v)/z),
(5 N 1 s()‘) g()\ =j+1
a7 (2)|A + 1) = <2 H S((As =M —Dhi+ (s —Dhs)  [] &((\ = Ao + (I — s)hs)
s>1 s>1
X 5+(()\lh1 + (I —1Dhs+v)/z),
cs(N)= cs(N)=j+1
(A6 (2) 1N H S((As = Dhi+ (s = Dhg+v—2)" ] 6z = Qsha + (s = Dha +0))7,
s>1 s>1

while all other matriz coefficients are set to be zero.
(b) For n =1, the same formulas with the matriz coefficient of xy (2) multiplied by —hs/h1 define an action
of ‘jhl hyihs O aFO(v), cf. [22, Proposition 4.4].

Remark 1.9. For v ¢ {—ahy — bhs|a,b € N}, we get an action of DHEZ?M’M (from Remark 1.5) on *F?(v)
by changing 6 (---) ~ 6(---) and ¢(--- )" ~ ¢(---)T in the above formulas.

1.5. Tensor products of Fock representations

In addition to the Fock modules, we will also need their tensor products. Given r € Z-y and p =
(p1,...,pr) € [n]",u = (u1,...,u;) € (C*)", consider the Fock modules {FP*(uy)};_,. Using the formal
coproduct (2) on the algebra ug’}?@,qg, one can define an action of ut(z?,)q%qg on FP(u) := FP(u1) ® -+ ®
FPr(u,), but only if {ux}y_, are not in resonance, see [5]. This module has the basis {|A)} labeled by
r-tuples of partitions A = (A, ... A("). Define cé‘”()\) = ¢, (A@) and let A+ 1{*) denote AW N@)
ls,...,A"). For 1 <a,b<7and s, € Zsg, we say (a,s) < (b,1) if either a < b or a = b, s < . We also set

A
=0t g

Proposition 1.10. (a) For n > 1, the following formulas define an action of uf;f?qz,% on FP(u):

el (A)=j P (N)=j+1
b < a b b a b
A+ 1716 ()N =0,000 500 1] ¢ (x§ )Jaix} )) I v (x( VxS )) 3" /%),
(a,s)=<(b,l) (a,s)=<(b,l)
9 (N)=j D (N)=j+1
b N () 7\ (a b
ALEOA1) =000 0 T e (@/axd”)  TT o (dA2) -60d”/2),
(a,s)>(b,l) (a,s)=(b,0)
r P N=j ro el (N)=5+1
(N[ ( H I »&“/az* H IT v/,
a=1 s>1 s>1

while all other matriz coefficients are set to be zero.
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(b) For n =1, the same formulas with the matriz coefficient of fo(z) multiplied by a(1= qs) define an action
1
Ofut(h?qmqs on Fo(u)'

Remark 1.11. The parameters {uy} are not in resonance exactly when the first two formulas are well-defined

(do not have zeroes in denominators) for any r-tuples of partitions A, A + 1(b)

Let r € Zso,p € [n|",v € C", and assume that {vi}},_, are not in resonance. Considering the additiviza-
tion of the above proposition, we get an action of %Z),hz,hs on the vector space *FP(v) with the basis {|A}}

labeled by r-tuples of partitions. Set zga) = )\ga)hl + (s — 1)hs + v,.

Proposition 1.12. (a) For n > 1, the following formulas define an action of Hg?hz’hg on “FP(v):

cga)()\)zj (a) (b) h3 (a)()\)zj—i-l .Il(b) _ ga) hy 5+($§b))

A+1712F (DN =005 00 11 Ts_—m ths :
¢ (N),j+1 (a) (b) (b) (a) ’
: ! (a,8)=<(b,1) s — —h (a,8)=(b0) Tl — 3’ o

YN=i (@) () I N=+1 (b) »@ e
_ (OIS Ts  — X +h3 T, — Ts _h2 d ( )
<)\\xj )A+1,7) = écl(b)()\)’jﬂ H W

b ( ’ )
(a,s)=(b,l) Ts hy (a,s)>(b,l) xz() xsa) o
roclDN)=j (a) roc(N)=j+1 (a)
Ts —2z+ hg z—xs — hg
(N& (2 H II o H II —a
a=1 s>1 -z s>1 2= s

while all other matriz coefficients are set to be zero.
b) For n =1, the same formulas with the matriz coefficient of x4 (2) multiplied by —hs/hy define an action
0

of ‘jgl)’hmhg on “FO(v).

Remark 1.13. A short proof of Proposition 1.12 is based on the identification *FP(v) ~ “FP'(v1) ® - -+ ®
@FPr(v,), where “ FP* (vy,) are viewed as D‘éi?h%hs-modules, see Remarks 1.5, 1.9.

2. Formal algebras and their classical limits

In this section, we introduce the formal versions of our algebras of interest and relate their classical limits
to the well-known algebras of difference and differential operators on C*. We work in the formal setting,
that is, over C[[R]] or C[[hq, h2]] where h, k1, By are formal variables (here C[[A1, hi2]] is the completion of
C[h1, Aiz] with respect to the N-grading with deg(f;) = deg(fiz) = 1). Our notations follow [23].

2.1. Algebras 25" and 37"

For ¢ € CI[h]]*, define the algebra of g-difference operators on C*, denoted by d,, to be the unital
associative C[[R]]-algebra topologically generated by Z*!, D! with the defining relations:

z*'z7 =1, DF'DF =1, DZ =q-ZD.
Define the associative algebra D((]n) = M,, ® 9,, where M, stands for the algebra of n x n matrices (so
that b((]n) is the algebra of n x n matrices with values in 9,). We will view D((Z") as a Lie algebra with the
natural Lie bracket — the commutator [-,-]. It is easy to check that the following formula defines a 2-cocycle

B € C2(04™, C[A])):
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ko 1—gtt(R1tk2) N
¢ <71)(]\4’1 ® DkIle,MQ ® Dk2Z_l2) _ tI'(MlMZ) - q 1R2 1—qu1+k2 if ll = 12,
%4 0 otherwise,
L1 (k1+k2)

for any My, My € M, and kq, ko, 1,12 € Z. Here ﬁw € C][A]] is understood in the sense of evaluating

1 . _gl1(k1+k2) .
% € C[z*!] at @ = ¢F1+*2. In particular, % =1l if ki +ky=0.

This endows 3\ := 2" & C[[A]] - ¢, with the Lie algebra structure via [X + Acy, Y + picy] = XY — VX +
¢, (X,Y)cp for any X, Y € 051”) and A, u € C[[A]], so that ¢, is central.

2.2. Algebras ’Dén) and 55%")

Define the algebra of h-differential operators on C*, denoted by ®p, to be the unital associative
C][R]]-algebra topologically generated by 9, zT! with following defining relations:

e F =1, 9 = 2(0 + h).

Define the associative algebra @%") =M, ® Dy, (so that @%n) is the algebra of n x n matrices with values
in ©p). We will view @;Ln) as a Lie algebra with the natural Lie bracket — the commutator [-,-]. Following
[2, Formula (2.3)], consider a 2-cocycle ¢ ) € CQ(D%TL),(C[[FLH):

h

tr(MiMo) 3075 fir(ah) fo((a = k)R)  if k= —1>0,
S (M1 @ f1(0)a", Mz ® f2(9)a') = § —tr(M Mp) S falah) fi((a 4+ k)R if k= —1 <0,

0 otherwise,

for arbitrary polynomials fi, fo and any My, My € M,,, k,l € Z.
This endows @%n) = @%n) @ C[[h]] - co with the Lie algebra structure via [X + Acp,Y + pep] = XY —
YX + ¢ (X,Y)ep for any X,Y € @%n) and A, u € C[[A]], so that co is central.
h

2.8. Homomorphism T‘;’,{tn

In this section, we assume that ¢ —wy € AC[[R]]* for a certain N-th root of unity wy = ¥/1 € C*. Let us
consider the completions of aﬁ,"), 55{” and ZD%”), ’D%n) with respect to the ideals Sy =Mp® (DN —1,q—wy)
and Jom =M, ® (0, h):

h

[V(n n n i\(n) . <(n) /x(n
o 37" == 1im 0" /0" - (DN — 1,q —wn)" and 9, :=1lim 3§ /3" - (DN —1,¢ —wn)';

~ ~(n) _ _
o DM = lim 22" (5, h)" and D, = lim DM /DM (9, ).

Remark 2.1. (a) Taking completions of 051”) and @,(5") with respect to the ideals ‘]a"” and Jg(m commutes
q h
with taking central extensions with respect to the 2-cocycles gba(n) and ¢®(n).
q h

(b) Specializing i or ¢ to complex parameters hg € C or g9 € C*, we get the matrix algebras Dfﬁ) and
Z)E{;) with values in the classical C-algebras of difference/differential operators on C* as well as their
one-dimensional central extensions. The latter are the C-algebras given by the same collections of the
generators and the defining relations. However, one can not define their completions as above. This is one
of the key reasons we choose to work in the formal setting.

