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We generalize an algorithm of Leclerc [6] describing explicitly the bijection of Lalonde–Ram [5] from
finite to affine Lie algebras. In type A(1)

n , we compute all affine standard Lyndon words for any order of
the simple roots and establish some properties of the induced orders on the positive affine roots.

1 Introduction
1.1 Summary
An interesting basis of the free Lie algebra generated by a finite family {ei}i∈I was constructed in the 1950s
using the combinatorial notion of Lyndon words (we recall these in Definitions 2.2–2.3). A few decades
later, this was generalized in [5] to any finitely generated Lie algebra a. Explicitly, if a is generated by
{ei}i∈I, then any order on the finite alphabet I gives rise to the combinatorial basis b[�] as � ranges through
all standard Lyndon words (these will be recalled in Definition 2.11). Here, the standard bracketing b[�] is
defined inductively with b[i] = ei (see Definition 2.8).

The key application of [5] was to a simple finite-dimensional g, more precisely, to its maximal
nilpotent subalgebra n+. According to the root space decomposition:

n+ =
⊕
α∈�+

C · eα , �+ =
{
positive roots

}
. (1.1)

We note that the one-dimensional direct summands above are canonical as they are distinct
eigenspaces for the adjoint action of the Cartan subalgebra h of g. However, picking a specific basis
of root vectors {eα}α∈�+ is non-canonical. Appealing to an additional grading by the root lattice of g, [5]
derived a natural bijection

� : �+ ∼−→
{
standard Lyndon words

}
. (1.2)

A decade later, this bijection played a pivotal role in [6], which studied the image of the dual canonical
basis of Uq(n

+), the positive half of a quantum group of g, under the embedding to the quantum
shuffle algebra of [3, 10, 12]. To this end, [6] obtained an explicit algorithm (see Proposition 2.16) for
the above bijection (1.2). The key ingredient that allows for the quantum group generalization is the
fact (attributed to [11] in [6]) that the order on �+ induced via (1.2) from a lexicographical order on
words is convex in the sense of Definition 2.18 (see Proposition 2.20).

The motivation of the present note is to extend the above discussion to affine root systems. To
this end, we recall an enigmatic remark from the very end of [5]: “Preliminary computations seem to
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indicate that it will be very instructive to study root multiplicities for Kac–Moody Lie algebras by way of standard
Lyndon words”.

Let ĝ be the affinization of g, whose Dynkin diagram is obtained by extending the Dynkin diagram
of g with one vertex 0. Thus, on the combinatorial side, we consider the alphabet Î = I � {0}. The
corresponding positive subalgebra n̂+ ⊂ ĝ still admits the root space decomposition n̂+ = ⊕

α∈�̂+ n̂+
α ,

with �̂+ = {positive affine roots}. The key difference with (1.1) is that not all n̂+
α are one-dimensional:

dim n̂+
α = 1 ∀α ∈ �̂+,re , dim n̂+

α = |I| ∀α ∈ �̂+,im. (1.3)

Here, �̂ = �̂+,re ��̂+,im is the decomposition into real and imaginary affine roots, with �̂+,im = {kδ|k ≥ 1}.
It is therefore natural to consider an extended set �̂+,ext of (5.1), counting imaginary roots with
appropriate multiplicities. Then, the degree reasoning similar to the one used in [5] provides a natural
analogue of (1.2):

SL: �̂+,ext ∼−→
{
affine standard Lyndon words

}
. (1.4)

Our first result (Proposition 3.4) is an inductive algorithm describing this bijection, slightly generalizing
Leclerc’s algorithm describing (1.2). As the first application, we use it to find all affine standard Lyndon
words for the simplest case of ŝl2.

Our major technical result is the explicit description of all affine standard Lyndon words for
ŝln+1 (n ≥ 2). To this end, we first straightforwardly treat the special order (4.1) in Theorem 4.2.
We then derive a similar pattern for an arbitrary order in Theorem 4.7. The key feature is that all
affine standard Lyndon words are determined by those of length ≤ n. Furthermore, we crucially use
Rosso’s convexity result for sln+1 to obtain an explicit description of n affine standard Lyndon words in
degree δ, which are key to establishing the general “periodicity” pattern.

The induced order (5.2) on �̂+,ext is quite different from the orders in the literature on affine quantum
groups ([1, 4]). While for ŝl2 one gets a usual order ([2])

α1 < α1 + δ < α1 + 2δ < · · · < · · · < 3δ < 2δ < δ < · · · < 2δ + α0 < δ + α0 < α0,

the imaginary roots are not placed consequently in other affine types. We use Theorem 4.7 to establish
two properties of this order for ŝln+1, see Propositions 5.4 and 5.8.

1.2 Outline
The structure of the present paper is the following:

• In Section 2, we recall the notion of (standard) Lyndon words, their basic properties, and the
application to simple Lie algebras, following [5] and [6].

• In Section 3, we generalize Leclerc’s algorithm of [6] from simple Lie algebras to affine Lie algebras
and illustrate its application in the simplest case of A(1)

1 .
• In Section 4, the heart of the paper, we compute affine standard Lyndon words for A(1)

n (n ≥ 2)
with any order on the corresponding alphabet Î = {0, 1, . . . , n}. The resulting set of affine standard
Lyndon words is determined by a finite subset of those of length ≤ n as well as manifests a
compelling periodicity pattern.

• In Section 5, we use the explicit formulas for affine standard Lyndon words from Theorem 4.7 to
establish some properties of the order on �̂+,ext, induced via (1.4) from the lexicographical order
on the affine standard Lyndon words.

2 Lyndon Words Approach to Lie Algebras
In this section, we recall the results of [5] and [6] that provide a combinatorial construction of an
important basis of finitely generated Lie algebras, with the main application to the maximal nilpotent
subalgebra of a simple Lie algebra.
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2.1 Lyndon words
Let I be a finite ordered alphabet, and let I∗ be the set of all finite length words in the alphabet I.
For u = [i1 . . . ik] ∈ I∗, we define its length by |u| = k. We introduce the lexicographical order on I∗ in a
standard way:

[i1 . . . ik] < [j1 . . . jl] if

⎧⎪⎪⎨
⎪⎪⎩

i1 = j1, . . . , ia = ja, ia+1 < ja+1 for some a ≥ 0

or

i1 = j1, . . . , ik = jk and k < l

.

Definition 2.2. A word � = [i1 . . . ik] is called Lyndon if it is smaller than all of its cyclic
permutations:

[i1 . . . ia−1ia . . . ik] < [ia . . . iki1 . . . ia−1] ∀ a ∈ {2, . . . , k}. (2.1)

For a word w = [i1 . . . ik] ∈ I∗, the subwords

wa| = [i1 . . . ia] and w|a = [ia+1 . . . ik] (2.2)

with 0 ≤ a ≤ k will be called a prefix and a suffix of w, respectively. We call such a prefix or a suffix proper
if 0 < a < k. It is straightforward to show that Definition 2.2 is equivalent to the following one:

Definition 2.3. A word w is Lyndon if it is smaller than all of its proper suffixes:

w < w|a ∀ 0 < a < |w|. (2.3)

As an immediate corollary, we obtain the following well-known result:

Lemma 2.4. If �1 < �2 are Lyndon, then �1�2 is also Lyndon, and so �1�2 < �2�1.

Proof. Let �1 = i1i2 . . . ik and �2 = ik+1ik+2 . . . in. Any cyclic permutation of the word �1�2 is of the form
uj = ijij+1 . . . ini1i2 . . . ij−1 with 1 < j ≤ k or k < j ≤ n.

• Case 1: 1 < j ≤ k. Since �1 is Lyndon, we have �1 |j−1 = ij . . . ik > �1 by (2.3). As |�1| > |�1 |j−1|, there
is p ∈ {j, j + 1, . . . , k} such that i1 = ij, . . . , ip−j = ip−1 and ip−j+1 < ip. This immediately implies the
desired inequality �1�2 < uj.

• Case 2: k < j ≤ n. Since �2 is Lyndon, we have �2 |j−k−1 = ij . . . in ≥ �2 by (2.3) and so �2 |j−k−1 = ij . . . in >

�1 as �2 > �1. If �1 is not a prefix of �2 |j−k−1, then ij = i1, ij+1 = i2, . . . , ij+p−2 = ip−1 and ij+p−1 > ip
for some 1 ≤ p ≤ min{k, n − j + 1}, so that �1�2 < uj. On the other hand, if �1 is a prefix of �2 |j−k−1,
then �2 |j−k−1 = �1ij+k . . . in = �1�2 |j−1. In the latter case, the desired inequality �1�2 < uj follows from
�2 |j−1 > �2, a consequence of (2.3).

This completes the proof of the first claim that �1�2 is Lyndon. The second claim, the inequality
�1�2 < �2�1, follows now from (2.1). �

We recall the following two basic facts from the theory of Lyndon words:

Proposition 2.5. ([7, Proposition 5.1.3]) Any Lyndon word � has a factorization

� = �1�2 (2.4)

defined by the property that �2 is the longest proper suffix of �, which is also a Lyndon word.
Under these circumstances, �1 is also a Lyndon word.

The factorization (2.4) is called a costandard factorization of a Lyndon word.
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Proposition 2.6. ([7, Proposition 5.1.5]) Any word w has a unique factorization

w = �1 . . . �k, (2.5)

where �1 ≥ · · · ≥ �k are all Lyndon words.

The factorization (2.5) is called a canonical factorization.

2.7 Standard bracketing
Let a be a Lie algebra generated by a finite set {ei}i∈I labelled by the alphabet I.

Definition 2.8. The standard bracketing of a Lyndon word � is given inductively by:

• b[i] = ei ∈ a for i ∈ I,
• b[�] = [b[�1], b[�2]] ∈ a, where � = �1�2 is the costandard factorization (2.4).

The major importance of this definition is due to the following result of Lyndon:

Theorem 2.9. ([7, Theorem 5.3.1]) If a is a free Lie algebra in the generators {ei}i∈I, then the set{
b[�]|�-Lyndon word

}
provides a basis of a.

2.10 Standard Lyndon words
It is natural to ask if Theorem 2.9 admits a generalization to Lie algebras a generated by {ei}i∈I but with
some defining relations. The answer was provided a few decades later in [5]. To state the result, define

we, ew ∈ U(a) for any w ∈ I∗:

• For a word w = [i1 . . . ik] ∈ I∗, we set

we = ei1 . . . eik ∈ U(a) (2.6)

• For a word w ∈ I∗ with a canonical factorization w = �1 . . . �k of (2.5), we set

ew = e�1 . . . e�k ∈ U(a) (2.7)

with e� = b[�] ∈ a for any Lyndon word �, cf. Definition 2.8.

It is well-known that the elements (2.6) and (2.7) are connected by the following triangularity
property:

ew =
∑
v≥w

cv
w · ve with cv

w ∈ Z and cw
w = 1. (2.8)

The following definition is due to [5]:

Definition 2.11. (a) A word w is called standard if we cannot be expressed as a linear combination
of ve for various v > w, with we as in (2.6).

(b) A Lyndon word � is called standard Lyndon if e� cannot be expressed as a linear combination
of em for various Lyndon words m > �, with e� = b[�] as above.

The following result is nontrivial and justifies the above terminology:

Proposition 2.12. ([5]) A Lyndon word is standard iff it is standard Lyndon.

The major importance of this definition is due to the following result:
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Theorem 2.13. ([5, Theorem 2.1]) For any Lie algebra a generated by a finite collection {ei}i∈I, the
set

{
b[�]|�-standard Lyndon word

}
provides a basis of a.

2.14 Application to simple Lie algebras
Let g be a simple Lie algebra with a root system � = �+ � �−. Let {αi}i∈I ⊂ �+ be the simple roots, and
Q = ⊕

i∈I Zαi be the root lattice. We endow Q with the symmetric pairing (·, ·) so that the Cartan matrix
(aij)i,j∈I of g is given by aij = 2(αi ,αj)

(αi ,αi)
. The Lie algebra g admits the standard root space decomposition:

g = h ⊕
⊕
α∈�

gα , h ⊂ g − Cartan subalgebra, (2.9)

with dim(gα) = 1 for all α ∈ �. We pick root vectors eα ∈ gα so that gα = C · eα .
Consider the positive Lie subalgebra n+ = ⊕

α∈�+ gα of g. Explicitly, n+ is generated by {ei}i∈I subject to
the classical Serre relations:

[ei, [ei, . . . , [ei, ej] . . . ]]︸ ︷︷ ︸
1−aij Lie brackets

= 0 ∀ i �= j. (2.10)

Let Q+ = ⊕
i∈I Z≥0αi. The Lie algebra n+ is naturally Q+-graded via deg(ei) = αi.

Fix any order on the set I. According to Theorem 2.13, n+ has a basis consisting of the e�’s, as � ranges
over all standard Lyndon words. Evoking the above Q+-grading of the Lie algebra n+, it is natural to
define the grading of words as follows:

deg[i1 . . . ik] = αi1 + · · · + αik ∈ Q+. (2.11)

Due to the decomposition (2.9) and the fact that the root vectors {eα}α∈�+ ⊂ n+ all live in distinct degrees
α ∈ Q+, we conclude that there exists a bijection [5]:

� : �+ ∼−→ {
standard Lyndon words

}
(2.12)

such that deg �(α) = α for all α ∈ �+. We call (2.12) the Lalonde–Ram’s bijection.

2.15 Results of Leclerc and Rosso
The Lalonde–Ram’s bijection (2.12) was described explicitly in [6]. To state the result, we recall that for
a root γ = ∑

i∈I niαi ∈ �+, its height is ht(γ ) = ∑
i∈I ni.

Proposition 2.16. ([6, Proposition 25]) The bijection � is inductively given by:

• for simple roots, we have �(αi) = [i]
• for other positive roots, we have the following Leclerc’s algorithm:

�(α) = max
{
�(γ1)�(γ2)

∣∣∣α = γ1 + γ2 , γ1, γ2 ∈ �+ , �(γ1) < �(γ2)
}

. (2.13)

Formula (2.13) recovers �(α) once we know �(γ ) for all {γ ∈ �+ | ht(γ ) < ht(α)}.

Remark 2.17. While Lalonde–Ram computed explicitly the standard Lyndon words for any simple
g and a specific order in [5, Theorem 3.4], the above Leclerc’s algorithm allows to find
standard Lyndon words for any simple g and any ordering of its simple roots. Moreover, this
algorithm is easy to program on a computer.

We shall also need one more important property of �. To the end, let us recall:
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Definition 2.18. A total order on the set of positive roots �+ is convex if

α < α + β < β (2.14)

for all α < β ∈ �+ such that α + β is also a root.

Remark 2.19. It is well-known ([9]) that convex orders on �+ are in bijection with reduced
decompositions of the longest element in the Weyl group of g.

The following result is [6, Proposition 26], where it is attributed to the preprint of Rosso [11] (a detailed
proof can be found in [8, Proposition 2.34]):

Proposition 2.20. Consider the order on �+ induced from the lexicographical order on
standard Lyndon words:

α < β ⇐⇒ �(α) < �(β) lexicographically. (2.15)

This order is convex.

Remark 2.21. We note that both Proposition 2.16 and Proposition 2.20 are of crucial importance
for the further application to quantum groups Uq(g), see [6].