For m,n € Z~o, we identify M, ® M, >~ My, via Eqp @ Eg 1 = Epy(k—1)+a,m(—1)+b for any 1 < a,b <
m, 1 <k,l <n.Our next result relates the above different families of completions.
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Theorem 2.2. (a) Fiz an n-th root of unity w, and set q := w, exp(h). The assignment

> tem? 0 0 e 0 0 010 --- 00

0 g 2" 0 0 0 001 --- 00

0 0 g"Eem? - 0 0 :

D= | . . ) . . L '

: : : oo : 0 0 0 1

0 0 0 ge™® 0 0 0 0 0 1

0 0 0 0 end z 0 0 0
gives rise to a C[[h]]-algebra homomorphism Y™ : i}l)exp ) CD ()
(b) Combining Y77, from part (a) with the above zdentzﬁcatzon M Q@ M, ~ M, we get a C[[h]]-algebra
homomorphism Y&r O(W)exp B ’D for any m,n € Zsog.
(c) The assignment cor co, A Yo (A) for A€ DEJ )exp(h) gives rise to a C[[h]]-algebra homomorphism

~ m) ~ (mn)

T% n- wn exp(h) -

(d) If wy, is a pmmztwe n-th root of unity, then Y3, and T‘;’n"n are isomorphisms.

Proof of Theorem 2.2. (a) Let us denote the above n x n matrices by X and Y, respectively. They are
invertible and satisfy the identity XY = ¢V X (which follows from e"ze "% = "z = ¢"z). Hence,
there exists a C[[A]]-algebra homomorphism Y7, : oM By CD%”) such that Y{7 (D*') = X*=! and

wn, exp(
T (Z*') = Y*!. Since ¢ — w, € AC[[A]] and T{7 (D" — 1) € 33%“) - (0,h), the above homomorphism
induces the homomorphism DSJ ) exp(h) D™ also denoted by T,

(b) Follows immediately from (a).
(c) It suffices to check the following equality:

by (M ® DMz M, ® D*7'2) = Sgomm (Tt (M @ DMz, ren (My ® D2 Z"2))
wn exp(h)
for any My, My € M,,, and kq, ko, l1,lo € Z. This is a straightforward verification.

(d) Let us now assume that wy, is a primitive n-th root of unity. To prove T3, is an isomorphism, it suffices
to show that the induced linear map Yy DiT)exp(h) / (D" -LA"— ZD mn) /(0,h)" is an isomorphism for
any r € Z~q. For the latter, it suffices to prove that Ti’jf is an isomorphlsm, due to our definition of T4, .

For any r € Z~, the following holds:

o {n*1D*2Z%|k € Z, 51,52 € N,nsy + s2 < nr} is a C-basis of Df}ly)exp(h)/(D" -1,
e {E,, @h*10%22%|1 < a,b<n,k €7Z,s1,85 €N, 81 + 52 <r} is a C-basis of CD%”)/((?, R)",
e the linear map Y77 induces a linear map T‘f,"n;r’oz Vro = W0, where

Vi := spang{A®* D*?|s1, s2 € N,ns1 + s3 < nr} — subspace of DS) exp(h)/(Dn —-1,m",

W0 :=spanc{E, , ® h*10%|1 < a <mn,s1,s2 € N, 51 + s < r} — subspace of Z‘D%ﬂ)/(a, h)".

Explicit formulas for powers of the matrix Y imply that Y77 is an isomorphism if and only if Y77 0
is an isomorphism. The latter is equivalent to T“f,’;l’r 0 being surJectlve as

nr(r+1)

dlm(‘/r,o) = B

== dim(ero).

For any 0 < s < r — 1, the restriction of T‘f:;;r’o to spang{h® - (D" —1)"=571. D0 < i < n — 1} maps it
isomorphically onto spanc{FEj x @ h*(nd + (n — k)h)" 7|1 < k < n}. It is here that we use the fact that
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wy, is a primitive n-th root of unity. Therefore:
(B @k H1<k<n0<s<r—1}C Im(TT’T;f’O).

Considering now the restriction of T‘f;l”’o to spanc{h* - (D™ — 1)7 =572 Di}giig;:é and combining this

with the aforementioned inclusion, we get
{Bre @B 0 21 <k <n,0<s<r—2}CIm(Y{"0).

Proceeding further by induction, we see that Y$7"" is surjective. Therefore:

.0 . . . .
T — isomorphism = Y77 — isomorphism = Y5, — isomorphism = Y3, — isomorphism.
) )

Combining this with part (c), we also see that Y%r, is a C|[[h]]-algebra isomorphism. 0O
(m),w (m),w
2.4. Algebras Uy 7= and Uy,

Throughout this section, we fix a root of unity w € C* and let Ay, s be formal variables, while we
set hs := —hy — hg. First, we introduce the formal version of the quantum toroidal algebra uC(ITC)IZyCZS with
@ = weM/™ gy = eh2/™m gy = wle=(lth2)/m Define

q1 := wexp(h1/m),q2 := exp(ha/m), q3 := w! exp(hz/m) € C[[h, hZHX

Note that replacing ¢; by ¢;, the relations (T0, T2-T6) are defined over C[[hi1, hi2]], while (T1) is not

1

well-defined as we have ¢ —q~" in the denominator. To fix this, we will rather use the generators h; i, where

we present w;—f in the form 1/11 0 = exp ( %hw), so that

ha . ha
"/}zi(z) = exp <i%hi’o> - exp ( (q—q~ th 12T ) with g = /g2 = exp <%> .

>0

Switching from {; x, ¥ ;. 0 kEZ | to {h, k} the relations (T4, T5) get modified to

ze[m]’
hiks €51l = bm (i, 53 k) - €514k [Pk, fii] = —bm (2,55 k) - fia4k for i,5 € [m], k,l € Z, (H)

where b,,(¢,7;0) = a; ;, while by, (4, j; k) is given by the formula (1) from Section 1.1 for k # 0. These
relations are well-defined in the formal setting as [k]q € C[[h1, ho]]. We also note that the right-hand side of

(T1) is now a series in 2%, w*! with coefficients in C[[h, hg]][{hi7k}§€€[%n]].

Definition 2.3. uﬁ;")hj is the unital associative C|[[h1, ho]]-algebra topologically generated by {e;r, fi«,
i k}keZ with the defining relations (T0-T3, H, T6) whereas ¢; ~ q;, n ~ m.

Its classical limit u“”’ is defined by

U = UL ().

It is the unital associative C[[h;]]-algebra topologically generated by {eik, fik: hi K }EEL - subject to the

1€[m]
relations (T2, T3, T6) (whereas q; ~ q1,¢2 ~ 1,¢3 ~ q;*, ¢ ~ 1,d ~ q1,1 ~> m) and



880 M. Bershtein, A. Tsymbaliuk / Journal of Pure and Applied Algebra 223 (2019) 867-899

[P ks hja] = 0,
[€i,k> fia] = 0ij - Piir,
(hi ks eji] = b, (6,55 k) - €514k,
[hi,k, fj,l] = *b;n(ivj; k) : fj,z+k,

for all 4,5 € [m] and k,l € Z. Here b),(i,7; k) € C[[l]] is the image of b,, (i, j; k) € C[[A1, he]]:

—km; j

i 9 if m>2,
by, (i, i k) = =Y 85041 + 205 — qfk5j,ze1 =928 — (af + qfk)éiﬂ,j if m=2,
2—qf —qp" if m=1.

Remark 2.4. Specializing h; to a complex parameter h; € C, we obtain a C-algebra u(m>’“ generated by
{ezk, fiks Zk}kez with the same defining relations (TOL, T1L, T2, T3, T4L, T5L, T6) whereas qr ~ qq =

wem € CX.
The following result is straightforward:

Proposition 2.5. The assignment

ok > Ema @ DFZ, for v E1m @ Z71D*, hot = Epm @ DF — E11 @ (q7°D)* + ¢,

eik = Eiiy1® @ 'D)*, fir = Eiy1,i ® @' D)* hig = (Eii — Ei1,41) ® (a7 'D)"

fori € [m)\{0}, k € Z, gives rise to a C[[h1]]-algebra homomorphism 6™ U(m Y U( )
Define a free C[[h1]]-submodule 05, m) 0 5%) as follows:

e For m > 2, 55&2)’0 is spanned by

{(C[[hl]]ca, A;.CJ ® DkZl‘]{),l S Z, AkJ eM,, ® (C[[hl]],tr(Ak)[) S hlc[[ﬁlﬂ,tr(Ao)o) = 0};

o For m = 1,0\ is spanned by {C[[u]lco, i C[[n]] D**, 15 C[[l )| DF Z+5 |k € Z, 5 € Zso}.
Lemma 2.6. 3" is a Lie subalgebra of 3\ and Im(p™)) U(ﬁ(TL)’O)
q7 a1 a1 ’
In fact, we have the following result:
Theorem 2.7. ™) gives rise to an isomorphism (™) : uﬁ{f) Y=U(0, (m) 0.

Actually, a more general result is proved in [23, Theorem 2.1]:

Theorem 2.8. For hy € C\{Q-7m/—1}, let UELT)’W be as in Remark 2.4 and 55;1;3)’0 C 5((1?3) be the Lie subalgebra
spanned by {cy, Ay @ D¥Z'|k,1 € Z, Ay € My, tr(Aoo) = 0}. Then, the same formulas define a C-algebra

isomorphism 6™ ; UZT)’w%U(ﬁéimn)’o).
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Since all the defining relations of u;’l’”"“ are of Lie type, it is isomorphic to an enveloping algebra of the

Lie algebra generated by {e; x, fik, Pk fEeZ with the same defining relations. Thus, Theorem 2.7 provides

[m]

a presentation of the Lie algebra 6517;)’0 by generators and relations.

2.5. Algebras Hgﬁ?hz and yf{f)

Analogously to the previous section, let ki, is be formal variables and set hg := —hy — hsa.

Definition 2.9. Hh 'n, 18 the unital associative Cl[#i1, ho]]-algebra topologically generated by {31:z s Eir TEN in]

with the defining relations (YO-Y5) whereas h; ~ h;/n.

We equip the algebra ‘z}gll?hz with the N-grading via deg(z; i ) =deg(&;) =1, deg(hs) =1 for all i € [n],
r €N, s € {1,2,3}. Its classical limit Hg) (a formal version of the C-algebra H(n) : with

hi € C) is defined by

yhl/n 0,—hi/n

Ui o= Y (h2).
It is a unital associative C[[h;]]-algebra. The following result is straightforward:

Proposition 2.10. The assignment

»—>En1®81‘ a: r B @0+ (1 —i/n)h)",
(EO’,,, — El,n Qx~ 8T7 Zl'i,r — Ei+1,i (8 + (]. — z/n)hl) s
o Epn®0" —E11® 0+ M) +d0rc0, CGip— (Biy— Eit1,i41) @ (0+ (1 —i/n)k)"

fori € n)\{0}, r € N, gives rise to a C[[l]]-algebra homomorphism 9™ : Hgll) — U(@;{?)

Define a free C[[fi;]]-submodule 35;:)’0 C i_);:) as follows:

e Forn > 2 5‘5;:)’0 is spanned by
{Cl[m)len, Ay @ 07a'|r € N, € Z, Ay € My, ® C[[Iu]], tr(Ar1) € I Cl[]]};

o Forn =1, D" is spanned by {C[[fu]lco, MC[[lu]]8", ki~ Cl[M]]0"a*5|r € N, 5 € Zso}.

Lemma 2.11. @;:)’0 is a Lie subalgebra of ’)5%?) and Im(9™) U(ég)’o).
In fact, we have the following result:

Theorem 2.12. 9(™) gives rise to an isomorphism 9™ H%’I)%U(ég)’o).
Actually, a more general result is proved in [23, Theorem 2.2]:

Theorem 2.13. For hy € C*, the same formulas define an isomorphism 9™ Hgg)i)U(@g)),

Since all the defining relations of Y h" are of Lie type, it is isomorphic to an enveloping algebra of the

Lie algebra generated by {zz &, T}Teli with the same defining relations. Thus, Theorem 2.12 provides a

n)7

presentation of the Lie algebra Z) by generators and relations.
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2.6. Flatness and faithfulness
The main result of this section is:

Theorem 2.14. (a) The algebra u(’” he is a flat C[[hg]]-deformation of uf{f%w o~ U(ﬁglﬁ)’o).
(b) The algebra H(") h, 18 a flat C[[hz]]-deformation of H’(F:) ~ U(@g{;)’o),

Proof of Theorem 2.14. To prove Theorem 2.14, it suffices to provide a faithful U (5(m)’0) representation

(resp. U (@(r:) )-representation) which admits a flat deformation to a representation of U m%; (resp. ‘jf{:?m).

To make use of the representations from Sections 1.4, 1.5, we will need to work not over C[[h1, fiz]], but
rather over the ring R, defined as a localization of C|[[A1, fiz]] by the multiplicative set {(fiy — v1hg) - -+ (A1 —

vsh)}oe5o . Note that R := R/(hy) ~ C((hy)). We define

UG = U Ocqimna B Y% = Y3, ©ciinna) R-

Consider the Lie algebra gl = {3, ;cz a1 Exlars € C[[M]] and ar; = 0 for [k — 1| > 0}. Let
gl == gl @ C[[h1]] - k be the central extension of this Lie algebra via the 2-cocycle

bgr__ (Zak,lEk,laZbk,lEk,l) = Z ag, bk — Z ag,1by k-

k<0<l 1<0<k

For any u, @ € C[[h1]]*, consider the homomorphism 7, : UR(D(m) ) — Ug(gl,,) such that

al l—ulQl
Eaﬁ(g)Zlet—)ZuQ ma_;’_k) a,ma— B+5k05aﬁ1762l/€ Co — —

a€Z

where we set X := 0 if Q' = 1. In what follows, we choose Q := q* = w™ exp(hy).

= Ql
Let woy,: ug" “ = Ug(gl,,) be the composition of #™ and 7,. For any i € [m], we get

wu(ez 25 patme lu/z) ma—ima—i—1, wu(fz 25 etme ZU/Z) ma—i—1,ma—i-

a€Z a€Z

For any 0 < p <m — 1, let F2 be the (—p — 1)-th fundamental representation of j[OO. It is realized on
ATP=1H+0/2C % with the highest weight vector W_p_ 1 AW_p_oAW_p_3A- -+ (here C*> is a C-vector spaces with
the basis {wy, }rez). Comparing the formulas for the Fock ugn)’w—module F7(u) with those for the gl -action
on FP, we see that Fj(u) degenerates to w:ﬁ,,mu(Fg’o) (the intertwining linear map is given by |\) —

W_pir,—1AW_pir,—2/A- -+ ). Moreover, it is easy to see that any finite tensor product Fp' (u1)®- - @ FF (u,)

(with uq,...,u, not in resonance) degenerates to w:m,mu (FI®-- -®w:pr,mu (FPr). It remains to prove
1 1 1 i
that @, @le ’Z’rec (] T J(FR)®- - @7y (FEr) is a faithful representation of U(ﬁ(Qm)’O). This follows

from the correspondmg statement after factoring by (%), where it is obvious.
In the case of Hg), we use the homomorphism g, : Ué(ég)’o) — Ug(gl) defined by

EQ,B ® xka?" = Z(U + ahl)rEn(aJrk)fa,nafﬁ - 61{:,06&,307”{7 Cp —r —K,
a€Z

with the constants ¢y € R determined recursively from Zivz1 (]Z) Yen—q = (v+hp)N for N > 1. The rest
of the arguments are the same. This completes our proof of Theorem 2.14. 0O
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The above proof also implies the following result:
Corollary 2.15. (a) The following is a faithful U%m)’w -representation:
P1,e.,pr€[m]

Fr:=(P &y FP(u) ® - @ F2 (u,).

r>1 wuq,...,ur €C[[h1]] X —not in resonance
(b) The following is a faithful Hg)-representation:
P1s--sPr€[n]
“Fgr ::@ @ FR (1) ® - @ YFY ().

r2>1 vy,...,v,.€R1C[[R1]]—not in resonance

3. Main result

883

Fix m,n > 1 and an mn-th root of unity wy,, = exp(2rki/mn) with k € Z,ged(k,n) = 1, whereas i

denotes i = v/—1. Following [11], we construct a C[[h1, hix]]-algebra homomorphism

wmn . q7(m),wmn J(mn)
(I) : uﬁl ha yﬁlfm

between the appropriate completions of the two algebras of interest.
3.1. Homomorphism ®%m»
To state our main result, we introduce the following notations (compare to [11]):

o Let ’g}hmg) be the completion of ‘z}( n) with respect to the N-grading from Section 2.5.
e LetJC u w be the kernel of the composition

m),wmn P20 o (M), wmn =(m <(m n
U yeme e o U @) — UQE /My ® (D" =1, k1)),
where the latter quotient is as in Section 2.3. We define