3 Generalization to Affine Lie Algebras
In this section, we generalize Proposition 2.16 to the case of affine Lie algebras g. As an example, we
compute all affine standard Lyndon words for g of type A(1)

1 .

3.1 Affine Lie algebras
In this section, we consider the next simplest class of Kac–Moody Lie algebras after the simple ones,
the affine Lie algebras. Let g be a simple finite-dimensional Lie algebra, {αi}i∈I be the simple roots, and
θ ∈ �+ be the highest root (with the maximal value of ht(θ)). We define Î = I � {0}. Consider the affine
root lattice Q̂ = Q × Z with the generators {(αi, 0)}i∈I and α0 := (−θ , 1). We endow Q̂ with the symmetric
pairing defined by:

(
(α, n), (β, m)

) = (α, β) ∀ α, β ∈ Q , n, m ∈ Z. (3.1)

This leads to the affine Cartan matrix (aij)i,j∈̂I and the affine Lie algebra ĝ. The associated affine root
system �̂ = �̂+ � �̂− has the following explicit description:

�̂+ = {
�+ × Z≥0

} � {
0 × Z>0

} � {
�− × Z>0

}
, (3.2)

�̂− = {
�− × Z≤0

} � {
0 × Z<0

} � {
�+ × Z<0

}
, (3.3)

where Z≥0, Z>0, Z≤0, Z<0 denote the obvious subsets of Z. Here, δ = α0 + θ = (0, 1) ∈ Q × Z is the
minimal imaginary root of the affine root system �̂. With this notation, we have the following root space
decomposition, cf. (2.9):

ĝ = ĥ ⊕
⊕
α∈�̂

ĝα , ĥ ⊂ ĝ − Cartan subalgebra. (3.4)

Let us now recall another realization of ĝ. To this end, consider the Lie algebra

g̃ = g ⊗ C[t, t−1] ⊕ C · c with a Lie bracket given by

[x ⊗ tn, y ⊗ tm] = [x, y] ⊗ tn+m + nδn,−m(x, y) · c and [c, x ⊗ tn] = 0
(3.5)

where x, y ∈ g, n, m ∈ Z, and (·, ·) : g × g → C is a non-degenerate invariant pairing.
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The rich theory of affine Lie algebras is mainly based on the following key result:

Claim 3.2. There exists a Lie algebra isomorphism

ĝ ∼−→ g̃ (3.6)

determined on the generators by the following formulas:

ei �→ ei ⊗ t0 fi �→ fi ⊗ t0 hi �→ hi ⊗ t0 ∀ i ∈ I ,

e0 �→ fθ ⊗ t1 f0 �→ eθ ⊗ t−1 h0 �→ [fθ , eθ ] ⊗ t0 + (fθ , eθ ) · c ,

where eθ and fθ are root vectors of degrees θ and −θ , respectively.

In view of this result, we can explicitly describe the root subspaces from (3.4):

ĝ(α,k) = gα ⊗ tk for (α, k) ∈ �̂+,re := {
�+ × Z≥0

} � {
�− × Z>0

}
, (3.7)

ĝkδ = h ⊗ tk for kδ ∈ �̂+,im := {
0 × Z>0

}
. (3.8)

As dim(gα) = 1 for any α ∈ � and dim(h) = rank(g) = |I|, we thus obtain

dim(̂gα) = 1 ∀ α ∈ �̂+,re , dim(̂gα) = |I| ∀ α ∈ �̂+,im. (3.9)

Notation: In what follows, we shall always simply write xtn instead of x ⊗ tn.

3.3 Affine standard Lyndon words
It is natural to ask if the above results can be generalized to affine Lie algebras ĝ. On the Lie algebraic
side, we consider only the positive subalgebra n̂+ = ⊕

α∈�̂+ ĝα . Thus, n̂+ is generated by {ei}i∈̂I subject to
the Serre relations (2.10) for i �= j ∈ Î. On the combinatorial side, we consider the finite alphabet Î with
any order on it, which allows to define Lyndon and standard Lyndon words (with respect to n̂+). We shall
use the term affine standard Lyndon words in the present setup.

The key difference with the case of simple g is that some root subspaces are not one-dimensional,
see (3.9). Thus, we do not get such a simple bijection as (2.12) for simple Lie algebras. However, the
degree reasoning as in Subsection 2.14 implies that there is a unique affine standard Lyndon word in
each real degree α ∈ �̂+,re, denoted by SL(α), and |I| affine standard Lyndon words in each imaginary
degree α ∈ �̂+,im, denoted by SL1(α), . . . , SL|I|(α), listed in the decreasing order.

The main result of this section is the following generalized Leclerc’s algorithm:

Proposition 3.4. The affine standard Lyndon words (with respect to n̂+) are determined induc-
tively by the following rules:

(a) For simple roots, we have SL(αi) = [i]. For other real α ∈ �̂+,re, we have:

SL(α) = max
{

SL∗(γ1)SL∗(γ2)

∣∣∣ α=γ1+γ2, γk∈�̂+
SL∗(γ1)<SL∗(γ2)

[b[SL∗(γ1)],b[SL∗(γ2)]]�=0

}
, (3.10)

where SL∗(γ ) denotes SL(γ ) for γ ∈ �̂+,re and any of {SLk(γ )}|I|k=1 for γ ∈ �̂+,im.
(b) For imaginary α ∈ �̂+,im, the corresponding |I| affine standard Lyndon words {SLk(α)}|I|k=1 are

the |I| lexicographically largest words from the list as in the right-hand side of (3.10) whose
standard bracketings are linearly independent.

Remark 3.5. Since [̂gaδ , ĝbδ] = 0 for any a, b > 0, we shall assume that γ1, γ2 ∈ �̂+,re when applying
part (b). Thus, SL1(α) is given precisely by (3.10), SL2(α) is the next largest word among the
above concatenations whose bracketing is not a multiple of b[SL1(α)], and so on, up to SL|I|(α),
which is the largest of the remaining concatenations whose standard bracketing is linearly
independent with {b[SLk(α)]}|I|−1

k=1 .
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Proof of Proposition 3.4. (a) Consider the costandard factorization SL(α) = �1�2 as in (2.4). Then,
�1 = SL∗(γ1), �2 = SL∗(γ2) for some γ1, γ2 ∈ �̂+ and �1 < �2. Finally, b[SL(α)] �= 0 implies that
[b[SL∗(γ1)], b[SL∗(γ2)]] �= 0. Therefore, �1�2 is an element from the right-hand side of (3.10). It thus remains
to show that SL(α) is ≥ any concatenation SL∗(γ1)SL∗(γ2) featuring in the right-hand side of (3.10).

The proof of the latter is completely analogous to that of [8, Proposition 2.23]. Consider any γ1, γ2 ∈ �̂+

such that γ1 + γ2 = α. Let us write �1 = SL∗(γ1), �2 = SL∗(γ2), � = SL(α). We may assume, without loss of
generality, that �1 < �2. Evoking the notations of Subsection 2.10, we have

b[�k] = e�k =
∑

vk≥�k

cvk
�k

· vk e (3.11)

∀ k ∈ {1, 2}, due to the triangularity property (2.8). Thus, due to the degree reasons (see [8, Footnote 2]),
we get

b[�1]b[�2] = e�1 e�2 =
∑

v≥�1�2

xv · ve (3.12)

for some coefficients xv. As a consequence of �2�1 > �1�2 (Lemma 2.4), we also get

b[�2]b[�1] = e�2 e�1 =
∑

v≥�1�2

x′
v · ve (3.13)

for some coefficients x′
v. Hence, we obtain the following formula for the commutator:

[b[�1], b[�2]] = [e�1 , e�2 ] =
∑

v≥�1�2

yv · ve (3.14)

for various coefficients yv. Furthermore, we may restrict the sum above to standard v’s, since by the very
definition of this notion, any ve can be inductively written as a linear combination of ue’s for standard
u ≥ v. By the same reason, we may restrict the right-hand side of (2.8) to standard v’s and conclude that
{ew}w−standard provide a basis of U(̂n+), which is upper triangular in terms of the basis {we}w−standard. With
the above observations in mind, (3.14) implies

[b[�1], b[�2]] = [e�1 , e�2 ] =
∑

v≥�1�2

v−standard

zv · ev (3.15)

for various zv. Meanwhile, the assumption [b[�1], b[�2]] �= 0 and ĝα = C · b[�] imply

[b[�1], b[�2]] = [e�1 , e�2 ] ∈ C× · e�. (3.16)

As {ev}v−standard is a basis of U(̂n+), comparing (3.15, 3.16) we obtain � ≥ �1�2, precisely as claimed above.
(b) The proof of part (b) is completely analogous to that of part (a), with the only difference that we

need to find |I| affine standard Lyndon words. Thus, we just use Definition 2.11(b) to complement the
above argument in the present setup. �

3.6 Affine standard Lyndon words in type A(1)

1

As the first simplest example, let us compute affine standard Lyndon words in the simplest case of A(1)

1 ,
which corresponds to the affinization ŝl2 of the unique rank 1 simple Lie algebra sl2. In this case, there
are two simple roots α0, α1 and δ = α0 +α1. The set of positive roots is �̂+ = {kδ+α1, kδ+α0, (k+1)δ|k ≥ 0}.
Without loss of generality, we can assume that 1 < 0, due to the 0 ↔ 1 symmetry.

Proposition 3.7. The affine standard Lyndon words for ŝl2 with the order 1 < 0 on the correspond-
ing alphabet Î = {0, 1} are
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• For k ≥ 1, we have

SL(kδ + α1) = 1 10︸︷︷︸
k times

, (3.17)

SL(kδ + α0) = 10︸︷︷︸
k times

0, (3.18)

SL((k + 1)δ) = 1 10︸︷︷︸
k times

0. (3.19)

• For the remaining roots, we have

SL(α1) = 1 , SL(α0) = 0 , SL(δ) = 10. (3.20)

Proof. Formulas (3.20) are obvious, while the proof of (3.17)–(3.19) will proceed by induction on k. The
base k = 1 case is easy. We shall now prove the induction step, just by using the generalized Leclerc’s
algorithm from Proposition 3.4.

1) Root α = kδ+α1. Any decomposition α = γ1 +γ2 has the following form: {γ1, γ2} = {aδ, bδ+α1 | a+b =
k, 1 ≤ a ≤ k}. By the induction hypothesis:

SL(bδ + α1) = 1 10︸︷︷︸
b times

< 1 10︸︷︷︸
(a−1) times

0 = SL(aδ).

Following (3.10), consider the lexicographically largest word among all possible concatenations
1 10︸︷︷︸

b times

1 10︸︷︷︸
(a−1) times

0, which is 1 10︸︷︷︸
k times

. Let us show by induction on k that its standard bracketing is

(−2)kE12tk, thus completing the proof of (3.17):

b[1 10︸︷︷︸
k times

] = [b[1 10︸︷︷︸
(k−1) times

], b[10]] = [(−2)k−1E12tk−1, (E11 − E22)t] = (−2)kE12tk.

2) Root α = kδ+α0. Any decomposition α = γ1+γ2 has the following form: {γ1, γ2} = {aδ, bδ+α0 | a+b = k,
1 ≤ a ≤ k}. As in 1), one combines the inductive hypothesis with (3.10) to find: SL(α) = 10︸︷︷︸

k times

0 with the

standard bracketing

b[ 10︸︷︷︸
k times

0] = (−2)kE21tk+1.

3) Let us now treat the imaginary root α = (k + 1)δ. As rank(sl2) = 1, there is only one
affine standard Lyndon word in degree α, which can be found by (3.10). Any decomposition α = γ1 + γ2

that contributes into SL(α) is of the form: {γ1, γ2} = {aδ +α1, bδ +α0 | a+b = k, 0 ≤ a ≤ k}. By the induction
hypothesis:

SL(aδ + α1) = 1 10︸︷︷︸
a times

< 10︸︷︷︸
b times

0 = SL(bδ + α0).

Following (3.10), consider the lexicographically largest word among all the corresponding concatena-
tions SL(aδ + α1)SL(bδ + α0) = 1 10︸︷︷︸

k times

0, which completes the proof of (3.19). Let us evaluate its standard

bracketing:

b[1 10︸︷︷︸
k times

0] = [b[1], b[ 10︸︷︷︸
k times

0]] = [E12, (−2)kE21tk+1] = (−2)k(E11 − E22)tk+1.

This completes the proof of the induction step. �
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4 Affine Standard Lyndon Words in Type A(1)
n for n ≥ 2

In this section, we describe affine standard Lyndon words in affine type A(1)
n for n ≥ 2 and any order on

Î = {0, 1, 2, . . . , n}. First, we treat the simplest case (of the standard order) to which Proposition 3.4 can be
easily applied. We then crucially utilize the convexity property of Proposition 2.20 to derive the structure
of affine standard Lyndon words for an arbitrary order on Î.

4.1 Standard order
We start by computing all affine standard Lyndon words for type A(1)

n with

the standard order on Î : 1 < 2 < 3 < · · · < n < 0. (4.1)

There are n + 1 simple roots α0, α1, . . . , αn, and δ = α0 + α1 + · · · + αn. It is convenient to place the letters
of the alphabet Î = {0, 1, 2, . . . , n} on a circle counterclockwise. For any counterclockwise oriented arch
from i to j, we define

αi→j := αi + αi+1 + · · · + αj ∈ Q. (4.2)

Using this notation, the positive affine roots can be explicitly described as follows:

�̂+ = {
kδ + αi→j, (k + 1)δ

∣∣ k ≥ 0 , i, j ∈ Î , j �= i − 1
}
. (4.3)

Here, for any k ∈ Z we define k ∈ Î via

k := k mod (n + 1). (4.4)

We also use [i → j) to denote all letters on the arch from i (included) to j (excluded)

[i → j) := {
i, i + 1, . . . , j − 1

}
. (4.5)

Theorem 4.2. The affine standard Lyndon words for ŝln+1 with the standard order 1 < 2 < · · · <

n < 0 on the corresponding alphabet Î = {0, 1, . . . , n} are as follows:

• For k ≥ 1, we have

SL(kδ + αi→j) = 10n . . . i 23 . . . i − 1︸ ︷︷ ︸
k times

i i + 1 . . . j , for 2 < i ≤ j ≤ 0, (4.6)

SL(kδ + α2) = 10n . . . 32︸ ︷︷ ︸
k times

2, (4.7)

SL(kδ + α2→j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10n . . . 32︸ ︷︷ ︸
k
2 times

2 10n . . . 32︸ ︷︷ ︸
k
2 times

34 . . . j if 2 | k

10n . . . 32︸ ︷︷ ︸
k+1

2 times

34 . . . j 10n . . . 32︸ ︷︷ ︸
k−1

2 times

2 if 2 � k
, for 2 < j ≤ 0, (4.8)

SL(kδ + α1→i) = 123 . . . n 1023 . . . n︸ ︷︷ ︸
(k−1) times

1023 . . . i , for 1 ≤ i < 0, (4.9)

SL(kδ + αj→i) = SL(kδ + αj→0 + α1→i) = for i < i + 1 < j

10n . . . j 23 . . . j − 2 10n . . . j − 1 23 . . . j − 2︸ ︷︷ ︸
(k−1) times

10n . . . j − 1 23 . . . i, (4.10)
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SLn((k + 1)δ) = 123 . . . n 1023 . . . n︸ ︷︷ ︸
k times

0,

SLr((k + 1)δ) = 10n . . . r + 2 23 . . . r 10n . . . (r + 1)23 . . . r︸ ︷︷ ︸
k times

(r + 1) , for r < n. (4.11)

• For the remaining roots, we have

SL(αi→j) = i(i + 1) . . . j , for i ≤ j and (i, j) �= (1, 0), (4.12)

SL(αj→i) = SL(αj→0 + α1→i) = 10n . . . j 23 . . . i , for i < i + 1 < j, (4.13)

SLr(δ) = 10 . . . r + 2 23 . . . r + 1 , for 1 ≤ r ≤ n. (4.14)

Proof. The proof will proceed by induction on the height ht(α). Let h = ht(δ) = n+1 be the Coxeter number
of sln+1. The base of induction is ht(α) < 2h, that is, k = 0, 1 cases for real roots kδ + αi→j and k = 0 case
for imaginary roots (k + 1)δ.