77(m),wmn . __ 1 (M), Wmn j~r
uﬁ1ﬁ2 T l(in uhth /3

to be the completion of U with respect to the ideal J.
e For i/, j' € [mn], we write i’ = j’ if i — 4’ is divisible by m.
e For i € [m], i € [mn], we write i =1 if i = ¢/ mod m.

e For i’ € [mn], we define &;(z) as in Section 1.3:
Gr(x) =14 = S ey 1)

e For i’ € [mn],r € N, we define ¢; , € 9;;”2 via

Zty,rz_r_l = tir(2) = log(&(2))-

r>0
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Consider the inverse Borel transform

oo

-1 —1 (079 > a, r
27 C[[z7"]] — CJ[w]] defined by Z 1 — Z -

r=0 r=0

For i’ € [mn], we define By (w) := B(ty(z)) € FLQH%TQZ[[ 1]
For i, j' € [mn] such that i’ = j’, we define Hy ;(v) € 1+ vCl[v]] by

o it i =,

U
2
-/ s
i —j
w. —w . -/ -/
TRy if 4 #
2

Wmne 2 —wmnhe

For i/, j' € [mn] such that ¢ = j’, we define Gy j(v) := log(Hy j+(v)) € vC[[v]].
For ¢/, j’ € [mn] such that i’ = 5/, we define

Yir g (0) i= =By (—8,)0,Gyr o (v) € Y5 0],

o For i’ € [mn], we define gy (v) := 3,50 g0 0" € 9573 [[0]] by

ho 1/2 ] "€[mn]
gir(v) == | —F— -exp Yir
0= () : 2

Now we are ready to state our main result:

Theorem 3.1. Fix m,n > 1 and wy,,, = exp(27ki/mn) with ged(k,n) = 1. The assignment

i’ €[mn]
hio — § &ir 05
=i
i’€[mn]
hi,l l—> — me By
q ;i
i’ €[mn]
€ik E W, km/ (o ;fr)x;,ov
=1
i’ €[mn)]
Z —k ok N —
flk} — w g no, (Ui/ )xi',()’
V=i

forie[m], k€ Z,1 e Z\{0}, gives rise to a C[[h1, ha]]-algebra homomorphism
mn . (m yWmn (mn)
Do U s ™ iy iy
We present two different proofs of this result in Sections 4, 5, see also Section 3.3 below.

3.2. Classical limit of ®5mr

Recall the isomorphisms

0 U [ (By) U (050) and 90 YR [(hy) U (D)
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7"

of Theorems 2.7 and 2.12, where q1 = wpmn exp(fiy/m) = 47" = w, exp(hy) with w, = w7, . Considering

factors by (hg), we get the classical limit of ®gm» which will be viewed as

= ~(m),0 ~(mn),0
Qs U0y, exp(ry) | — U [ Dp, .
PN m) ~(mn)
On the other hand, recall the homomorphism Y%, : exp(hy) — Dp,  from Theorem 2.2.

Proposition 3.2. The limit homomorphism ®“mn is induced by T‘;’,{:n

m,n

Proof of Proposition 3.2. Note that W =1 (mod ho), 32 Bir(v) =322, %fi/J (mod hy) = g (v) =
1 (mod hy). Combining this with the identity $2°° %29 4 = )" = (wpha1)F e we get:

r!

—k(m(a— i kn
Zzw k(m( 1+)( ) gm(a 1)+i,r (HlOd hZ)

i (i) = 3w’ Z

V=1 a=1r=0
(bw"”’ —ki’ — < —k(m(a—1)44) \"M") (kn)r + dh
T D LT v O e e )
i'=1 r=0 a=1r=0 '
n o0
wmn —kv (m 1)+1i) (kn) —
(I)m’ Z (a— § T (a1 i (mod hs).
i'=i a=1r=0
Recalling the formulas of Propositions 2.5 and 2.10 for the images of {e;, fik, Pik ke[%n] and

{a:z, o &t r}feeNmn under 0™ and 9" | respectively, we get the result. O

Combining this result with Theorems 2.2(d), 2.14, and the condition ged(k,n) = 1, we get:

Corollary 3.3. The homomorphism @ is injective.

3.8. Partial compatibility of ®5m»

Note that Theorem 3.1 is equivalent to the assignment ®%mn given by (®0-®3) to be compatible with
the defining relations (T0-T3, H, T6). In this section, we prov1de a straightforward verification of the
compatibility with (T0-T3, H) in spirit of [11]. However, we are not aware of any direct verification of the
Serre relations (T6) (the arguments in [11] heavily rely on the existence of subalgebras U, (Lsly) C Uy (Lg)
for which there are no Serre relations).

o Compatibility of ®“m» and (T0).

m,n

The equality [®gme (hi k), ®ome (hy1)] = 0 follows from (®0-®1) and the relation (Y0).

o Compatibility of ®“mn and (H).

m,n

If k = 0, then applying formulas (®0, $2, ®3) and the relation (Y0), we get

j'€[mn] i’ €[mn]

_ 1 ,
[ (hi), e (ej)] = D ' g (o) o,
j'=j V=1

j' €[mn] i’ €[mn]

@ (o) 25 (fr) = D0 D2 (—al Yorld €5 g1 (07)5 -

j'=i V=i
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It remains to note that ZZ ,Elmn] Z(nzn) =™ for any i,j € [m], j° € [mn] such that j° = j, where the

superscripts (m), (mn) are used to distinguish between the two matrices A involved.
To treat the k #~ 0 case, we note first that the identity B (log (1 — %)) = % implies:

Lemma 3.4. The equalities of Proposition 1.4(c) applied to ‘jg?gz are equivalent to

Cmn (i, 550 +
[By (U),ZE;‘E s = i% -BJJ/UI;E,S for any i',j' € [mn], s €N,

. hyv _hgv L) hav h3v _hw
where Cpn (7, 7;0) == 00 yp1(emn —e " mn ) + 840 i (e mn — e mn ) 405 py_q(emn —e mn ).

Therefore, applying formulas (®0, ®2) and Lemma 3.4, we get

j'€[mn] i’ €[mn] k(j’ i)

w Cmn( 5" kn) i (k41
[(I)m"}?(hi,k) demn ()] Z Z ey wmslkJrl) (k+l)no gj’(U;:)m;_/,oa
J'=j V=i
j'€[mn] i’ €[mn] k(] i) o
w Cmn(zaj;kn) — k+l)no’,
[(I)mmry (hi,k)7©m n f]l Z Z wmgnk+l)] (kD ! g] (U /)‘T j’,0"

pran k(g—a7)

J'=J

To complete the verification of compatibility with (H), it remains to prove:

kL(j’/ i’)Cmn( g’ kn) b (Z ]k‘)

Lemma 3.5. If i,j € [m],j’ € [mn] and j' = j, then ZZ Elmn] e

Proof of Lemma 3.5. Follows directly from the identity

(i o k) = S (0 =057 + 8503 — a5 ") 4 0i-(a5 — 91 ")
s k(a—q7") '

o Compatibility of ®“mn and (T2).

m,n

First, let us note that the first equality of Proposition 1.4(d) for Hglngl is equivalent to

Aoy, 05, )(pffﬂ;f)(a 00T 0T o —|—p§ p )(Uf,aﬂm;r,’oxj)o) =0, (4)

n (Blor . of Ol o O o Pty @t ) = ©)

for any 4', 7" € [mn] and A(z,y), B(z,y) € C[[z, y]], such that ¢’ # j', B(z,y) = B(y, z).
To rewrite ®pmr(e;(2)) Py (ej(w)) and ®mn(ej(w))Ppme(ei(2)) in the form with all Cartan terms
taken to the left, we will need the following counterpart of [11, Proposition 2.10]:

Lemma 3.6. (a) There are linear operators {/\1 S}SGN on'Y mni O (¢f. Section 1.3) such that for any r € N

i’ €[mn]
and § € ghl,hz’ , we have v &= Zs>0 T 56z ZiH_s.
(b) Let \E(v): Hgﬁglo Hgﬁgo[ ] be given by \F(v)(€) = 250 /\f',is(f)vs. Then, /\?,:(v) is an algebra
homomorphism.
(c) We have A (u)(Bj (v)) = Bj/(v) F Conl) guv,

v
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Using these operators, we obtain:

D (ei(2)) Pom (e5(w)) =
i',j' €[mn],i’ #5’ w,i’eng; w,]"enzr;r,
5| § | =) gir (07 )N (o) (g (07)af gl o+

i'=i,j'=j
+.(2)
+,(1)

i’ €[mn] _i naﬁ’(l) —i' not
(5 <L> ’ (%7) gir (05 DI (077 V) (gur (07

2. m "

1=i'=j

z

O (e (W) @ (es(2)) =
ihg'elmnl A gt e i enh
I e e P e e
=05 =]
i'€[mn] w*i,e"";'(l) w*i/e”";“) ) ) ,
(a <T> ) <m7> g0 (0 N @ )i (0 )ty @ x*) N0

Z:U“ mn .

i=i'=j

Combining (4), (5) with (6), (7), the compatibility of (T2) follows from the next result:

Demn with

m,n

Proposition 3.7. For any i,j € [m] and ¢/, j' € [mn] such that i’ = i,j' = j, we have

(m) (m)  —i' nu —j’ v (m) —j’ nv —i’ nu
7,7 gi, j (wmne » Wi € ) g’,i (wmne » Wimnn € )
— gir (WAL (u)(gy (v)) = =——"5 95 (V)] (v)(gir (u)
pj’,z" (Uv u)

P (u,v)

Proof of Proposition 3.7. Due to Lemma 3.6(c), for a € [mn] such that a = j/, we have

/\?,[(u)(exp(vj/,a(v)/Q)) = F.j,[j, o1, v)Y2 - exp(yjr.a(v)/2), where Fl,iﬂ-,)a(u7 v)
E= +6, 5 i Oq il
Hjo(o—ut )\ """ (Hyalo—ut 72)\ """ (Hya(o—ut 72) 1 (8)
Hj o(v—u—32) Hj o(v—u—32) Hjro(v—u— %) '
Recalling the formulas for g,/ (u) and g,/ (v), we immediately obtain
a€[mn] be[mn]
Mgy @) =g ) [T Fifjralw o)’ X@)(gir () = gir(w) T Fjb i (0,u)2. (9)
a=i’ b=i’
On the other hand, we have the equalities
8.1 21 1 0.1 i 5.1 i
pz(-/yjlﬁ)(uw)_ R o R B TR T R R - T (10)
RPN Uk B e B e B
dE?)gl(?)(z, w) e (z—quw 7T (2 —qow G~ gaw \ !
— =4 T ——1 — 1 . (11)
zZ—q; w zZ—(y w z—q] w

9\ (w, 2)
It remains to combine the above formulas (8)—(11) together. O

e Compatibility of ®urme and (T3).
Analogously to the previous verification, this compatibility follows from the following result
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Proposition 3.8. For any i,j € [m] and ¢',j' € [mn] such that i’ = i,j' = j, we have

d(T)g(T’)(wfj'env’w;Lz;enu) B gz(m)( :nzrienu wfj'en'u)
i e 9o (WA () (g (v)) = L2
p] 7’ ( ’u) pz’j’ (u U)

95 (V)AG (V) (gir (w))-

The proof is analogous to that of Proposition 3.7 and is based on the above formulas (8)—(9).

e Compatibility of ®“mr and (T1).

m,n

Define gg,k)(v) =250 gl(,klv €y Tgi[[v]] via gg,k) (v) := e g (v). Then

i,j'€[mn]
w " E —kl —lj’ § : (k) ( ) + -
(I) L (61 k)(b n <va) 9ir ry z )8 g] rz)xi’,n-i-sxj’wz’
i'=i,j'=j 71,732,520
i',j' €[mn]
w, Wm E —k:z —15’ E — ( ) +
(I)m,':l/zl (f )(D (61 k) g rl ] s Gir K )xj’ rﬁ»sxﬂ T2
i'=1,5'=j r1,72,5>0
. . . . + — . o1 w. , .
Combining this with @, . . a7 =y a7 T1+S + 01 j1&it iy +ry+s, We see that compatibility of ®mn with

(T1) follows from the following result (compare to [11, Lemma 3.5]):
Proposition 3.9. (a) For any ', ;' € [mn], we have

gir (WAL (u) (g5 (v) = gjr (V)AS (v) (g ()

(b) For any i € [m], N € Z, we have

UG —Nz Nnu + Wmn wj:N — wl—;N
> N g N 0 (), = Wi ()
V=1

Proof of Proposition 3.9. Part (a) is due to the formulas (8)-(9) and the equality [],_ +J Ju,v) =
=i i (05 0).-

Con51der a homomorphism ®ymn-0: UET%‘;’"" — H(mn) ¥ defined by (90, ®1). Our proof of part (b) is
based on the following result (compare to [11, Proposmon 4.2]).

Proposition 3.10. For any i € [m], N € Z, we have

w+1v Yin hgw_Ni/eN"u
oo ; QA W, QWY () = = — T explair jo(u).
: < q- Z RIES m(g—q-") JI;[ !
Combining Proposition 3.10 with QZ(-/N)( ) = w N eNnu . g (1)? and the equality

a€[mn]
A (u)(gir(w) = gir(w) H Fi s o(u,u) = gir(u)

completes our proof of Proposition 3.9(b). O

For completeness of our exposition, we conclude this section with a proof of Proposition 3.10.
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Proof of Proposition 3.10. Fix § = (s¢,...,Smn—1) € N and set S5 := [}/ Ss,,. Consider the rings

R(5) == (Cllhy, hal[{al Y1 )5 and S(3) == (Cllhy, Rl [{(AY )L EE50 )5

i/ €[mn] i/ €[mn]
Define homomorphisms DY : H({l’i;l’o — R(3) and DY ugjgjmm — S(8) via
Sy (i") + i €[mn] sy —1 4" +
u+ 2 g gz—q A
DY (g () = [] <—()k> L DY (WE()) = <7k> .
k=1 U — ay = -
The following is straightforward (cf. the proof of [11, Proposition 4.4]):

Lemma 3.11. (a) For any i’ € [mn], r € N, we have

S ) k'#k a;gi') _ a,(j/) + fa y 1—e wh? —L2y
U)\r 4 mn alo
‘Dy(fi’,r) = E (ak ) | I @) D) , D (Bz/ (U)) E :6 ¢ :
k=1 1<k'<s, Qi — Oy

(b) For any i € [m], r € Zso, we have

( ‘/7k,)7é(i/7k) i _ j’
’ ady ) — a4

@U(i/)z:ir) =+(q—q° ZZ A(Z = H

=i k=1 J'=i1<k/<s Al(cl ) - Agf/ )
1— g% ()
hio) =S sir, DU(hisy) = — 0 A E
0) iZ:EiSz s ( z,ir) :|:T‘(C| _ q_1> ZZ:EZ;( k )

Let ﬁ(é) be the completion of R(5) with respect to the N-grading defined by deg(h,) = deg(a,, @ )) =1
As DY preserves the grading, it extends to a homomorphism 9,({?;20 — R(5) also denoted by DY . Consider
the homomorphism ch: S(5) — R(5) defined by A,(f/) — w;j;;e”a;f "

Our proof of Proposition 3.10 is crucially based on the following result:

Lemma 3.12. (a) We have ch o DY = DY o ¢wmn.0,

m,n

(b) For N € Z, we have ch o DY <ZquwiN) =DV (X Qz(‘/ (Wurse, ,)-

Proof of Lemma 3.12. Part (a) follows by comparing the images of h; j via Lemma 3.11.
Let us now verify part (b). Using Lemma 3.11(b), the left-hand side can be written as

+ (5", KN#£@G k) i na(i’) 1 i na(]”)
ch o DU ¢ E 2 w—Nz Nna 2] H qWmn€ " * —( wm']n e
CI _ q* (i’) - 3" !

7’L —J na
=i k=1 J'=i1<k/<s;  Wmn€"M%  — Wmne

On the other hand, due to Lemma 3.11(a), we also have

Y (N V(M (u T -
DYDY QN Wrse,, | =D Z DY(Qir (W), |1 @ @
ay, ' —ay,

=1 i'=1 k=1 1<k:’§si/
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To evaluate @Y(Q(N) (u)), we note that the second equality of Lemma 3.11(a) implies DY (i jr(u)) =
S, (Gz’ i (u— a,(j, )) — Gy jr(u— a,(C, 7 4 hz )) The result follows. O

(mn) 0

Lemma 3.12 and an injectivity of @DY : Y — @ge]\pnnﬁ(é) imply Proposition 3.10. O

4. Compatible isomorphisms of representations

In this section, we construct isomorphisms of representations compatible with ®%m». Combining this with
Corollary 2.15 yields a short proof of Theorem 3.1.