Base of Induction (part I)
First, let us verify (4.12)–(4.14) and find bracketings of the corresponding words.
• Proof of (4.12).
Consider the costandard factorization � = �1�2 of any Lyndon word � with deg � = αi→j. As i < i + 1

are the two smallest letters of �, the word �1 starts with i and �2 starts with i + 1. If furthermore � is
standard Lyndon, so is �1, hence, deg �1 ∈ �̂+. For degree reasons, this is only possible if �1 = i and
deg �2 = α(i+1)→j. Arguing by induction on the height of αi→j, we thus immediately derive the desired
formula (4.12). Moreover, we also inductively get the explicit formula for the corresponding standard
bracketing:

b[SL(αi→j)] = b[i(i + 1) . . . j] = [b[i], b[(i + 1) . . . j]] =
⎧⎨
⎩Ei,j+1t0 if j ≤ n

Ei,1t if j = 0
.

Notation: Henceforth, we shall use the matrix E0,p to denote En+1,p.
• Proof of (4.13) for i = 1.
In this case, we shall rather use (3.10) and argue by induction on the height of αj→1 (i.e., a descending

induction of j ∈ Î). The possible decompositions of αj→1 into the (unordered) sum of two positive roots
are as follows:

αj→1 = αj→k + αk+1→1 (j ≤ k ≤ n) , αj→1 = αj→0 + α1.

Combining the induction hypothesis with formula (4.12), we get the following list of concatenated words
featuring in the right-hand side of (3.10) for α = αj→1:

10n . . . k + 1 j j + 1 . . . k (j ≤ k ≤ 0). (4.15)

Clearly, 10n . . . j is the lexicographically largest word from this list (4.15). Let us evaluate its standard
bracketing:

b[10n . . . j] = [b[10n . . . j + 1], b[j]] = [(−1)n−j−1Ej+1,2t, Ej,j+1] = (−1)n−jEj,2t,

where we use the induction hypothesis for the value of b[10n . . . (j+1)]. We thus obtain SL(αj→1) = 10n . . . j
as claimed in (4.13), since the bracketing is nonzero.

• Proof of (4.13) for i > 1.
In the present case, we can argue alike in our verification of (4.12). Consider the costandard

factorization SL(αj→i) = �1�2. Since 1 < 2 are the two smallest letters, �1 starts with 1 and �2 starts with 2.
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Moreover, we have deg �1, deg �2 ∈ �̂+. For degree reasons, this is only possible if deg �1 = αj→1 and
deg �2 = α2→i. We thus have �1 = 10n . . . j and �2 = 23 . . . i by above, and (4.13) follows. Furthermore,

b[SL(αj→i)] = b[10n . . . j 23 . . . i] = [b[10n . . . j], b[23 . . . i]] = (−1)n−jEj,i+1t.

• Proof of (4.14).
Let us now treat the case of the smallest imaginary root δ. The possible decompositions of δ into the

(unordered) sum of two positive roots are as follows:

δ = α1→i + αi+1→0 (1 ≤ i ≤ n) , δ = αi→j + αj+1→(i−1)
(2 ≤ i ≤ j ≤ n).

Using already verified formulas (4.12) and (4.13), we thus get the following list of concatenated words
featuring in the right-hand side of (3.10) for α = δ:

12 . . . i i + 1 . . . n0 , 10n . . . j + 1 23 . . . (i − 1)i(i + 1) . . . j (2 ≤ j ≤ n).

Since this list contains exactly n different words (we note the independence of i), all of them are precisely
SL1(δ), . . . , SLn(δ). Ordering them lexicographically, we derive the desired formula (4.14). Let us compute
their standard bracketings:

b[SLr(δ)] = b[10 . . . r + 2 23 . . . r + 1] = [b[10 . . . r + 2], b[23 . . . r + 1]] =
[(−1)n−rEr+2,2t, E2,r+2] = (−1)n−r+1(E22 − Er+2,r+2)t if r ≤ n − 1,

b[SLn(δ)] = b[123 . . . n0] = [b[1], b[23 . . . n0]] = (E11 − E22)t.

(4.16)

Base of Induction (part II)
As a continuation of the induction base, let us now verify (4.6)–(10) for k = 1.
• Proof of (4.6) for k = 1.
We verify the formula for SL(δ +αi→j) with 2 < i ≤ j by induction on ht(αi→j). (1) The base of induction

is i = j. The possible decompositions of δ + αi into the (unordered) sum of two positive roots are as
follows:

δ + αi = (δ) + (αi) , δ + αi = αi→j + αj+1→i (j �= i, i − 1). (4.17)

Using already verified formulas (4.12)–(4.14), we get the following list of concatenated words featuring
in the right-hand side of (3.10) for α = δ + αi:

10n . . . i 23 . . . i − 1 i , 10n . . . i + 1 23 . . . i i,

10n . . . j + 1 23 . . . i i(i + 1) . . . j for i < j ≤ n,

10n . . . i 23 . . . j (j + 1) . . . i for 1 ≤ j < i − 1,

12 . . . i i i + 1 . . . 0.

(4.18)

Here, the two words in the first line correspond to the fact that [b[SLr(δ)], b[i]] �= 0 only for r + 2 = i, i − 1,
due to (4.16), while the last three lines just correspond to the cases i < j ≤ n, 1 ≤ j < i − 1, and j = 0
in (4.17). Clearly, 10n . . . i 23 . . . i − 1 i is the lexicographically largest word from the list (4.18). Therefore,
SL(δ + αi) is indeed given by (4.6) as the corresponding standard bracketing does not vanish:

b[SL(δ + αi)] = b[10n . . . i 23 . . . i − 1 i] =
⎧⎨
⎩(−1)n−iEi,i+1t if 2 < i ≤ n

−En+1,1t2 if i = 0
.

(2) Let us now prove the induction step: compute SL(δ + αi→j) for ht(αi→j) = p + 1 using the formulas for
SL(δ + αι→j ) with ht(αι→j ) ≤ p. The possible decompositions of δ + αi→j into the (unordered) sum of two
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positive roots are as follows:

δ + αi→j = (δ) + (αi→j)

δ + αi→j = (δ + αi→j ) + (αj+1→j) for j ∈ [i → j)

δ + αi→j = (αi→j ) + (δ + αj+1→j) for j ∈ [i → j)

δ + αi→j = (αi→j ) + (αj+1→j) for j ∈ [j + 1 → (i − 1)
)
.

(4.19)

The corresponding list of concatenations is as follows:

10n . . . i 23 . . . (i − 1)i . . . j , 10n . . . j + 1 23 . . . j i . . . j,

10n . . . i 23 . . . (i − 1)i . . . j j + 1 . . . j for j ∈ [i → j),

10n . . . j + 1 23 . . . . . . j i i + 1 . . . j for j ∈ [i → j),

10n . . . j + 1 23 . . . j i(i + 1) . . . j j + 1 . . . j for j < j ≤ n,

10n . . . i 23 . . . j j + 1 . . . j for 1 ≤ j < i − 1,

123 . . . j i i + 1 . . . 0.

(4.20)

The two words in the first line correspond to the fact that [b[SLr(δ)], b[SL(αi→j)]] �= 0 only when r + 2 = i,
j + 1, while the words from the last three lines correspond to the cases j < j ≤ n, 1 ≤ j < i − 1, and j = 0
in the last decomposition of (4.19). Clearly, 10n . . . i 23 . . . j is the lexicographically largest word from the
list (4.20). Therefore, SL(δ + αi→j) is indeed given by (4.6) as the corresponding standard bracketing does
not vanish:

b[SL(δ + αi→j)] = b[10n . . . i 23 . . . j] =
⎧⎨
⎩(−1)n−iEi,j+1t if 2 < i < j ≤ n

(−1)n−iEi,1t2 if 2 < i < j = 0
.

• Proof of (4.7) for k = 1.
The possible decompositions of δ + α2 into the (unordered) sum of two positive roots are as follows:

δ + α2 = (δ) + (α2) , δ + α2 = α2→j + αj+1→2 (j �= 1, 2). (4.21)

Thus, the concatenated words in the right-hand side of (3.10) for α = δ + α2 are

10n . . . r + 2 23 . . . r + 1 2 for 1 ≤ r ≤ n,

10n . . . j + 1 223 . . . j (2 < j ≤ n) , 1223 . . . n0.
(4.22)

Here, the n words in the first line correspond to the fact that [b[SLr(δ)], b[2]] �= 0 for all 1 ≤ r ≤ n, according
to (4.16). Clearly, 10n . . . 322 is the lexicographically largest word from the list (4.22). Therefore, SL(δ+α2)

is indeed given by (4.7) as the corresponding standard bracketing does not vanish:

b[SL(δ + α2)] = b[10n . . . 322] = [b[10n . . . 32], b[2]] = 2(−1)nE23t.

• Proof of (4.8) for k = 1.
Let us prove by induction on j that:

SL(δ + α2→j) = 10n . . . 3234 . . . j2 for 2 ≤ j ≤ 0. (4.23)

(1) The base of induction is j = 2, for which the result was just proved above.
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(2) Let us now prove the induction step: prove (4.23) for SL(δ + α2→j) utilizing the same formula for
SL(δ + α2→j ) with 2 ≤ j < j. The possible decompositions of δ + α2→j into the (unordered) sum of two
positive roots are as follows:

δ + α2→j = (δ) + (α2→j)

δ + α2→j = (δ + α2→j ) + (αj+1→j) for j ∈ [2 → j)

δ + α2→j = (δ + αj+1→j) + (α2→j ) for j ∈ [2 → j)

δ + α2→j = (α2→j ) + (αj+1→j) for j ∈ [j + 1 → 1
)

(4.24)

Thus, the concatenated words in the right-hand side of (3.10) for α = δ + α2→j are

10n . . . r + 2 23 . . . r + 1 23 . . . j , for 1 ≤ r ≤ n,

10n . . . 3234 . . . j 2 j + 1 . . . j for j ∈ [2 → j),

10n . . . j + 1 23 . . . j 23 . . . j for j ∈ [2 → j),

10n . . . j + 1 23 . . . j 23 . . . j (j < j ≤ n) , 12 . . . j 23 . . . n0.

(4.25)

The n words in the first line correspond to the fact that [b[SLr(δ)], b[SL(α2→j)]] �= 0 for all 1 ≤ r ≤ n,
according to (4.16). Clearly, 10n . . . 3234 . . . j2 is the lexicographically largest word from the list (4.25).
Therefore, SL(δ+α2→j) is indeed given by (4.23) as the corresponding standard bracketing does not vanish:

b[SL(δ + α2→j)] = b[10n . . . 3234 . . . j2] =
⎧⎨
⎩(−1)nE2,j+1t if 2 < j ≤ n

(−1)nE21t2 if j = 0
.

• Proof of (4.9) for k = 1.
Let us prove by induction on i that:

SL(δ + α1→i) = 123 . . . n 1023 . . . i for 1 ≤ i ≤ n. (4.26)

(1) The base of induction is i = 1. The possible decompositions of δ +α1 into the (unordered) sum of two
positive roots are as follows:

δ + α1 = (δ) + (α1) , δ + α1 = (α1→j ) + (αj+1→1) (j �= 0, 1). (4.27)

Thus, the concatenated words in the right-hand side of (3.10) for α = δ + α1 are

1 10n . . . r + 2 23 . . . r + 1 for 1 ≤ r ≤ n,

123 . . . j 10n . . . (j + 1) (1 < j < n) , 123 . . . n 10.
(4.28)

Here, the n words in the first line correspond to the fact that [b[SLr(δ)], b[1]] �= 0 for all 1 ≤ r ≤ n, according
to (4.16). Clearly, 123 . . . n 10 is the lexicographically largest word from the list (4.28). Therefore, SL(δ+α1)

is indeed given by (4.26) as the corresponding standard bracketing does not vanish:

b[SL(δ + α1)] = b[123 . . . n 10] = [b[123 . . . n], b[10]] = −E12t.

(2) Let us now prove the induction step: prove (4.26) for SL(δ + α1→i) utilizing the same formula for
SL(δ + α1→ι) with 1 ≤ ι < i. The possible decompositions of δ + α1→i into the (unordered) sum of two
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positive roots are as follows:

δ + α1→i = (δ) + (α1→i)

δ + α1→i = (δ + α1→ι) + (α(ι+1)→i) for ι ∈ [1 → i)

δ + α1→i = (δ + α(ι+1)→i) + (α1→ι) for ι ∈ [1 → i)

δ + α1→i = (α1→ι) + (αι+1→i) for ι ∈ [i + 1 → 0
)

(4.29)

Thus, the concatenated words in the right-hand side of (3.10) for α = δ + α1→i are

123 . . . i 10n . . . i + 1 23 . . . i , 123 . . . i 123 . . . n0,

123 . . . n 1023 . . . ι (ι + 1) . . . i for 1 ≤ ι < i,

123 . . . ι 10n . . . (ι + 1) 23 . . . i for 1 < ι < i , 1 10n . . . 3234 . . . i2,

123 . . . ι 10n . . . ι + 1 23 . . . i for i < ι ≤ n.

(4.30)

The two words in the first line correspond to the fact that [b[SLr(δ)], b[SL(α1→i)]] �= 0 only when r = i−1, n
(for 1 < i ≤ n), while the words in the third line correspond to the cases 1 < ι < i and ι = 1 in the third
line of (4.29). Clearly, 123 . . . n 1023 . . . i is the lexicographically largest word from the list (4.30). Therefore,
SL(δ + α1→i) is indeed given by (4.26) as the corresponding standard bracketing does not vanish:

b[SL(δ + α1→i)] = b[123 . . . n 1023 . . . i] = [b[123 . . . n], b[1023 . . . i]] = −E1,i+1t.

• Proof of (10) for k = 1.
Let us prove by induction on ht(αj→i) that

SL(δ + αj→i) = 10n . . . j 23 . . . j − 2 10n . . . j − 1 23 . . . i for i < i + 1 < j. (4.31)

(1) The base of induction is (j, i) = (0, 1). The possible decompositions of δ + α0→1 into the (unordered)
sum of two positive roots are as follows:

δ + α0→1 = (δ) + (α0→1),

δ + α0→1 = (δ + α0) + (α1) , δ + α0→1 = (δ + α1) + (α0),

δ + α0→1 = (α0→ι) + (α(ι+1)→1) for 1 < ι < n.

(4.32)

Thus, the concatenated words in the right-hand side of (3.10) for α = δ + α0→1 are

1010 . . . r + 2 23 . . . (r + 1) for 1 < r ≤ n − 1 , 123 . . . n010,

11023 . . . n0 , 123 . . . n100,

1023 . . . ι 10n . . . (ι + 1) for 1 < ι < n.

(4.33)

Here, the n words in the first line correspond to the fact that [b[SLr(δ)], b[10]] �= 0 for all 1 ≤ r ≤ n,
according to (4.16). Clearly, 1023 . . . (n − 1)10n is the lexicographically largest word from the list (4.33).
Therefore, SL(δ + α0→1) is indeed given by (4.31) as the corresponding standard bracketing does not
vanish:

b[SL(δ + α0→1)] = b[1023 . . . (n − 1)10n] = [b[1023 . . . (n − 1)], b[10n]] = −En+1,2t2.

(2) Let us now prove the induction step: prove (4.31) for SL(δ + αj→i) utilizing the same formula for
SL(δ + αj→ι) with [j → ι) � [j → i). The possible decompositions of δ + αj→i into the (unordered) sum of
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two positive roots are as follows:

δ + αj→i = (δ + αj→j ) + (αj+1→i) for j ∈ [j → i)

δ + αj→i = (αj→j ) + (δ + αj+1→i) for j ∈ [j → i)

δ + αj→i = (αj→j ) + (αj+1→i) for j ∈ [(i + 1) → j − 1)

(4.34)

as well as

δ + αj→i = (δ) + (αj→i). (4.35)

The concatenated words in the right-hand side of (3.10) for α = δ + αj→i arising through (4.34) are

10n . . . j + 1 23 . . . i 10n . . . j 23 . . . j for j ≤ j ≤ 0,

10n . . . j 23 . . . j − 2 10n . . . j − 1 23 . . . j (j + 1) . . . i for 1 ≤ j < i,

10n . . . j + 1 23 . . . (j − 1)10n . . . j 23 . . . i j(j + 1) . . . j for j ≤ j ≤ n,

123 . . . n 1023 . . . i j(j + 1) . . . n 0,

10n . . . j 10n . . . 32 34 . . . i 2,

10n . . . j 23 . . . j 10n . . . (j + 1) 23 . . . i for 2 ≤ j < i,

10n . . . j 23 . . . j 10n . . . (j + 1) 23 . . . i for j ∈ [(i + 1) → j − 1),

(4.36)

where the words in the first two lines of (4.36) correspond to the first line of (4.34), depending on whether
j ≥ j or j < i, while the words in the third–sixth lines of (4.36) correspond to the second line of (4.34),
depending on whether j ≤ j < 0, j = 0, j = 1, or 1 < j < i. Meanwhile, the concatenated words in the
right-hand side of (3.10) for α = δ + αj→i arising through the decomposition (4.35) depend on whether
i = 1 or i �= 1:

10n . . . j 23 . . . i 10n . . . j 23 . . . j − 1 , 10n . . . j 23 . . . i 10n . . . (i + 1)23 . . . i (4.37)

if i �= 1, and

10n . . . r + 2 23 . . . r + 1 10n . . . j for j − 2 < r ≤ n,

10n . . . j 10n . . . (r + 2)23 . . . (r + 1) for 1 ≤ r ≤ j − 2
(4.38)

if i = 1. It is easy to see that 10n . . . j 23 . . . j − 2 10n . . . j − 1 23 . . . i is the lexicographically largest word from
the above lists (4.36)–(4.38). Thus, SL(δ + αj→i) is indeed given by (4.31) as the corresponding standard
bracketing does not vanish:

b[SL(δ + αj→i)] = [b[10n . . . j 23 . . . j − 2], b[10n . . . j − 1 23 . . . i]] = −Ej,i+1t2.

Step of Induction
Let us now prove the step of induction, proceeding by the height of a root. We shall thus verify the

stated formulas for affine standard Lyndon words SL∗(α) with

(d + 1)h ≤ ht(α) < (d + 2)h , where h = n + 1 = ht(δ), (4.39)

assuming the validity of the stated formulas for all SL∗(β) with ht(β) < ht(α). In other words, we verify
(11) for k = d and formulas (4.6)–(10) for k = d + 1.
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When evaluating the standard bracketings b[· · · ] below, we will only need their values up to nonzero
scalar factors. To this end, we shall use the following notation:

A .= B if A = c · B for some c ∈ C\{0}. (4.40)

• Proof of (11) for k = d.
The possible decompositions of (d + 1)δ into the (unordered) sum of two positive real roots are as

follows:

(d + 1)δ = (aδ + α1) + ((d − a)δ + α2→0), (4.41)

(d + 1)δ = (aδ + α1→j) + ((d − a)δ + αj+1→0) for 2 ≤ j ≤ n, (4.42)

(d + 1)δ = (aδ + α2→j) + ((d − a)δ + αj+1→1) for 2 ≤ j ≤ n, (4.43)

(d + 1)δ = (aδ + αi→j) + ((d − a)δ + αj+1→(i−1)
) for 2 < i ≤ j ≤ n, (4.44)

with 0 ≤ a ≤ d. By the induction hypothesis, we get the following concatenations:

�
(a)

0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 10n . . . 32︸ ︷︷ ︸
d
2 times

2 10n . . . 32︸ ︷︷ ︸
d
2 times

34 . . . n0 if a = 0, 2 | d

1 10n . . . 32︸ ︷︷ ︸
d+1

2 times

34 . . . n0 10n . . . 32︸ ︷︷ ︸
d−1

2 times

2 if a = 0, 2 � d

12 . . . n 1023 . . . n︸ ︷︷ ︸
(a−1) times

10 10n . . . 32︸ ︷︷ ︸
d−a

2 times

2 10n . . . 32︸ ︷︷ ︸
d−a

2 times

34 . . . n0 if 0 < a < d, 2 | (d − a)

12 . . . n 1023 . . . n︸ ︷︷ ︸
(a−1) times

10 10n . . . 32︸ ︷︷ ︸
d−a+1

2 times

34 . . . n0 10n . . . 32︸ ︷︷ ︸
d−a−1

2 times

2 if 0 < a < d, 2 � (d − a)

12 . . . n 1023 . . . n︸ ︷︷ ︸
d times

0 if a = d

(4.45)

for the decompositions (4.41),

�
(a)

1j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

123 . . . n 1023 . . . n︸ ︷︷ ︸
(a−1) times

1023 . . . j 10n . . . j + 1 23 . . . j︸ ︷︷ ︸
(d−a) times

j + 1 . . . 0 if 1 ≤ a ≤ d

123 . . . j 10n . . . j + 1 23 . . . j︸ ︷︷ ︸
d times

j + 1 . . . 0 if a = 0
(4.46)

for the decompositions (4.42) with 2 ≤ j ≤ n,

�
(a)

2j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10n . . . j + 1 23 . . . (j − 1) 10n . . . j 23 . . . (j − 1)︸ ︷︷ ︸
d times

j if a = 0

10n . . . j + 1 23 . . . (j − 1) 10n . . . j 23 . . . (j − 1)︸ ︷︷ ︸
(d−a−1) times

10n . . . j

10n . . . 32︸ ︷︷ ︸
a
2 times

2 10n . . . 32︸ ︷︷ ︸
a
2 times

34 . . . j if 0 < a < d, 2 | a

10n . . . j + 1 23 . . . (j − 1) 10n . . . j 23 . . . (j − 1)︸ ︷︷ ︸
(d−a−1) times

10n . . . j

10n . . . 32︸ ︷︷ ︸
a+1

2 times

34 . . . j 10n . . . 32︸ ︷︷ ︸
a−1

2 times

2 if 0 < a < d, 2 � a

10n . . . j + 1 10n . . . 32︸ ︷︷ ︸
d
2 times

2 10n . . . 32︸ ︷︷ ︸
d
2 times

34 . . . j if a = d − even

10n . . . j + 1 10n . . . 32︸ ︷︷ ︸
d+1

2 times

34 . . . j 10n . . . 32︸ ︷︷ ︸
d−1

2 times

2 if a = d − odd

(4.47)
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for the decompositions (4.43) with 2 ≤ j ≤ n, and

�
(a)

3ji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10n . . . j + 1 23 . . . (j − 1) 10n . . . j 23 . . . (j − 1)︸ ︷︷ ︸
d times

j if a = 0

10n . . . j + 1 23 . . . (j − 1) 10n . . . j 23 . . . (j − 1)︸ ︷︷ ︸
(d−a−1) times

10n . . . j

23 . . . (i − 1) 10n . . . i 23 . . . (i − 1)︸ ︷︷ ︸
a times

i(i + 1) . . . j if 0 < a < d

10n . . . j + 1 23 . . . (i − 1) 10n . . . i 23 . . . (i − 1)︸ ︷︷ ︸
d times

i(i + 1) . . . j if a = d

(4.48)

for the decompositions (4.44) with 2 < i ≤ j ≤ n.
Clearly, the lexicographically largest word from the lists (4.45)–(4.48) is

�
(0)

22 = 10n . . . 3 10n . . . 2︸ ︷︷ ︸
d times

2,

which coincides with the word in the right-hand side of (11) for k = d and r = 1. Let us compute its
standard bracketing

b[�(0)

22 ] = [b[10n . . . 3], b[10n . . . 2︸ ︷︷ ︸
d times

2]] .= [E32t, E23td] .= (E22 − E33)td+1,

where we use the induction hypothesis in the second equality. Moreover, a similar argument also implies
that

b[�(a)

22 ] .= (E22 − E33)td+1 .= b[�(0)

22 ] ∀ 0 < a ≤ d. (4.49)

The next lexicographically largest word from the lists (4.45)–(4.48), with the words {�(a)

22 }d
a=0 excluded

due to (4.49), is

�
(0)

23 = �
(0)

333 = 10n . . . 42 10n . . . 32︸ ︷︷ ︸
d times

3,

which coincides with the word in the right-hand side of (11) for k = d and r = 2. Let us compute its
standard bracketing:

b[�(0)

23 ] = [b[10n . . . 42], b[10n . . . 32︸ ︷︷ ︸
d times

3]] .= [E43t, E34td] .= (E33 − E44)td+1,

where we use the induction hypothesis in the second equality. Moreover, a similar argument also applies
to the remaining words �

(a)

23 and �
(a)

333 with 0 < a ≤ d:

b[�(a)

23 ], b[�(a)

333] ∈ span
{
(E22 − E33)td+1, (E33 − E44)td+1} = span

{
b[�(0)

22 ], b[�(0)

23 ]
}
.

Proceeding further with the same line of reasoning we find that the (n − 1) lexicographically largest
words from the above lists with linearly independent standard bracketings are: �

(0)

22 , �(0)

23 , . . . , �(0)

2n . This
proves (11) for k = d and 1 ≤ r ≤ n − 1.

The lexicographically largest word among the remaining lists (4.45)–(4.46) is

�
(0)

1n = �
(d)

0 = 123 . . . n 1023 . . . n︸ ︷︷ ︸
d times

0.
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Let us evaluate its standard bracketing:

b[�(0)

1n ] = [b[123 . . . n], b[1023 . . . n︸ ︷︷ ︸
d times

0]] .= [E1,n+1, En+1,1td+1] = (E11 − En+1,n+1)td+1.

As this expression is linear independent with {b[�(0)

2j ]}n
j=2 computed above, we get SLn((d+1)δ) = �

(0)

1n . This
completes our proof of (11) for k = d and proves

b[SLr((d + 1)δ)] .=
⎧⎨
⎩(Er+1,r+1 − Er+2,r+2)td+1 if 1 ≤ r ≤ n − 1

(E11 − En+1,n+1)td+1 if r = n
.

• Proof of (4.6)–(10) for k = d + 1.
The case of real roots is treated precisely as in our part II of the induction base. Let us present the

proof of (4.8), leaving the other ones to the interested reader.
Instead of listing all possible decompositions of (d + 1)δ + α2→j, we start by noting that the word

�(d+1, j) from the right-hand side of (4.8) for k = d+1 corresponds to the decomposition (d+1)δ+α2→j =
(� d+1

2 �δ + α2) + (� d+1
2 �δ + α3→j). Since �(d + 1, j) > 10n . . . 32 = SL1(δ), it suffices to consider in (3.10) only

those decompositions (d + 1)δ + α2→j = γ1 + γ2 such that each word SL∗(γ1), SL∗(γ2) is either > 10n . . . 32
or is a prefix of 10n . . . 32. By the induction hypothesis, this restricts us to the following list:

(d + 1)δ + α2→j = (δ) + (dδ + α2→j),

(d + 1)δ + α2→j = (aδ + α2) + ((d + 1 − a)δ + α3→j) , 0 ≤ a ≤ d + 1,

(d + 1)δ + α2→j = ((d + 1)δ + α2→j ) + (α(j+1)→j) , 2 < j < j.

(4.50)

We therefore get the following list of concatenated words:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10n . . . 32 10n . . . 32︸ ︷︷ ︸
d
2 times

2 10n . . . 32︸ ︷︷ ︸
d
2 times

34 . . . j if 2 | d

10n . . . 32 10n . . . 32︸ ︷︷ ︸
d+1

2 times

34 . . . j 10n . . . 32︸ ︷︷ ︸
d−1

2 times

2 if 2 � d
,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10n . . . 32︸ ︷︷ ︸
a times

2 10n . . . 32︸ ︷︷ ︸
(d+1−a) times

34 . . . j if d+1
2 ≤ a ≤ d + 1

10n . . . 32︸ ︷︷ ︸
(d+1−a) times

34 . . . j 10n . . . 32︸ ︷︷ ︸
a times

2 if 0 ≤ a < d+1
2

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10n . . . 32︸ ︷︷ ︸
d+2

2 times

34 . . . j 10n . . . 32︸ ︷︷ ︸
d
2 times

2 (j + 1) . . . j if 2 | d

10n . . . 32︸ ︷︷ ︸
d+1

2 times

2 10n . . . 32︸ ︷︷ ︸
d+1

2 times

34 . . . j (j + 1) . . . j if 2 � d
.

(4.51)

It is easy to see that the word �(d + 1, j) is the lexicographically largest word from the list (4.51). Let us
evaluate its standard bracketing:

b[�(d + 1, j)] .= [b[10n . . . 32︸ ︷︷ ︸
� d+1

2 � times

2], b[10n . . . 32︸ ︷︷ ︸
� d+1

2 � times

34 . . . j]] .=

⎧⎨
⎩[E23t� d+1

2 �, E3,j+1t� d+1
2 �] if 2 < j ≤ n

[E23t� d+1
2 �, E31t� d+3

2 �] if j = 0

.=
⎧⎨
⎩E2,j+1td+1 if 2 < j ≤ n

E21td+2 if j = 0
,

where we use the induction hypothesis for b[SL(� d+1
2 �δ + α2)], b[SL(� d+1

2 �δ + α3→j)].
This completes our proof of (4.8) for k = d + 1. �
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4.3 General order
We now compute affine standard Lyndon words for ŝln+1 with an arbitrary order < on Î = {0, 1, . . . , n}.
The key feature is that all affine standard Lyndon words are determined by those of length ≤ n.
Furthermore, the explicit description of the degree δ affine standard Lyndon words is instrumental for
the general pattern.