; P,V
4.1. Isomorphisms I 5.7,

Given m,n > 1 and wy,, = exp(27ki/mn) with ged(k,n) = 1, we consider the two algebras of interest:

u;f”hjm nd H(m" To proceed further, choose r > 1 and the following r-tuples:

p=P1,...,pr) € [mn]", v=(v1,...,0:) € ((h1, ha)C[[h1, h2]])",

p/ = (pll""vp,r> € [m]r7 u = (ullw"aulr) € (C[[hlahﬂ]x)r'

Associated to this data, we have a collection of Fock U%n)’wm"—representations {Fpk(ul)}s_, and Fock
y(m)_representations {*FP¥ (vy)}5_,. Following Section 1.5, we consider

FRF’/ (') := Fgl (u)) ® Fg? (uh) @+ ® Fp”( ') — a representation of U™ <

9

CEY(v) = CF (v1) @ “F (v2) @ - - - @ “F7 (v,) — a representation of %(m")

whenever these representations are well-defined, i.e., {u}}7_; and {vx},_, are not in resonance. Both of
these tensor products have natural bases {|A)} labeled by r-tuples of partitions

A= (DAY with AR — a partition (1 <k <r).

The action of the generators {h; i, €; k, fi.k fg[%n] and {&; ,, x;',t - :,%N[Imn] in these bases is given by the explicit

formulas of Propositions 1.10 and 1.12 whereas {h,} and {gs} are replaced by

h ho h
S . 21 L I
hsw—mn’ g1~ g1 = Wmn€m™, qwq~—€2’” g2 ~ g2 —q y 43~ g3 1= Wype ™.

Our next result establishes an isomorphism of these tensor products, compatible with &,
Theorem 4.1. For any r,p, Vv as above, define p},,u), via pj, := p mod m and u}, := w, Pke™*. There exists

a unique collection of constants cx(m,n;wmn) € R such that cg(m,n;wmy,) = 1 and the corresponding
R-linear isomorphism of vector spaces

LR, ¢ FR (W) 5 FR(v) given by [A) = ex(m, niwon) - [X)
satisfies the property

Lpy, (X(w) = B (X)L, () ¥ w € FE (W), X € {hig, eip, fin Sl (12)
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We say that I;;P:Y is compatible with ®gmn if (12) holds.

MmN W m,n

Proof of Theorem 4.1. First, we claim that (12) holds for any w = |X), X = h; x, and an arbitrary choice
of ex(m, n; Wiy ). This follows from the following result:

Lemma 4.2. We have (A|h; |A) = (X|®(hi x)|A) for any i € [m], k € Z, and X, where ®(h; 1) is defined by
(P0-®1).

Proof of Lemma 4.2. Define Xg")

s—1,.1

= qi‘g q; ul, and 2 = )\ga)% +(s— 1)% + Vg.
e For £k =0, we have
(AlhiolA) = #{(a. )0 (A) = i} — #{(a.5)[elP () =i+ 1},
(AlgirolA) = #{(a, )|l (A) = i’} = #{(a,5)|clP (N) = ' +1}.

Hence, the equality (A|h; o] A) = (A Zl/_imn] &ir 0l A).

e For k # 0, we have

Nz . . el (N)=i+1 . .
_ 99 — 43 (a) 1 —q3 (a)
(Alhi k) = LB () e S B () (13)
s k a1 s k _ q—1 s
bz ka—a™h) bz Kla—ah)
Meanwhile, using the equality B (log (1 — g)) = 1‘5}" we also get
cé“)()\)fn’b ul(”ﬂ(a) mﬂ) €ul($ga>+%§;) c§“>(>\)7§ni/+1 ewmga) _ ew(-’Eéa)‘i‘%)
ABr)A)y = > - + ) — . (19)
(a,s) (a,s)

Recalling the explicit formulas for qs and u), the above formulas (13)-(14) immediately imply the claimed
equality (AlhiklA) = <>\\ . ShEmnl ki’ g i/(lm)|)\>. O

Next, we will see under which conditions (12) holds for all w = |A) and X = e, or f; ;. To state the
result, we introduce the following constants:

dy 0 (M, 15 0m) 2= (a1 = 43)/(1 = a7 )" /2 - (<hy fRg) ot 2

el (N=ef” (A)-1 ey TNz -
~1_ (a €(b.1) a)) €0
[T e(ar@nd™) ™ I e (") ™" x
(a.9)£(b.) (a.9) () (15)
a — (b a,s a — () a,s
FINZANT z® 4 B @il NIV ) @) e\
Ts 70 T . TS  mn
11 (x(@ ENON @) 11 ( MONIN®! ) ’
(a,9)£(b,D) s LT mn (a,9)£(b,D) I s

1/2 if (a,s) > (b,1),

where we set GEZ’IS)) =
' —1/2 if (a,s) < (,1).
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Lemma 4.3. Both equalities

Lob (i k(X)) = @ume (ei k) (L5, (IA))) for all Xji € [m], k € Z

m,n;Wmn m,n;Wmn
and
Lo, (Fire(ND) = @55 (fir) (L, (X)) for all X,i € [m], k € Z

with ®4mn(eqr), P (fik) defined by (92-03) are equivalent to

N

Eapa(® (m, n;wmn)

=d M, N3 Winn ) - 16
ex(m, n; winn) FTRN mn) (16)
Proof of Lemma 4.3. This is a straightforward verification. The matrix coeflicients of e; , and f; ;, are given
by Proposition 1.10. To compute the matrix coefficients of @z (e; 1) and ®5me(f; &), one needs to combine

the formulas of Proposition 1.12 with the identity (14) and the general formula e*%*G(v) = G(v + v). The
details are left to the interested reader. O

The uniqueness of cx(m, n; wm,) € R satisfying the relation (16) with the initial condition cg(m, n; wmyn) =
1 is obvious. The existence of such cx(m, n;wmy) is equivalent to

dA+ll(b)’1ga) (m, n; W) - dA’lib) (M, n; W) = d)\Jrlga)’lEb) (m, n;wmn,) - dA’lga>(m, 1 Winn)
for all possible A, 1l(b), 12‘“. The verification of this identity is straightforward. O
4.2. First proof of Theorem 3.1

Reca}l thfa faithful lé5;"")—]rep]resenta‘cion “Fp:=@, BY*Fr(v) from Corollary 2.15(b). Let F}, C Fg :=
@D, B, FE (u') be the subspace corresponding to u}, p), as in Theorem 4.1. According to Theorem 4.1, we
have an R-linear isomorphism I: F%-—"5%F compatible with Omn in the following sense:

I[(X(w)) = ®5me (X)(I(w)) for any w € F%, X € {hik ek, fi,k}fg[%n].

For any X € {h; €k, fi’k}fg[ﬁl], consider the assignment X + ®wmn(X) defined by (®0-®3). As mentioned
in Section 3.3, Theorem 3.1 is equivalent to this assignment being compatible with all the defining relations
of u;m)’“m". The latter follows immediately from the faithfulness of *F r combined with an existence of the
compatible isomorphism I.

4.8. Geometric interpretation

The goal of this section is to provide geometric realization for
e the Fock modules F?(u) and “F*(v) of Section 1.4,
e the tensor products of Fock modules FP(u) and “FP(v) of Section 1.5,
e the intertwining isomorphisms I;;B:¥, of Section 4.1.

Given a quiver @ and dimension vectors v,w € N''* (@) (vert(Q) is the set of vertices of @), one can
define the associated Nakajima quiver variety 99 (v, w). These varieties play a crucial role in the geometric
representation theory of quantum and Yangian algebras. For the purposes of our paper, we will be interested

only in the following set of quivers @ (labeled by n € Z~):



M. Bershtein, A. Tsymbaliuk / Journal of Pure and Applied Algebra 223 (2019) 867-899 893

e (01 is the Jordan quiver with one vertex (vert(Q) = [1]) and one loop,
o 0, (with n > 1) is the cyclic quiver with vert(Q) = [n].

For any Q, as above and v,w € N[ consider [n]-graded vectors spaces V = @
Dcy Wi such that dim(V;) = v; and dim(W;) = w;. Define

]Vi and W =

i€[n

M(v,w) := €P Hom(V;, Vi11) @ @ Hom(V;, Vi) & @5 Hom(W;, V;) © €D Hom(V;, W5).

i€[n] i€[n] i€[n] i€[n]

Elements of M (v, w) can be written as (B = {B;},B = {B;},a = {a;},b = {bi})ie[n]' Consider the moment
map pi: M(v,w) = ,c(, End(V;) defined by

,u(B, ]_3, a, b) = Z (Bi—IBi — Bi+lBi + azbl)

i€[n]

A point (B,B,a,b) € u~1(0) is said to be stable if there is no non-zero (B, B)-invariant subspace of V'
contained in Ker(b). Let us denote by ~1(0)* the set of stable points. An important property of u=1(0)* is
that the group Gy =[] 1 GL(V;) acts freely on p~1(0)%. The Nakajima quiver variety M(v, w) is defined
as a geometric quotient

i€[n

M(v, w) =M (v,w) = = 1(0)°/G,.

There is a natural action of the torus Ty := C* X C* x ], ¢, (C*)** on M(v, w) for any v. Moreover, it
1<k<w;
4 i€[n]
satisfying the following requirement. For any i, k as above, let us color the boxes of A(**) into n colors [n],
so that the box staying in the a-th row and b-th column has color ¢ + a — b. Our requirement is that the

total number of color ¢ boxes equals v, for every ¢ € [n].

is known that the set of Ty,-fixed points is parametrized by the tuples of Young diagrams A = {)\(i’k)}

For w € N consider the direct sum of equivariant cohomology H(w) = €, Hp (M(v,w)). It is
a module over Hp (pt) = Clty] = C {81752,{362'7;6}35&%“}’}, where t, := Lie(Tw). Define H(W)joc =
H(w) @Hg_ (pt) Frac(Hy (pt)). Let [A] be the direct image of the fundamental cycle of the Ty-fixed point,
corresponding to A. The set {[A]} forms a basis of H(W))ec.

Let us consider an analogous direct sum of equivariant K-groups K(w) = @, K™ (M(v,w)). It is
a module over K™ (pt) = C[Ty] = C {tfl,tgﬂ, Xft,i ;S[Z]Sw‘} Define the localized version K(w)ioe =

K (W) @ grw (pt) Frac(K™ (pt)). Let [A] be the direct image of the structure sheaf of the Ty-fixed point,
corresponding to A. The set {[A]} forms a basis of K(W)oc.
The following result goes back to [16,24] for n > 1 and [20-22] for n =1 (cf. [12]):

Theorem 4.4. (a) For any w € NI"l| there is a natural action of ‘jgl?_sl_s%sz on H(W)ioc-

(b) For any w € NI" there is a natural action of ui’”t,l on K(W)ioc-
1,41

ty ' ts
In what follows, we set h1 = 81, ho = —S1 — S92, hg = s9 and q; = t1, g2 = tflt;, qz = to.

Proposition 4.5. For p € [n], define w®) = (0,...,1,...,0) € N with 1 at the p-th place.
(a) There is an isomorphism of u,(;f?qz,% -representations a: FP(xp1)——K (W)

(b) There is an isomorphism of %:),hz.ha -representations o “FP(x, 1) ——H(wWP))joc.

(¢) Both isomorphisms « and ®« are given by diagonal matrices in the bases {|\)} and {[A\]}.
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Proof of Proposition 4.5. The n = 1 case of this result was treated in [22, Section 4], while the general case
can be deduced from the former by the standard procedure of “taking a Z/nZ-invariant part”. 0O

The higher-rank generalization of this result is straightforward:

Proposition 4.6. For any n € Zsq and w = (wo, .. ., w,_1) € N™, the following holds:

(a) There is an isomorphism of ug’f?qz,qg -representations ac: ®?;01 o Fi(xig) —— K (W)ioc-

(b) There is an isomorphism of yéﬁ?hmhs -representations “o: ®?:_01 w‘ LOF () H(W)loc-
(¢) Both isomorphisms o and “« are given by diagonal matrices in the bases {IA)} and {[A]}.
(d) Parts (a), (b) hold for an arbitrary reordering of the tensor products from the left-hand sides.

There exists a well-known relation between the Nakajima quiver varieties associated to the quivers @,
and Q. Let w= 3", wP) and w' =", _, w(Pt) with py € [mn] and pj, € [m], where p, := p,, mod m
(compare to Theorem 1.1). Then, there is an action of the group Z/mnZ (which factors through its
quotient (Z/mnZ)/(Z/mZ) ~ Z/nZ) on ||, M@ (v',w'), such that the variety of fixed points is iso-
morphic to ||, M (v, w). Therefore, we have an inclusion | |, M= (v, w) — ||y, M@= (v/, w'). Let
Tmm: K(W)ioe = H(W)loe be a composition of an equivariant Chern character map and a pull-back in
localized equivariant cohomology. This map is diagonal in the fixed point bases, hence, it is an isomorphism.

Our main result of this subsection reveals a geometric realization of I7:P:¥

mM,NWmn *

Theorem 4.7. The following diagram is commutative:

, ’l‘;p,y
[P (u/> MM Wmn an(V)
« o
’ jm,n
K(W )loc H(W)loc

Proof of Theorem 4.7. This tedious verification is straightforward and is left to the interested reader. O

5. Shuffle interpretation

In this section, following [17—-19] we recall the shuffle realizations of positive halves Uq?)q; ¢; and yin h1 h2 hs

and provide a shuffle interpretation of ®». This implies the compatibility of ®ym» with (T6), completing
our straightforward proof of Theorem 3.1 from Section 3.3.

5.1. Multiplicative shuffle algebras S™)

Consider an NI"l-graded C-vector space S = @ SE@ ), where SE ki ) consists of 1 Sk,-symmetric
keNn] n
1<r<k;

rational functions in the variables {x; , }, cinl . Following [8], we also fix an nxn matrix of rational functions
(wi,j(2,w)); jen) € Matnxn(C(z,w)) by setting

-1 j,it1 -1 8, -1 8ji-1
iy (2, 1) = d—BriBns2 (w) (w) (w> . (17)
’ zZ—w zZ—w zZ—w
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Let us introduce the bilinear * product on S): for F € S(n ,G e S(n , define FFx G € st by

k+1
(F * G)(‘xo,l) <oy LOko+lgs - sy Ln—1,15- - - axn—l,k,,L,1+l,,L,1) =
N S JE[N] s>k; (18)
1<r<k; i<s<k;+l;
sym | F ({ea, BE55) & (o= ™) - H | | EERIC
] r<k;
Here and afterwards, given a function f € C({z;1,...,Zim, }icin)), we define its symmetrization as follows:

Sym(f) = HZE[TL] le‘ . 2(007,..,0",_1)6,57”0><___><S f({xi,oi(l)a - 7xi,01‘,(mz)}i€[n])’

Mp—1

This endows S with a structure of an associative unital algebra with the unit 1 € S(”) 0 We will be

interested only in a certain subspace of S(™, defined by the pole and wheel conditions:
e We say that F' € S(En) satisfies the pole conditions if and only if

r_ flxoa, s Tn—1k,_ 1) . where f € (C[xﬂ}grgki)n Sk,

#(i+1, i,rlie[n]
Hze[n] 1_[7"2<Tk)1,s(l<kl+s1 ('T’L r xi+1,s)
e We say that F' € S(En) satisfies the wheel conditions if and only if
F({z;,}) =0once z;,, /Tiye; = qd° and ;41 /2, = gd™ ¢ for some €,4,71,72,1,

where € € {£1}, i € [n], 1 <7y, <k, 1 <1 < ki and we use the cyclic notation as before.

Let S(n)’> C SI(:) be the subspace of all elements F satisfying the above two conditions. Set S>> :=
@ S,in) . Further S( = @TEZSSL)’>, Sén;n)’> ={F¢ S%")’>\tot.deg(F) = r}. It is straightforward to
keNn] " ’
see that the subspace S>> c S(" is x-closed.

Definition 5.1. The algebra (S():> ) is called the multiplicative shuffle algebra (of ;[n—type).

Let U(™-> be the subalgebra of uql,% 45 generated by {e;, k}fee[i The former is known to be generated

by {eir ke@ with the defining relations (T2, T6). We equip U™M-> with the NI" x Z-grading by assigning
deg(eix) = (1;;k) for all i € [n], k € Z, where 1; € N["| is the vector with the i-th coordinate 1 and all
other coordinates being zero.

The following beautiful result is due to A. Negut:

Theorem 5.2. [17,18] The assignment e; j, — xi—“’l fori € [n], k € Z, gives rise to an NI x Z-graded C-algebra
isomorphism ©,,: UM»> =, 5(n).>

5.2. Additive shuffle algebras W (™)

Consider an N[-graded C-vector space W = @ W( ), where ngz 1) consists of 11 Sk;-
keNIln] peeerk
1<r<k;

i€ln] ‘. We also fix an n x n matrix of rational functions

symmetric rational functions in the variables {z; , }
(wi,j(2,w))i jem) € Matnxn(C(z,w)) by setting

_ S it1 _ 64,0 _ 6ji—1
wi‘j(z,w):(w> (ﬂ) (ﬂ) . (19)

Z—w Z—w Z—w
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We endow W(™) with a structure of an associative unital algebra via the bilinear x product defined by the
formula (18) with w; j(2, w) ~ w; (2, w) and with the unit 1 € ng) 0)- We will be interested only in a
certain subspace of W) defined by the pole and wheel conditions:

e We say that F' € W(;) satisfies the pole conditions if and only if

x ey Ty — )
f( 0,1, yn 17167171) ’ where f c ((C[x”];grgkl)nski_

F =
i,r)#£(i+1,s i€[n]
Hie[n} Hggk)i,s(gkiﬂ) (l“z',r - $i+17s)

e We say that F' € W(;) satisfies the wheel conditions if and only if
F({z;+}) =0once z;,, —Xiye; =h+ef and xi4e; — 50, = h — €f for some €,4,71,72,1,

where e € {£1},i € [n], 1 <ry,ra <k, 1 <1<k, and h = hy/2,8 = (h1 — h3)/2 as before.
Let WE(")’> C W(En) be the subspace of all elements F satisfying the above two conditions. Set W ("):> .=

® Wz(n)’>. It is easy to see that the subspace W(™:> C W) is -closed.
keN(]

Definition 5.3. The algebra (W (™):> %) is called the additive shuffle algebra (of ;[n—type).