Notation: To distinguish from <, we shall now use ≺ for the standard order on Î:

1 ≺ 2 ≺ 3 ≺ · · · ≺ n ≺ 0 .

We start with the following simple result:

Lemma 4.4. Consider two arches [a → b + 1) � [a′ → b′ + 1) such that b′ �= a′ − 1 and
min[a′ → b′ + 1) ∈ [a → b + 1). Then: SL(αa→b) < SL(αa′→b′ ).

Proof. We note that this result is a property of the Lalonde–Ram’s bijection � (2.12) for the simple Lie
algebra slht(αa′→b′ )+1 with simple roots labelled by [a′ → b′ + 1).

If b �= b′, consider roots γ1 = αa→b and γ2 = αb+1→b′ whose sum is α = γ1 + γ2 = αa→b′ . In view
of the remark made above (reduction to a finite case), the convexity of Proposition 2.20 implies that
SL(α) is “sandwiched” between SL(γ1) and SL(γ2). But by our assumption the minimal letter of SL(γ1) is
min[a′ → b′ + 1), which is smaller than the minimal letter of SL(γ2). Thus, we get SL(γ1) < SL(α) < SL(γ2).

By a similar argument, we also conclude that SL(αa→b′ ) < SL(αa′→b′ ) if a �= a′. This completes our proof
of the desired inequality SL(αa→b) < SL(αa′→b′ ). �

Due to the Dn+1-symmetry of Î and �̂+, where Dn+1 denotes a dihedral group, we can assume, without
loss of generality, that

1 = min
{
a

∣∣ a ∈ Î
}

and i := min
{
a

∣∣ a ∈ Î \ {1}} �= 0, (4.52)

where min is taken with respect to our order < on Î.

Lemma 4.5. For c ∈ Î \ {1} = {2, . . . , n, 0}, define the degree δ word �c(δ) ∈ Î∗ via

�c(δ) := SL(αc+1→c−1)c. (4.53)

Then, we have

1) �a(δ) > �b(δ) whenever i � a ≺ b ≤ 0,
2) �a(δ) < �b(δ) whenever 1 ≺ a ≺ b � i,

so that �2(δ) < �3(δ) < · · · < �i(δ) > �i+1(δ) > · · · > �0(δ).

We need a simple fact about Lalonde–Ram’s bijection (2.12) for a finite type A:

Claim 4.6. (1) If b = min{a, a + 1, . . . , b − 1, b}, then SL(αa→b) = b b − 1 . . . a + 1 a.
(2) If a = min{a, a + 1, . . . , b − 1, b}, then SL(αa→b) = a a + 1 . . . b − 1 b.

Proof of Lemma 4.5. The proof is based on the more explicit formulas for �c(δ):
• Case 1: 1 ≺ c ≺ i.
Consider the costandard factorization SL(αc+1→c−1) = �1,c�2,c. As �1,c starts with 1, �2,c starts with i,

deg �1,c, deg �2,c ∈ �̂+, and deg �1,c+deg �2,c = αc+1→c−1, we see that �2,c = SL(αc+1→e) and �1,c = SL(αe+1→c−1)

for some e � i. For e � i, we have SL(αe+1→c−1) < SL(αi+1→c−1) by Lemma 4.4. Therefore, we have:

SL(αe+1→c−1)SL(αc+1→e) < SL(αi+1→c−1)SL(αc+1→i) ∀ e � i .
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Since the word SL(αi+1→c−1)SL(αc+1→i) is Lyndon (as it starts with the smallest letter 1, which appears
only once) and its bracketing is clearly nonzero, we conclude

SL(αc+1→c−1) = SL(αi+1→c−1)SL(αc+1→i) = SL(αi+1→c−1) i i − 1 . . . c + 1 ,

with the last equality due to Claim 4.6. Thus, we obtain

�c(δ) = SL(αi+1→c−1) i i − 1 . . . c + 1 c ∀ 1 ≺ c � i . (4.54)

The desired inequality �a(δ) < �b(δ) for 1 ≺ a ≺ b � i follows now from Lemma 4.4.
• Case 2: i ≺ c � 0.
Arguing as in the previous case, we see that the costandard factorization SL(αc+1→c−1) = �1,c�2,c

has the form �2,c = SL(αe→c−1) and �1,c = SL(αc+1→e−1) for some 1 ≺ e � i. For 1 ≺ e ≺ i, we have
SL(αc+1→e−1) < SL(αc+1→i−1) by Lemma 4.4, and so SL(αc+1→e−1)SL(αe→c−1) < SL(αc+1→i−1)SL(αi→c−1). As
the word SL(αc+1→i−1)SL(αi→c−1) is Lyndon (as it starts with the smallest letter 1, which appears only
once) and clearly has a nonzero bracketing, we conclude

SL(αc+1→c−1) = SL(αc+1→i−1)SL(αi→c−1) = SL(αc+1→i−1) i i + 1 . . . c − 1

with the last equality due to Claim 4.6. Thus, we obtain

�c(δ) = SL(αc+1→i−1) i i + 1 . . . c − 1 c ∀ i ≺ c � 0 . (4.55)

The desired inequality �a(δ) > �b(δ) for i � a ≺ b follows from Lemma 4.4 again. �

For a, b ∈ Î, we introduce sgn(a − b) ∈ {−1, 0, 1} via

sgn(a − b) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if a � b

−1 if a ≺ b

0 if a = b

. (4.56)

The following generalization of Theorem 4.2 is the main result of this section:

Theorem 4.7. The affine standard Lyndon words for ŝln+1 (n ≥ 2) with any order < on Î =
{0, 1, . . . , n} satisfying (4.52) are described by the formulas below (k ≥ 1):

{
SL1(kδ), . . . , SLn(kδ)

}
=

{
SL(αc+1→c−1) �c+sgn(i−c)(δ)︸ ︷︷ ︸

(k−1) times

c
∣∣∣ c ∈ Î \ {1}

}
, (4.57)

SL(kδ + αa→b) = �b+1(δ)︸ ︷︷ ︸
k times

b(b − 1) . . . a , for 1 ≺ a � b ≺ i, (4.58)

SL(kδ + αa→b) = �a−1(δ)︸ ︷︷ ︸
k times

a a + 1 . . . b , for i ≺ a � b � 0, (4.59)
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SL(kδ + αa→b) = for 1 ≺ a ≺ i ≺ b⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�i(δ)︸︷︷︸
k
3 times

i �i(δ)︸︷︷︸
k
3 times

i + 1 . . . b �i(δ)︸︷︷︸
k
3 times

i − 1 . . . a if 3 | k

�i(δ)︸︷︷︸
k+1

3 times

i − 1 . . . a �i(δ)︸︷︷︸
k−2

3 times

i �i(δ)︸︷︷︸
k+1

3 times

i + 1 . . . b if 3 | k + 1

�i(δ)︸︷︷︸
k+2

3 times

i + 1 . . . b �i(δ)︸︷︷︸
k−1

3 times

i �i(δ)︸︷︷︸
k−1

3 times

i − 1 . . . a if 3 | k + 2

, if i − 1 < i + 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�i(δ)︸︷︷︸
k
3 times

i �i(δ)︸︷︷︸
k
3 times

i − 1 . . . a �i(δ)︸︷︷︸
k
3 times

i + 1 . . . b if 3 | k

�i(δ)︸︷︷︸
k+1

3 times

i + 1 . . . b �i(δ)︸︷︷︸
k−2

3 times

i �i(δ)︸︷︷︸
k+1

3 times

i − 1 . . . a if 3 | k + 1

�i(δ)︸︷︷︸
k+2

3 times

i − 1 . . . a �i(δ)︸︷︷︸
k−1

3 times

i �i(δ)︸︷︷︸
k−1

3 times

i + 1 . . . b if 3 | k + 2

, if i − 1 > i + 1 (4.60)

SL(kδ + αi→b) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�i(δ)︸︷︷︸
k
2 times

i �i(δ)︸︷︷︸
k
2 times

i + 1 . . . b if 2 | k

�i(δ)︸︷︷︸
k+1

2 times

i + 1 . . . b �i(δ)︸︷︷︸
k−1

2 times

i if 2 � k
, for i ≺ b � 0 (4.61)

SL(kδ + αa→i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�i(δ)︸︷︷︸
k
2 times

i �i(δ)︸︷︷︸
k
2 times

i − 1 . . . a if 2 | k

�i(δ)︸︷︷︸
k+1

2 times

i − 1 . . . a �i(δ)︸︷︷︸
k−1

2 times

i if 2 � k
, for 1 ≺ a ≺ i (4.62)

SL(kδ + αi) = �i(δ)︸︷︷︸
k times

i (4.63)

and finally a slightly less explicit formula

SL(kδ + αb→a) = �1 �b→a(δ)︸ ︷︷ ︸
(k−1) times

�2 , for 1 ∈ [b → a + 1
)

where SL(δ + αb→a) = �1�2 is the costandard factorization (2.4)

and �b→a(δ) is one of �c(δ) such that SL(2δ + αb→a) = �1�b→a(δ)�2. (4.64)

Remark 4.8. (a) The implicit words �1 and �2 providing the costandard factorization of SL(δ+αb→a)

in (4.64) can actually be described explicitly (see Lemma 4.11):

�1 = SL(αb→b−2) and �2 = SL(αb−1→a) if SL(αb−1→a) > SL(αb→a+1) ,

�1 = SL(αa+2→a) and �2 = SL(αb→a+1) if SL(αb−1→a) < SL(αb→a+1) .

(b) Likewise, the word �b→a(δ) featuring in (4.64) can be characterized as the lexicographically
largest among those �c(δ) that satisfy [b[�1], b[�c(δ)]] �= 0. Explicitly, as follows from the proof
below, we have (cf. part (a) above):

�b→a(δ) =
⎧⎨
⎩�b−1+sgn(i−(b−1))(δ) if SL(αb−1→a) > SL(αb→a+1)

�a+1+sgn(i−(a+1))(δ) if SL(αb−1→a) < SL(αb→a+1)
. (4.65)
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(c) Let us also record the explicit order between the words �1, �2, �b→a(δ), cf. (4.80):

�1 < �2 ≤ �b→a(δ) .

(d) For the standard order (4.1), we clearly recover the formulas from our previous
Theorem 4.2. We also note that the proof below significantly simplifies when i = 2.
(e) Finally, we note SL(αa→b) can be easily reconstructed using either of the algorithms
presented before Lemma 4.11, with 1 replaced by min{a, a + 1, . . . , b − 1, b}.

Remark 4.9. (a) In the base of induction below we prove that

{
SL1(δ), . . . , SLn(δ)

} = {
�c(δ) | c ∈ Î \ {1}}. (4.66)

As easily follows from (4.54, 4.55), their standard bracketings are

b[�c(δ)]
.=

⎧⎨
⎩(Ei+1,i+1 − Ec,c)t if 1 ≺ c � i

(Ei,i − Ec+1,c+1)t if i ≺ c � 0
. (4.67)

(b) The standard bracketing b[SL(αa→b)] for 1, i /∈ [a → b + 1) is a nonzero multiple of Ea,b+1 if
b �= 0, Ea1t if a ≺ b = 0, En+1,1t if a = b = 0. Thus, the lexicographically largest word among SL∗(δ)
whose bracketing b[SL∗(δ)] does not commute with b[SL(αa→b)] is �b+1(δ) if a ≺ i and �a−1(δ) if
a � i, due to Lemma 4.5 and (4.67).

Proof of Theorem 4.7. The proof proceeds by induction on k.
Base of Induction
The base of induction is k = 1. In this case, the nontrivial cases are formulas (4.57) for SL∗(δ) and

(4.58)–(4.63) for SL(δ + αa→b) with 1 /∈ [a → b + 1).
• Proof of (4.57) for k = 1.
For any 1 ≤ r ≤ n, consider the costandard factorization SLr(δ) = �1�2. For degree reasons, we have

�1 = SL(αb+1→a−1), �2 = SL(αa→b) for some b �= a − 1 such that 1 ∈ [b + 1 → a) and i ∈ [a → b + 1). If b = i,
then 1 ≺ a � i and

SLr(δ) = SL(αi+1→a−1)SL(αa→i) = SL(αi+1→a−1) i i − 1 . . . a = �a(δ) ,

due to (4.54) and Claim 4.6. Likewise, if a = i, then i ≺ b and

SLr(δ) = SL(αb+1→i−1)SL(αi→b) = SL(αb+1→i−1) i i + 1 . . . b = �b(δ) ,

due to (4.55) and Claim 4.6. Finally, if 1 ≺ a ≺ i ≺ b, then SLr(δ) < �c(δ) for any c ∈ [a → b + 1), due
to Lemma 4.4 and explicit formulas (4.54, 4.55). On the other hand, b[SLr(δ)] = [b[�1], b[�2]] .= (Ea,a −
Eb+1,b+1)t, while the standard bracketing b[�c(δ)] is given by (4.67). Hence, b[SLr(δ)] is a linear combination
of standard bracketings of the larger words �a(δ), �i(δ), �b(δ), a contradiction with SLr(δ) being standard.
Thus, any degree δ affine standard Lyndon word is of the form �c(δ) for c �= 1. This completes the proof
of (4.66), as we have n such words.

• Proof of (4.58)–(4.63) for k = 1.
We skip these proofs as they coincide with those in the step of induction below.
Step of Induction
Let us now prove the step of induction, proceeding by the height of a root. We thus verify formulas

(4.57)–(4.64) for affine standard Lyndon words SL∗(α) with k = r + 1 assuming the validity of these
formulas for SL∗(β) with ht(β) < ht(α).

Notation: In what follows, we shall denote [a → b + 1) from (4.5) simply by [a; b]:

[a; b] := {
a, a + 1, . . . , b − 1, b

}
.



24 | Y. Avdieiev and A. Tsymbaliuk

• Proof of (4.57) for k = r + 1.
We consider only decompositions of the form (r + 1)δ = (r1δ + αa→b) + ((r − r1)δ + αb+1→a−1), due to

Remark 3.5. We may further assume that 1 ∈ [b + 1; a − 1]. We start with the following useful result
(which will be strengthened in Lemma 4.11):

Claim 4.10. If �1�2 is the costandard factorization (2.4) of SL(δ + αb+1→a−1) and 1 ∈ [b + 1; a − 1], then
both words �1 and �2 contain all the letters located on the (counterclockwise oriented) arch [b + 1; a − 1].

Proof of Claim 4.10. First, we note that both �1, �2 start with 1. If �1 does not contain all the letters
from [b + 1; a − 1], then it consists only of letters from c to d, where 1 ∈ [c; d] � [b + 1; a − 1]. Thus,
�1 < SL(αb+1→a−1) by Lemma 4.4, hence

SL(δ + αb+1→a−1) = �1�2 < SL(αb+1→a−1)�e(i;a,b)(δ) , (4.68)

with e(i; a, b) := a if a � i and e(i; a, b) := b if i ≺ a � b. However, SL(αb+1→a−1) < �e(i;a,b)(δ) by Lemma 4.4
and their standard bracketings do not commute by (4.67): [b[SL(αb+1→a−1)], b[�e(i;a,b)(δ)]] �= 0. Thus, the
concatenated word SL(αb+1→a−1)�e(i;a,b)(δ) appears in the set from the right-hand side of (3.10) for the
root α = δ + αb+1→a−1, contradicting (4.68).