Recall the subalgebra Y(™)> of H h1 haohs generated by {;U+ reN  We equip Y™)> with the N"l-grading

i,rJie[n]”

by assigning deg(xi}) = 1;. The following beautiful result is due to A. Negut:

Theorem 5.4. [19] The assignment x;-fr = apy fori € [n], 7 € N, gives rise to an NI _graded C-algebra
isomorphism =, : Y>>,

We extend W():> to a larger algebra W (-2 by adjoining commuting elements {&.r ’"ea] so that =,

extends to the homonymous isomorphism = o Y2 2 (n) 2 wigh En(&ir) =&
5.3. Shuffle realization of ®ymn

Fix m,n > 1 and an mn-th root of unity w,,, = exp(2rki/mn) with k € Z and ged(k,n) = 1. First, let
us introduce the corresponding formal versions of the above shuffle algebras:
e The algebra S m)’:’""’> is a C[[f11, fig)]-counterpart of S>> with the following modifications q; ~ q; =
Winn exp(hi1/m), ga ~ q2 = exp(ha/m), qz ~ q3 = w;,,}, exp(—(h1 + ha)/m).
e The algebra W,ELT;;)> is a C[[hy, ho]]-counterpart of W™™):> with hy ~ L= s € {1,2, 3}. Unlike W(m):>
the algebra f/[vff(bmg )> is Z-graded by the total degree with deg(z;,-) = deg(hs) = 1. Let Wémg )> - Wéi"”g "~

be the subspace of all elements of non-negative degree. Adjoining commuting elements {&; .}’ e[I?In n] with

deg(&;.») = r, we obtain an extended version Wé:";;) =3
Due to Theorems 5.2 and 5.4, we have C[[h1, hy]]-algebra isomorphisms

(m),wmn,> (m),wmn,> = Cy(mn),> ~ (mn),> = ),> ~ (mn),>
Om uh1 th 2 ) —=mn: th,fm Wﬁ1,h2 » Smn 1éﬁl h2 th ha

We note that the former isomorphism is N[" x Z-graded, while the latter two are NI"J x N-graded.
Let Wh:"gz) Z be the completion of Wh:n;;) = with respect to the above N—gradlng. In what follows,

( Z(?)(z, w)) - and (wf,m;)(z, w)) ] denote the matrices (17) and (19) corresponding to the
i,J€[M > i’ j €lmn
algebras Sg:%’j’"”’> and WF(LT;Q)>, respectively. Finally, we will use shorthand notations F(z;,, ..., z;,) and

F(xy, ...,z ) for shuffle elements (skipping double indices).
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The following is the key result of this section:
Theorem 5.5. (a) The assignment
i yeeeyiy €[mn]

F ({xia}§:1) = Z gir (w31 - - “ 9it, (xi;c) -B ({»’Ui; }’;:1) - F ({w;fn;em% ];:1)

o o
11 =01,--52), =1k

(mn)( ) 1/2 (20)
T T4, X4
w@th B(LEZ/I N ) = | I ’La_:"b ta 23
k (m) —ly NT; —i}, nax
1<azb<k Wi, 1, (Wit € o, Wme )
gives rise to a C[[hy, hy]]-algebra homomorphism Tiyma : S;(izn;i;m”’ — W;gzngz) =3

(b) The following diagram is commutative:

“mmn

(o}
(m),wmmn,> m,n (mn),>
R,k ghlﬁQ

6’771 J/Z 2JVE'IYL’VL

(m Wi, > /\(mn),Z
Sh o Wik

w
Tame

Proof of Theorem 5.5. (a) First, we note that in the above product gy (zy) - gi; (x4 ) our convention
is to take all the variables {z; } to the right of all the Cartan terms. For F € S,(;ln :’" ~, we denote
its image under the assignment (20) by I'yr (F). The verification of the wheel conditions for Ty (F') is
straightforward (they follow from the wheel conditions for F'). Likewise, the verification of the pole conditions
for T'ymn (F) is straightforward and follows from the explicit formulas (17), (19).

Our key computation is based on the following result:

Lemma 5.6. For any i,j € [m] and i’,j’ € [mn] such that i’ =i, j = j, we have

iJ
(m)

j’L

(wfi/enu
mn

wd env)
»mn

i .
(( I, env’ ,mlnenu)

W//('U,U) (JJ
w' J

N (W) (g5 (0)) = gy (0) ( L
]
Proof of Lemma 5.6. According to our proof of Proposition 3.7 and the formulas (9), (10), (11), we have

a(m
A5 ()(g5:(v) = gjr(v) - g /2

83l 41 IRy 84l —1
gy — 2 oy — D2 2 _p— s 2
U v mn U v mn u v mn
ha hia iy x
u—v+on U=Vt oan U—v+togn
RS %5, %4.i-1

i
! 2 i _ 2 ! -1 2
wghe™ — g3 lwgdl e g™ — a3 gl e wghe™ — g7 lwgdlen
—1/ -3’ i —j’ —i/ —J’
Wmne€™ — q1wmn e™? Wmn €™ — q2Wmn €™ Wmn €™ — q3Wmn ™’

The result now follows by recalling the explicit formulas (17) and (19). O

Using Lemma 5.6, we can finally verify that the assignment F'+— T'mn (F) is an algebra homomorphism.

For F({z;, }f_)), G({zi, }ith 1) € ,EIT;::>a the following holds:
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Lo (F) x T (G) =
i ,..,15 €[mn]

9ig(@i) - gy (@) - By Yoo,) - F (fwmite™ 4 Y, ) | »

s o
1= 500013, =k

Gy 1t pr €lmn]

- it Vk+l1
Z gi;“'*'l (xi;"‘*'l) o gigﬂ—l (SEZZH) ({x%}b k—i—l) <{sznlj e"” ;’}bik—ﬁ-l) =
i;9+15ik+17""i;c+l5ik+l

i, ..,i;€+l€[mn]

Z <9i’1 (zig) - "Gy, (l"igc)gz‘LH (xi;cﬂ) il (Jﬁi;+l)x

. o .
1101500 4 Skt

sym (F ({wmt e Y51 ) G ({wmte™ 4 By ) Bl Yoo B({og ki) %

, 1/2
k<b<k+l k<b<k+l (mn), ) (m) ; —il, nw, il nw,
mn) wz/ Jil, (mlé ) mlfl) Wi iy (CUm'rLL1 € er? e i )
I | w (i ) - I | . _ : =
Ji, b (mn) (m) —1i, Ny —i, _nx,;
1<a<k 1<a<k wi{l,ig (le’la IL’,;)) Wiy ia (wmn € b, Wmne ‘e )

i1, €[mn]

> <9ia (i) g, (xig,,)Sym (F (Wlﬁen% 5:1) ({Wml’“? o IZLZM) .

. o .
1101500 4 Skt

b (mn) V2 chchl
Z Wir iy (i, i) R (m) (=it nwy =iy nwy
(m) —1i! nax. —ig nT, H wiayib (Wmn € » Wmn € b) =
1<a,b<ktl \ Wi, i, (Wmr€" "o, wmpe ) 1<a<k
Come (F % G).
This completes our proof of Theorem 5.5(a).
(b) For any i € [m] and k € Z, we have
i’ €[mn)]
Do Om(ei) = T (eha) = D0 gu el b =
=i
i’ €[mn)]
o (D w7 gi ()t | = Eonn (@ (e 0).
V=1
This implies part (b), since U%T))h’:’”"’ is generated by {e; ke[Z - O

5.4. Second proof of Theorem 3.1

As an immediate corollary of Theorem 5.5, we see that the assignment e;  — ®%mn(e; ;) defined by (92)
is compatible with the relations (T2, T6). Slmllar arguments also prove the compatlblhty of the assignment
fike = ®umn(fir) defined by (®3) with the relations (T3, T6). Combining this with the verifications of
Section 3.3 completes our direct proof of Theorem 3.1.

Remark 5.7. Informally speaking, the most complicated (Serre) defining relations (T6, Y5) are getting
replaced by rather simple wheel conditions in the corresponding shuffle algebras.
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