If �2 does not contain all the letters from [b + 1; a − 1], then we apply precisely the same argument to
�2�1 and use the inequality �1�2 < �2�1 to get a contradiction. �

For r1 < r, we have SL((r − r1)δ + αb+1→a−1) = �1 �b+1→a−1(δ)︸ ︷︷ ︸
(r−r1−1) times

�2 by the induction hypothesis, where �1�2

is the costandard factorization of SL(δ+αb+1→a−1). According to Claim 4.10: b[�1] .= Eb+1,ct
1−δb+1,1 for some

c ∈ [a; b] or b[�1] .= Ec,at for some c ∈ [a + 1; b]. For any d ∈ [a; b], one of the roots deg �1, deg �2 ∈ �̂+ does
not contain αd, which together with �1 < �2, Lemma 4.4, and Claim 4.10 implies

�1 ≤ SL(αd+1→d−1) . (4.69)

Moreover, the equality in (4.69) does hold only for d = b if SL(αb→a−1) > SL(αb+1→a) and for d = a if
SL(αb→a−1) < SL(αb+1→a), according to Lemma 4.11.

Thus, if a �= b and SL(αb→a−1) > SL(αb+1→a), then for d ∈ [a; b − 1] we have

SL((r − r1)δ + αb+1→a−1)SL(r1δ + αa→b) < SL(αd+1→d−1) < SL(αd+1→d−1) �d+sgn(i−d)(δ)︸ ︷︷ ︸
r times

d.

In the remaining case d = b (with a �= b and SL(αb→a−1) > SL(αb+1→a)), we have

SL((r − r1)δ + αb+1→a−1)SL(r1δ + αa→b) =
SL(αb+1→b−1) �b+1→a−1(δ)︸ ︷︷ ︸

(r−r1−1) times

�2 SL(r1δ + αa→b) <

SL(αb+1→b−1) �b+1→a−1(δ)︸ ︷︷ ︸
r times

b = SL(αb+1→b−1) �b+sgn(i−b)(δ)︸ ︷︷ ︸
r times

b ,

cf. (4.65), with the inequality implied by �2 < �b+1→a−1(δ), due to (4.80) and a �= b. The case of a �= b and
SL(αb→a−1) < SL(αb+1→a) is treated completely analogously.

On the other hand, if a = b = d and r1 ≥ 0, then

SL(r1δ + αa→b) = SL(r1δ + αa) = �a+sgn(i−a)(δ)︸ ︷︷ ︸
r1 times

a
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by the induction hypothesis (applying (4.58) if a < i, (4.59) if a > i, (4.63) if a = i) and SL((r − r1)δ +
αb+1→a−1) = SL((r − r1)δ + αa+1→a−1) is given by

SL((r − r1)δ + αa+1→a−1) = SL(αa+1→a−1) �a+sgn(i−a)(δ)︸ ︷︷ ︸
(r−r1) times

. (4.70)

To prove the latter claim, we first note that �1 = SL(αa+1→a−1) and �2 = SL?(δ), while the lexicographically
largest word SL?(δ) whose bracketing does not commute with b[SL(αa+1→a−1)]

.= Ea+1,at1−δa,0 is precisely
�a+sgn(i−a)(δ), due to (4.67) and Lemma 4.5. Therefore, �2 = �a+sgn(i−a)(δ). Second, we also claim that
�a+1→a−1(δ) equals �2 = �a+sgn(i−a)(δ). To this end, recall that for α = 2δ + αa+1→a−1 we have

SL(α) = �1�a+1→a−1(δ)�2 = SL(αa+1→a−1)�a+1→a−1(δ)�a+sgn(i−a)(δ) . (4.71)

◦ If �a+1→a−1(δ) < �a+sgn(i−a)(δ), then SL(αa+1→a−1)�a+1→a−1(δ)�a+sgn(i−a)(δ) < SL(αa+1→a−1)�a+sgn(i−a)(δ)

�a+sgn(i−a)(δ) =: �̃ and the bracketing of the latter is

b[�̃] = [b[SL(αa+1→a−1)�a+sgn(i−a)(δ)], b[�a+sgn(i−a)(δ)]]
.= [b[SL(αa+1→a−1)], b[�a+sgn(i−a)(δ)]] · t �= 0 .

We get a contradiction, since �̃ is one of the concatenations (corresponding to the decomposition α =
(δ + αa+1→a−1) + (δ)) in the right-hand side of (3.10) for α.
◦ If �a+1→a−1(δ) > �a+sgn(i−a)(δ), then the costandard factorization (2.4) of SL(α) in (4.71) must be of the
form SL(α) = �′

1�
′
2 with �′

2 = �a+sgn(i−a)(δ) and �′
1 = SL(αa+1→a−1)�a+1→a−1(δ). We get a contradiction again,

since �′
1 is an SL-word and so �′

1 = SL(deg �′
1) = SL(δ + αa+1→a−1) = SL(αa+1→a−1)�a+sgn(i−a)(δ).

This completes our proof of (4.70). Assuming SL((r − r1)δ + αb+1→a−1) < SL(r1δ + αa→b) and combining
all the above, we obtain the following inequalities for the corresponding concatenation � := SL((r−r1)δ+
αb+1→a−1)SL(r1δ + αa→b):

� ≤ SL(αd+1→d−1) �d+sgn(i−d)(δ)︸ ︷︷ ︸
r times

d ∀ d ∈ [a; b] . (4.72)

We also note that (4.72) still holds for r1 = r, due to Lemma 4.4.
The standard bracketings of the words from the right-hand side of (4.57) are

b[SL(αc+1→c−1) �c+sgn(i−c)(δ)︸ ︷︷ ︸
r times

c] .=
⎧⎨
⎩(Ecc − Ec+1,c+1)tr+1 if 1 < c ≤ n

(En+1,n+1 − E11)tr+1 if c = 0
. (4.73)

We shall now compute the standard bracketing of �. We have two possibilities (due to the inequalities
of Remark 4.8(c)):

1) The costandard factorization (2.4) of � is of the form

� = �′
1�

′
2 with �′

1 = SL((r − r1)δ + αb+1→a−1) , �′
2 = SL(r1δ + αa→b) .

Hence, the standard bracketing of � is

b[�] = [b[�′
1], b[�′

2]] .= (Eaa − Eb+1,b+1)tr+1 .=
(Eaa − Ea+1,a+1)tr+1 + (Ea+1,a+1 − Ea+2,a+2)tr+1 + · · · + (Ebb − Eb+1,b+1)tr+1.

Thus, if � is not a word from the right-hand side of (4.57) for k = r + 1, then b[�] is a linear
combination of the standard bracketings of the larger words {�d(δ) | d ∈ [a; b]}, cf. (4.72, 4.73). Hence,
the word � cannot be standard.
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2) The costandard factorization (2.4) of � is of the form

� = �′
1�

′
2 with �′

1 = �1 �b+1→a−1(δ)︸ ︷︷ ︸
(r−r1−1) times

, �′
2 = �2 SL(r1δ + αa→b) .

Hence, the standard bracketing of � is either b[�] .= (Ecc − Eb+1,b+1)tr+1 for c ∈ [a; b] or b[�] .= (Eaa −
Ecc)tr+1 for c ∈ [a + 1; b]. Thus, analogously to 1), if � is not a word from the right-hand side of (4.57)
for k = r + 1, then b[�] is a linear combination of the standard bracketings of the larger words
{�d(δ) | d ∈ [a; b]}, cf. (4.72, 4.73). Therefore, the word � cannot be standard.

Finally, if SL((r − r1)δ + αb+1→a−1) > SL(r1δ + αa→b), then the concatenation �̃ arising from the
decomposition (r + 1)δ = (r1δ + αa→b) + ((r − r1)δ + αb+1→a−1) is

�̃ = SL(r1δ + αa→b)SL((r − r1)δ + αb+1→a−1) < � , (4.74)

due to Lemma 2.4. By induction hypothesis, we have b[�̃] .= (Epp − Eqq)tr+1 for some p, q ∈ [a; b + 1].
The latter is a linear combination of standard bracketings of the larger words {�d(δ) | d ∈ [a; b]},
cf. (4.72)–(4.74), hence �̃ is not standard either.

• Proof of (4.58) for k = r + 1.
Consider α = (r + 1)δ + αa→b with 1 ≺ a � b ≺ i. Its possible decompositions are α = (r1δ + αa→c) +

(r2δ + αc+1→b) with r1 + r2 = r or r + 1, depending on c.
First, we show that decompositions with c /∈ [a; b] give rise to concatenated words that are

lexicographically smaller than the word in the right-hand side of (4.58) for k = r + 1. There are four
cases to consider: 1 ∈ [a; c] or 1 ∈ [c + 1; b], treating separately r1 = 0, r1 ≥ 1 in the first case and
r2 = 0, r2 ≥ 1 in the second case.

1) If 1 ∈ [a; c] �= Î and r1 = 0, then 1 ∈ [a; c] ⊂ [e + 1; e − 1] for any e ∈ [c + 1; a − 1], and so SL(αa→c) ≤
SL(α(e+1)→(e−1)) by Lemma 4.4. As 1 = min Î, we get SL(αa→c) 1 < SL(α(e+1)→(e−1)) e = �e(δ) < �a(δ) < �b+1(δ)

with the last two inequalities due to Lemma 4.5. We note that SL(αa→c) 1 cannot be a proper prefix
of �b+1(δ) (as the former word contains the letter 1 twice) and SL(rδ + αc+1→b) starts with 1. Thus, the
concatenation SL(αa→c)SL(rδ + αc+1→b) is lexicographically smaller than �b+1(δ), hence, smaller than the
right-hand side of (4.58) for k = r + 1.

2) If 1 ∈ [c + 1; b] and r2 = 0, then 1 ∈ [c + 1; b] ⊂ [b + 2; b], and so SL(αc+1→b) ≤ SL(αb+2→b) by
Lemma 4.4. Thus, SL(αc+1→b) 1 < SL(αb+2→b)(b + 1) = �b+1(δ). The rest of the argument proceeds exactly
as in 1) above.

3) If 1 ∈ [a; c] �= Î and r1 ≥ 1, then SL(r1δ + αa→c) = �1 �a→c(δ)︸ ︷︷ ︸
(r1−1) times

�2 with �1 and �2 defined through

the costandard factorization SL(δ + αa→c) = �1�2. We claim that �1 < �b+1(δ), from which the argument
proceeds exactly as in 1) above. Indeed, according to Lemma 4.11, �1 is given by one of the following two
formulas:

(A) �1 = SL(αa→d) for d ∈ [c → (a − 1));
(B) �1 = SL(αd→c) for d ∈ [(c + 2) → a).

According to Lemmas 4.4, 4.5, we thus get: �1 ≤ SL(αa→(a−2)) < �a−1(δ) < �b+1(δ) in case (A) and
�1 ≤ SL(α(c+2)→c) < �c+1(δ) < �b+1(δ) in case (B), as stated above.

4) If 1 ∈ [c + 1; b] �= Î and r2 ≥ 1, then SL(r2δ + αc+1→b) = �1 �c+1→b(δ)︸ ︷︷ ︸
(r2−1) times

�2 with �1 and �2 defined through

the costandard factorization SL(δ +αc+1→b) = �1�2. We claim that �1 < �b+1(δ), from which the argument
proceeds exactly as in 1) above. Indeed, according to Lemma 4.11, �1 is given by one of the following two
formulas:

(A) �1 = SL(αd→b) for d ∈ [b + 2; c + 1];
(B) �1 = SL(αc+1→d) for d ∈ [(b + 1) → c).

According to Lemmas 4.4, 4.5, we thus get: �1 ≤ SL(αb+2→b) < �b+1(δ) in case (A) and �1 < �2 =
SL(αd+1→b) ≤ SL(αb+2→b) < �b+1(δ) in case (B), as claimed above.
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Therefore, it suffices to consider only the following decompositions in (3.10):

α = (r1δ + αa→c) + ((r + 1 − r1)δ + α(c+1)→b) , a � c ≺ b , 0 ≤ r1 ≤ r + 1, (4.75)

α = (r1δ) + ((r + 1 − r1)δ + αa→b) , 1 ≤ r1 ≤ r + 1. (4.76)

◦ Case 1: Concatenations arising through (4.75).
1) If 0 < r1 < r+1, then the corresponding concatenated word starts with �c+1(δ), due to the induction

hypothesis and the inequality �c+1(δ) < �b+1(δ) of Lemma 4.5. Thus, this concatenation is < the right-
hand side of (4.58) for k = r + 1.

2) If r1 = r + 1, then the corresponding concatenated word again starts with �c+1(δ), but now because
the first letter of �c+1(δ) is smaller than any of c + 1, . . . , b. Therefore, this concatenation is < the right-
hand side of (4.58) for k = r + 1.

3) If r1 = 0, then the concatenation equals �b+1(δ)︸ ︷︷ ︸
(r+1) times

b(b−1) . . . (c+1) SL(αa→c). But SL(αa→c) ≤ c(c−1) . . . a

(either they differ in the first letters, or Claim 4.6 applies), hence, this concatenation is ≤ the right-hand
side of (4.58) for k = r + 1.
◦ Case 2: concatenations arising through (4.76).

First, we record the standard bracketing b[SL((r + 1 − r1)δ + αa→b)]
.= Ea,b+1tr+1−r1 .

1) If r1 > 1, then according to (4.73) the only words from the right-hand side of (4.57) with k = r1

whose standard bracketing does not commute with the above b[SL((r + 1 − r1)δ + αa→b)] start with
SL(αc+1→c−1)1 for c = a−1, a, b, b+1. Each of these words is lexicographically smaller than �b+1(δ). Hence,
the corresponding concatenation is < the right-hand side of (4.58) for k = r + 1.

2) If r1 = 1, then we should rather use formula (4.67) for the bracketings.
◦ If b ≺ (i − 1), then the only �?(δ) whose standard bracketing does not commute with b[SL(rδ +αa→b)]

are �a(δ) and �b+1(δ). As �a(δ) < �b+1(δ) by Lemma 4.5, the resulting concatenation is ≤ the right-hand
side of (4.58) for k = r + 1.

◦ If b = i − 1, then the only �?(δ) whose standard bracketing does not commute with b[SL(rδ + αa→b)]
are �a(δ) and {�c(δ)|c ≥ i}. As �i(δ) is the maximal of these words (Lemma 4.5), the concatenation is still
≤ the right-hand side of (4.58) for k = r + 1.

We note that in both cases above the equality is possible (when �b+1(δ) is used).
This completes our proof of (4.58) for k = r + 1.
• Proof of (4.59) for k = r + 1.
The argument is completely analogous to the one used in the previous case (we leave details to the

interested reader).
• Proof of (4.60)–(4.63) for k = r + 1.
Let us prove the most complicated formula (4.60) for the case α = (r + 1)δ + αa→b with 1 ≺ a ≺ i ≺ b

and i − 1 < i + 1 (the proofs for the other cases are analogous).
There exists a degree α Lyndon word with a nonzero bracketing that starts with SL1(δ) = �i(δ).

Therefore, it suffices to consider in (3.10) only those decompositions α = (r1δ + β1) + (r2δ + β2) such
that each word SL(r1δ +β1), SL(r2δ +β2) is either > �i(δ) or is a prefix of �i(δ). This excludes the following
cases (with p = 1, 2):

1) βp = αa→c with 1 ∈ [a; c] �= Î, as in this case we have SL(αa→c) 1 < �i(δ) and �1 1 < �i(δ) with �1 arising
through the costandard factorization SL(δ + αa→c) = �1�2, cf. our verification of (4.58) above;

2) βp = αc→b with 1 ∈ [c; b] �= Î, as in this case we have SL(αc→b) 1 < �i(δ) and �1 1 < �i(δ) with �1 arising
through the costandard factorization SL(δ + αc→b) = �1�2, cf. our verification of (4.58) above;

3) βp = kδ with k > 1, as SL(αc+1→c−1) 1 < SL(αc+1→c−1) c = �c(δ) ≤ �i(δ) ∀ c;
4) βp = αa→c with c ∈ [a → (i − 1)) and rp > 0, as SL(rpδ + βp) then starts with �c+1(δ), which has the

same length but is lexicographically smaller than �i(δ);
5) βp = αc+1→b with c ∈ [i + 1 → b) and rp > 0, as SL(rpδ +βp) then starts with �c(δ), which has the same

length but is lexicographically smaller than �i(δ).
Furthermore, if βp = αa→c with c ∈ [a → (i − 1)) and rp = 0, then the corresponding concatenation

SL((r + 1)δ + α(c+1)→b)SL(αa→c) is ≤ the right-hand side of (4.60) for k = r + 1, due to the inequality
i − 1 . . . (c + 1)SL(αa→c) ≤ i − 1 . . . (c + 1) c . . . a (implied by Claim 4.6) and the induction hypothesis.
Likewise, if βp = αc+1→b with c ∈ [i + 1 → b) and rp = 0, then the corresponding concatenation
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SL((r + 1)δ + αa→c)SL(αc+1→b) is ≤ the right-hand side of (4.60) for k = r + 1, due to the similar inequality
i + 1 . . . c SL(αc+1→b) ≤ i + 1 . . . b and the induction hypothesis.

Therefore, it suffices to consider only the following decompositions in (3.10):

α = (r1δ + αa→i−1) + ((r + 1 − r1)δ + αi→b) , 0 ≤ r1 ≤ r + 1

α = (r1δ + αa→i) + ((r + 1 − r1)δ + αi+1→b) , 0 ≤ r1 ≤ r + 1

α = (δ) + (rδ + αa→b).

(4.77)

Clearly, we can choose only SL1(δ) = �i(δ) in the latter case. By the induction hypothesis, all the
corresponding concatenations have the following specific form:

� = �i(δ)︸︷︷︸
p times

�1 �i(δ)︸︷︷︸
q times

�2 �i(δ)︸︷︷︸
m times

�3 with

p + q + m = r + 1 and {�1 , �2 , �3} = {i − 1 . . . a , i , i + 1 . . . b}. (4.78)

Since the corresponding concatenation � is Lyndon (Lemma 2.4) and �i(δ) starts with 1, which is smaller
than the first letter of the words �1, �2, �3, we must have

p ≥ q and p ≥ m. (4.79)

Let us consider three cases:
◦ Case 1: 3 | (r + 1). According to (4.79), we have p ≥ r+1

3 . To get the lexicographically largest word, we
need to pick p the smallest possible: p = r+1

3 . As p ≥ q, m and p + q + m = r + 1, we have p = q = m = r+1
3 .

Additionally, � being Lyndon implies �1 < �2 and �1 < �3 if p = q = m. It thus follows that �1 = i. As we
assumed i + 1 > i − 1, the largest word occurs if �2 = i + 1 . . . b > �3 = i − 1 . . . a. Thus, we end up exactly
with the word in the right-hand side of (4.60) for k = r + 1:

�max = �i(δ)︸︷︷︸
r+1

3 times

i �i(δ)︸︷︷︸
r+1

3 times

i + 1 . . . b �i(δ)︸︷︷︸
r+1

3 times

i − 1 . . . a.

This word arises from the decomposition α = ( 2(r+1)

3 δ + αi→b) + ( r+1
3 δ + αa→i−1). The latter provides the

costandard factorization of �max, in particular, b[�max] �= 0.
◦ Case 2: 3 | (r + 2). According to (4.79), we have p ≥ r+2

3 . To get the lexicographically largest word, we
need to pick p the smallest possible: p = r+2

3 . Then, we have {q, m} = { r+2
3 , r−1

3 }. As � is Lyndon and q = p
or m = p, �1 ≤ �2 or �1 ≤ �3, respectively. Thus, �1 equals i or i − 1 . . . a, and to get the lexicographically
largest word, we need to pick �1 = i − 1 . . . a and q = r−1

3 . Then m = r+2
3 , and � being Lyndon implies that

�3 = i + 1 . . . b, so that �2 = i. Thus, we end up exactly with the word in the right-hand side of (4.60) for
k = r + 1:

�max = �i(δ)︸︷︷︸
r+2

3 times

i − 1 . . . a �i(δ)︸︷︷︸
r−1

3 times

i �i(δ)︸︷︷︸
r+2

3 times

i + 1 . . . b.

This word arises from the decomposition α = ( 2r+1
3 δ + αa→i) + ( r+2

3 δ + αi+1→b). The latter provides the
costandard factorization of �max, in particular, b[�max] �= 0.

◦ Case 3: 3 | r. According to (4.79), we have p ≥ r
3 + 1. To get the lexicographically largest word, we

need to pick p the smallest possible and then �1 the maximal possible: p = r
3 + 1 and �1 = i + 1 . . . b. As

�1 is then larger than �2, �3 and � is Lyndon, we must have q, m < p = r
3 + 1. Evoking p + q + m = r + 1,

we thus get q = m = r
3 . It is then straightforward to see (using the induction hypothesis) that the only

possible concatenation corresponds to �2 = i, �3 = i − 1 . . . a. Thus, we end up exactly with the word in
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the right-hand side of (4.60) for k = r + 1:

�max = �i(δ)︸︷︷︸
r+3

3 times

i + 1 . . . b �i(δ)︸︷︷︸
r
3 times

i �i(δ)︸︷︷︸
r
3 times

i − 1 . . . a.

This word arises from the decomposition α = ( 2r
3 δ + αa→i) + ( r+3

3 δ + αi+1→b). The latter provides the
costandard factorization of �max, in particular, b[�max] �= 0.

• Proof of (4.64) for k = r + 1.
The last root to consider is αb→a + (r + 1)δ, where 1 ∈ [b; a] �= Î. First, let us prove the aforementioned

fact about the order of �1, �b→a(δ), and �2 (see Remark 4.8(c)):

�1 < �2 ≤ �b→a(δ). (4.80)

To prove this we need to look at the word SL(2δ + αb→a). The first inequality is clear. According to
Claim 4.10, �2 is either �∗(δ) or one of the words SL(αd→a), SL(αb→c) with d ∈ [a + 2; b − 1], c ∈ [a; b − 2],
respectively. Let us consider these three cases:

◦ If �2 = �∗(δ), then one gets �b→a(δ) = �2 exactly as in our proof of (4.70).
◦ If �2 = SL(αd→a), then in fact �1 = SL(αb→b−2) < �2 = SL(αb−1→a), due to Lemma 4.11. Also SL(αb−1→a) <

SL(αb−1→b−3) b − 2 = �b−2(δ) by Lemma 4.4.
1) If i ∈ [2; b − 2], then b[�b−2(δ)]

.= (Ei,i − Eb−1,b−1)t by (4.67), which does not commute with b[�1] =
b[SL(αb→b−2)]

.= Eb,b−1t1−δb,1 . Thus, the word �1�b−2(δ)�2 is Lyndon and its bracketing is b[�1�b−2(δ)�2] =
[b[�1�b−2(δ)], b[�2]] = [[b[�1], b[�b−2(δ)]], b[�2]] .= [b[�1], b[�2]]t �= 0. Therefore, �2 < �b−2(δ) ≤ �b→a(δ).

2) If i ∈ [b − 1; n], then �2 < �b−2(δ) < �b−1(δ) by Lemma 4.5. Also b[�b−1(δ)]
.= (Ei+1,i+1 − Eb−1,b−1)t by

(4.67), which again does not commute with b[�1] .= Eb,b−1t1−δb,1 . Thus, the word �1�b−1(δ)�2 is Lyndon and
moreover, arguing as in 1), we also get b[�1�b−1(δ)�2] �= 0. Therefore, �2 < �b−1(δ) ≤ �b→a(δ).

◦ If �2 = SL(αb→c), then in fact �1 = SL(αa+2→a) < �2 = SL(αb→a+1), due to Lemma 4.11. Also SL(αb→a+1) <

SL(αa+3→a+1) a + 2 = �a+2(δ) by Lemma 4.4.
1) If i ∈ [a + 2; n], then b[�a+2(δ)]

.= (Ei+1,i+1 − Ea+2,a+2)t by (4.67), which does not commute with
b[�1] = b[SL(αa+2→a)]

.= Ea+2,a+1t. Thus, the word �1�a+2(δ)�2 is Lyndon and its bracketing is b[�1�a+2(δ)�2] =
[b[�1�a+2(δ)], b[�2]] = [[b[�1], b[�a+2(δ)]], b[�2]] .= [b[�1], b[�2]]t �= 0. Therefore, �2 < �a+2(δ) ≤ �b→a(δ).

2) If i ∈ [2; a + 1], then �a+2(δ) < �a+1(δ) by Lemma 4.5 so that �2 < �a+1(δ). Note that b[�a+1(δ)]
.=

(Ei,i −Ea+2,a+2)t by (4.67), which again does not commute with b[�1] .= Ea+2,a+1t. Thus, the word �1�a+1(δ)�2

is Lyndon and moreover, arguing as in 1), we also get b[�1�a+1(δ)�2] �= 0. Therefore, �2 < �a+1(δ) ≤ �b→a(δ).
This completes our proof of (4.80).
We also note the following inequality:

SL(αb→a) ≤ �1 < SL(δ + αb→a) = �1�2. (4.81)

According to Lemma 4.11, �1 is either SL(αb→b−2) or SL(αa+2→a). Evoking Lemma 4.4, we thus get
SL(αb→a) ≤ �1 < �1�2 in both cases, as claimed in (4.81).

To prove our key Lemma 4.11 below, we need an explicit algorithm for computing the words SL(αb→a).
This is essentially a description of Lalonde–Ram’s bijection (2.12) for a finite type A, generalizing our
former Claim 4.6 to the case when the minimal letter on the arch [b; a] is not b or a, and it utilizes the
argument from our proof of (4.54, 4.55). We provide two algorithms: building SL(αb→a) either from right
to left or from left to right by stacking “segmental” words accordingly.

Right-to-Left Algorithm for SL(αb→a) with 1 ∈ [b; a].
This algorithm (which crucially uses the fact that each letter appears at most once) reads off the

word SL(αb→a) from right to left, stacking “segmental” words accordingly. First, we note that 1 will be the
first letter. Then, we choose the second smallest letter 1 �= c ∈ [b; a]. If c ∈ [2; a], then we place the word
u1 := c c + 1 . . . a in the very end of SL(αb→a), while for c ∈ [b; 0] we place the word u1 := c c − 1 . . . b in the
very end of SL(αb→a). Next, we apply the same algorithm to the arch [b; c − 1] or [c + 1; a], respectively.
In other words, we take the second smallest letter among the remaining ones, and place the resulting
word u2 right before u1, and so on.
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Left-to-Right Algorithm for SL(αb→a) with 1 ∈ [b; a].
Since the lexicographical order compares words from left to right, it is convenient to restate the

above algorithm by rather building SL(αb→a) from left to right. The first letter is clearly 1, while the
second letter is the max{0, 2}. If it is 0, then either n /∈ [b; a] in which case we just place the segment
23 . . . a after 0, or n ∈ [b; a] and we compare n and 2, do the same operation, and proceed further. Let us
rephrase the above algorithm. Pick the largest letter among 2 and 0 and add after 1 the longest Lyndon
segment 23 . . . c with c ∈ [2; a] (if 2 > 0) or 0n . . . d with d ∈ [b; 0] (if 2 < 0). Then, compare c + 1 with 0 or
d − 1 with 2 accordingly, and so on. This reconstructs SL(αb→a) by stacking “segmental” words from left
to right after 1.

Let us now describe the costandard factorization of SL(δ + αb→a) with 1 ∈ [b; a].

Lemma 4.11. Let SL(δ + αb→a) = �1�2 be the costandard factorization, 1 ∈ [b; a].
(a) If SL(αb−1→a) > SL(αb→a+1), then: �1 = SL(αb→b−2), �2 = SL(αb−1→a).
(b) If SL(αb−1→a) < SL(αb→a+1), then: �1 = SL(αa+2→a), �2 = SL(αb→a+1).

Remark 4.12. For a = b − 2 (equivalently, b = a + 2), we get �1 = SL(αb→b−2) while the above
formulas for �2 should be understood as follows:

�2 = �b→b−2(δ) = �b−1+sgn(i−(b−1))(δ).

Proof of Lemma 4.11. For a = b − 2, the above formulas (cf. Remark 4.12) are obvious, since according
to Claim 4.10 there is only one decomposition to consider:

αb→b−2 + δ = (αb→b−2) + (δ) ,

and SL(αb→b−2) < �b−1(δ) ≤ �b−1+sgn(i−(b−1))(δ), cf. Lemma 4.5, Remark 4.8(b).
If a �= b − 2 and SL(αb−1→a) > SL(αb→a+1), then we claim that

SL(αb−1→a) > SL(αb→b−2) . (4.82)

Indeed, let us construct all three SL-words SL(αb−1→a), SL(αb→a+1), SL(αb→b−2) using the above “Left-to-
Right Algorithm”. Then, SL(αb−1→a) > SL(αb→a+1) implies that at the leftmost spot where these words
differ either the former has b − 1 while the latter has some c < b − 1 or the latter has a + 1 while the
former has some c > a + 1. In either of these cases, we clearly have SL(αb−1→a) > SL(αb→b−2).

According to (4.82) and Lemma 2.4, the word SL(αb→b−2)SL(αb−1→a) is Lyndon. Its costandard
factorization (2.4) is precisely given by �1 = SL(αb→b−2) and �2 = SL(αb−1→a), since both words
start with 1 (and have no more 1’s). Hence, the standard bracketing b[SL(αb→b−2)SL(αb−1→a)] =
[b[SL(αb→b−2)], b[SL(αb−1→a)]] �= 0. We thus conclude that SL(δ + αb→a) ≥ SL(αb→b−2)SL(αb−1→a). We
also note that combining (4.82) with Lemma 4.4, we obtain

SL(αb→c) ≤ SL(αb→b−2) < SL(αb−1→a) ∀ c ∈ [a; b − 2] . (4.83)

Combining Claim 4.10 with (4.83), we get SL(δ + αb→a) ≤ SL(αb→b−2)SL(αb−1→a). Therefore, we actually
have the equality

SL(δ + αb→a) = SL(αb→b−2)SL(αb−1→a)

and the two words in the right-hand side determine the costandard factorization of SL(δ + αb→a), as
shown above. This completes our proof of part (a).

The proof of part (b) is analogous and is left to the interested reader. �

Corollary 4.13. In the setup of Lemma 4.11, we have

�1 = min
{
SL(αb→b−2), SL(αa+2→a)

}
. (4.84)
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Proof. For a = b − 2, the claim is vacuous by Lemma 4.11. If SL(αb−1→a) > SL(αb→a+1), then �1 =
SL(αb→b−2) < SL(αb−1→a) by (4.82) and Lemma 4.11. But SL(αb−1→a) ≤ SL(αa+2→a) by Lemma 4.4 as
1 ∈ [b − 1; a] ⊆ [a + 2; a] for a ≺ b − 2. Combining the above, we obtain �1 = SL(αb→b−2) < SL(αa+2→a).

The case SL(αb−1→a) < SL(αb→a+1) is completely analogous. �

With the inequalities (4.80, 4.81) and Lemma 4.11 at hand, we shall finally proceed to the proof of
(4.64) for k = r + 1. To this end, we consider all possible decompositions of α = (r + 1)δ + αb→a with
1 ∈ [b; a] case-by-case:

1) α = (r1δ + αb→c) + ((r + 1 − r1)δ + αc+1→a), with c ∈ [b → a).
Let us assume that 1 ∈ [b; c] (the case 1 ∈ [c + 1; a] is analogous). The corresponding concatenation

� is ≤ �′
1 �b→c(δ)︸ ︷︷ ︸

(r1−1) times

�′
2 SL((r + 1 − r1)δ + αc+1→a) if r1 > 0, or ≤ SL(αb→c)SL((r + 1)δ + αc+1→a) if r1 = 0. Here,

SL(δ + αb→c) = �′
1�

′
2 is the costandard factorization. According to (4.80, 4.81), we have SL(αb→c) ≤ �′

1 <

�′
2 ≤ �b→c(δ), where both equalities hold iff either of them holds. As c ∈ [a → b) and b �= a − 1, we have

SL(αb→c) �= �′
1, due to Lemma 4.11. Thus SL(αb→c) < �′

1, so that SL(k1δ + αb→c) < SL(k2δ + αb→c), hence
SL(k1δ+αb→c)1 < SL(k2δ+αb→c) and the former is not a prefix of the latter for any 0 ≤ k1 < k2. Therefore,
� ≤ �′

1 �b→c(δ)︸ ︷︷ ︸
r times

�′
2 SL(αc+1→a) = SL((r + 1)δ + αb→c))SL(αc+1→a). By Lemma 4.11, �′

2 is either SL(αb−1→c) or

SL(αb→c+1). We consider these cases:
◦ If �′

2 = SL(αb−1→c) and a �= b − 2, then �′
2 SL(αc+1→a) ≤ SL(αb−1→a) by Proposition 3.4. Moreover, by

Lemma 4.11 and its proof, we also have SL(αb−1→c) > SL(αb→c+1) and SL(αb−1→c) > SL(αb→b−2) = �′
1.

We thus obtain a sequence of inequalities: SL(αb−1→a) > SL(αb−1→c) > SL(αb→b−2) ≥ SL(αb→a+1). Hence,
applying Lemma 4.11 once again to SL(δ + αb→a), we see that its costandard factorization has prefix
�1 = �′

1, suffix �2 = SL(αb−1→a), and therefore �b→a(δ) = �b→c(δ). Thus, we derive the desired inequality:

� ≤ �′
1 �b→c(δ)︸ ︷︷ ︸

r times

SL(αb−1→c)SL(αc+1→a) ≤ �′
1 �b→c(δ)︸ ︷︷ ︸

r times

SL(αb−1→a) = �1 �b→a(δ)︸ ︷︷ ︸
r times

�2 .

Moreover, the equality is possible for r1 = r + 1 and a specific c ∈ [b → a) such that SL(αb−1→a) =
SL(αb−1→c)SL(αc+1→a) is the costandard factorization.

Let us now consider the case �′
2 = SL(αb−1→c) and a = b − 2. If SL(αb−1→c)SL(αc+1→a) ≤ �b→c(δ), then

� ≤ �1 �b→a(δ)︸ ︷︷ ︸
r+1 times

= �1 �b→a(δ)︸ ︷︷ ︸
r times

�2 still holds. Otherwise, if SL(α) = �, we would have SL(α) = SL((r + 1)δ +

αb→c)SL(αc+1→a) = �′
1 �b→c(δ)︸ ︷︷ ︸

r times

SL(αb−1→c)SL(αc+1→a), due to Proposition 3.4(a). However, the costandard

factorization of the above word passes to the right of �′
1, and the costandard factorization of the resulting

suffix passes to the right of the first �b→c(δ), a contradiction with Remark 3.5. Hence, � cannot be
standard Lyndon.

◦ If �′
2 = SL(αb→c+1), then deg �′

2 + αc+1→a /∈ �̂+ and so b[�′
2 SL(αc+1→a)] = 0. Likewise, by the degree

reasons and evoking inequalities (4.80), we find

b[SL((r + 1)δ + αb→c))SL(αc+1→a)] = b[�′
1 �b→c(δ)︸ ︷︷ ︸

r times

�′
2 SL(αc+1→a)] = 0

as the costandard factorization of this concatenation passes on the left of �′
2 or some �b→c(δ). Since

� ≤ SL((r + 1)δ + αb→c))SL(αc+1→a), we see that if SL(α) = �, then we would have SL(α) = SL((r + 1)δ +
αb→c))SL(αc+1→a), due to Proposition 3.4(a). However, the rightmost word cannot be standard Lyndon as
its standard bracketing was shown above to be 0. Hence, a contradiction with SL(α) = �.

2) α = (r1δ + αb→c) + ((r − r1)δ + αc+1→a), where 1 ∈ [b; c] and 1 ∈ [c + 1; a].
Let SL(δ + αb→a) = �1�2 be the costandard factorization. We claim that one of length n prefixes of the

words SL(δ + αb→c), SL(δ + αc+1→a) is ≤ �1. Indeed, assume that �1 = SL(αb→b−2) (the case �1 = SL(αa+2→a)

is treated similarly). Then, the length n prefix �′
1 of SL(δ + αb→c) is �1 or SL(αc+2→c), due to Lemma 4.11.

Note that SL(αc+2→c) = �1 if c = b − 2, while the inequality SL(αc+2→c) < SL(αb→c+1) for c �= b − 2 is proved
similarly to (4.82). Combining the latter inequality with SL(αb→c+1) ≤ SL(αb→b−2) = �1 due to Lemma 4.4,
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we obtain �′
1 < �1 as claimed. Henceforth, we assume that �1 = SL(αb→b−2), leaving the other case to

the reader.
First consider 0 < r1 < r. If the length n prefix �′

1 of SL(δ + αb→c) is < �1, then the corresponding
concatenation � is lexicographically smaller than the right-hand side of (4.64) for k = r + 1. If �′

1 = �1,
then we get a costandard factorization SL(δ + αb→c) = �1�3 and so �b→c(δ) = �b→a(δ). If c �= b − 2, then
�3 < �b→c(δ) by (4.80) and so �3 1 ≤ �b→c(δ) = �b→a(δ). Thus, we get the desired inequality:

� ≤ SL(r1δ + αb→c)SL((r − r1)δ + α(c+1)→a) < �1 �b→a(δ)︸ ︷︷ ︸
r times

�2 .

If c = b − 2, then �3 = �b→b−2(δ) = �b−1+sgn(i−(b−1))(δ) ≥ �b−2(δ), with the last inequality due to Lemma 4.5.
Let SL(δ +αb−1→a) = �4�5 be the costandard factorization. Then, �4 ≤ SL(αb−1→b−3) < SL(αb−1→b−3) b − 2 =
�b−2(δ), due to (4.84). Hence, the corresponding concatenation � satisfies the desired inequality:

� ≤ �1 �b→b−2(δ)︸ ︷︷ ︸
r1 times

�4 �b−1→a(δ)︸ ︷︷ ︸
(r−r1−1) times

�5 < �1 �b→a(δ)︸ ︷︷ ︸
r times

�2 .

For r1 = r, it suffices to consider the case when SL(δ + αb→c) starts with �1. The case c �= b − 2 is
treated as above. If c = b − 2, then �2 = SL(αc+1→a) and �3 = �b→c(δ) = �b→a(δ), and thus the resulting
concatenation � ≤ �1 �b→a(δ)︸ ︷︷ ︸

r times

�2.

Finally, if r1 = 0 and SL(δ + αc+1→a) = �4�5 is the costandard factorization, then SL(αb→c) ≤ �′
1 ≤ �1. If

c �= b − 2, then SL(αb→c) < �1, so that SL(αb→c)1 < �1 and the former is not a prefix of the latter, implying
� < �1. If c = b − 2, then SL(αb→c) = �1 and �4 ≤ SL(αb−1→b−3) < �b−2(δ) ≤ �b→a(δ) by above, so that

� ≤ SL(αb→c)SL(rδ + αc+1→a) ≤ �1�4 �c+1→a(δ)︸ ︷︷ ︸
(r−1) times

�5 < �1�b→a(δ) < �1 �b→a(δ)︸ ︷︷ ︸
r times

�2 .

3) α = (r1δ) + ((r + 1 − r1)δ + αb→a).
If a �= b − 2, then (using the induction hypothesis) the corresponding concatenated word � is

≤ �1 �b→a(δ)︸ ︷︷ ︸
(r−r1) times

�2 SL(αc+1→c−1) �c+sgn(i−c)(δ)︸ ︷︷ ︸
(r1−1) times

c if r1 ≤ r, or ≤ SL(αb→a)SL(αc+1→c−1) �c+sgn(i−c)(δ)︸ ︷︷ ︸
r times

c if r1 = r + 1,

for some c �= 1. Due to the inequalities SL(αb→a) < �1 < �2 < �b→a(δ), cf. (4.80, 4.81), we obtain (∀ c �= 1)

� ≤ �1 �b→a(δ)︸ ︷︷ ︸
(r−1) times

�2 SL(αc+1→c−1)c < �1 �b→a(δ)︸ ︷︷ ︸
r times

�2 .

Let us now treat the case a = b − 2, for which we utilize the non-commutativity of the corresponding
bracketings. We consider the cases r1 = 1 and r1 > 1 separately.

If r1 = 1, then the corresponding concatenation � is ≤ �1 �b→a(δ)︸ ︷︷ ︸
r times

�c(δ), where �2 = �b→a(δ) =

�b−1+sgn(i−(b−1))(δ) by Remark 4.12. Here, b[�c(δ)] does not commute with b[SL(rδ + αb→b−2)], which is
equivalent to [b[�c(δ)], Eb,b−1] �= 0. The latter guarantees that �c(δ) ≤ �b→a(δ), due to (4.67) and
Lemma 4.5:

◦ if b ≺ i then c = b − 1, b and �c(δ) ≤ �b(δ) = �b−1+sgn(i−(b−1))(δ);
◦ if b = i, i + 1, i + 2, then �b−1+sgn(i−(b−1))(δ) = �i(δ) ≥ �c(δ);
◦ if b � i + 2, then c = b − 1, b − 2 and �c(δ) ≤ �b−2(δ) = �b−1+sgn(i−(b−1))(δ). Hence, we derive the desired

inequality:

� ≤ �1 �b→a(δ)︸ ︷︷ ︸
r times

�c(δ) ≤ �1 �b→a(δ)︸ ︷︷ ︸
(r+1) times

= �1 �b→a(δ)︸ ︷︷ ︸
r times

�2 .
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For r1 > 1, the argument is precisely the same and is based on the inequalities SL(αc+1→c−1) < �c(δ) ≤
�b→a(δ). Here, the second inequality is proved as above, but using (4.73) instead of (4.67).

This completes the proof of (4.64). In the particular case r = 1, this proves the formula SL(2δ+αb→a) =
�1�b→a(δ)�2 implicitly used in the statement of (4.64).

5 Properties of Orders
To account for dim(̂gkδ) = |I| in (3.9), let us extend �̂+ to �̂+,ext:

�̂+,ext := �̂+,re � {
(kδ, r)

∣∣ k ≥ 1, 1 ≤ r ≤ |I|}. (5.1)

We define SL((kδ, r)) := SLr(kδ) accordingly. Consider the order on �̂+,ext induced from the lexicographical
order on affine standard Lyndon words, cf. (2.15):

α < β ⇐⇒ SL(α) < SL(β) lexicographically. (5.2)

In this section, we investigate some properties of this order using Theorem 4.7.

Example 5.1. The only case when �̂+,ext = �̂+ is the case of ŝl2. Using the formulas of
Proposition 3.7 (with the order 1 < 0), we see that (5.2) recovers the usual order:

α1 < α1 + δ < α1 + 2δ < · · · < · · · < 3δ < 2δ < δ < · · · < 2δ + α0 < δ + α0 < α0 .

5.2 Important counterexample
Unlike the orders on �̂+,ext in the theory of affine quantum groups ([1, 4]), arising through the affine
braid group action, the order (5.2) does separate imaginary roots. Explicitly, for type A(1)

n (n > 1) and any
order on Î, one always has

(k1δ, n) < α < (k2δ, 1) for some α ∈ �̂+,re , k1, k2 ≥ 1.

It is thus natural to ask (motivated by Levendorsky–Soibelman convexity property):
Question: Is it true that we cannot have a pattern

(k2δ, n) < β2 < β1 < (k1δ, 1) with β1, β2 ∈ �̂+,re , β1 + β2 = (k1 + k2)δ.

The answer is actually negative, as shown by the following simplest counterexample.
Counterexample: Consider the affine Lie algebra ŝl5 with the standard order 1 < 2 < 3 < 4 < 0 on Î.

For k, m > 0, set β1 = kδ+α4, β2 = mδ+(α0 +α1 +α2 +α3) and k1 = 1, k2 = k+m. According to Theorem 4.2,
we have

SL1(δ) = 10432 , SL4((k + m)δ) = 1234 10234︸ ︷︷ ︸
(k+m−1) times

0,

SL(β1) = 10423︸ ︷︷ ︸
k times

4 , SL(β2) = 1023 10423︸ ︷︷ ︸
m times

.

Thus, indeed (k2δ, 4) < β2 < β1 < (δ, 1) with respect to the order (5.2) on �̂+,ext.

5.3 Chain monotonicity in type A(1)
n

For α ∈ �̂+,re, define the chain Chα as the sequence α, α + δ, α + 2δ, . . . ∈ �̂+,re.

Proposition 5.4. For any α ∈ �̂+,re, the chain Chα is monotonous:

SL(α) < SL(α + δ) < SL(α + 2δ) < · · · or SL(α) > SL(α + δ) > SL(α + 2δ) > · · ·
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Proof. Without loss of generality, we can assume that (4.52) holds, so that the formulas of Theorem 4.7
apply. The proof follows by a simple case-by-case analysis:

• α = αa→b with i ≺ a � b � 0.
According to (4.59), we have SL(kδ + αa→b) = �a−1(δ)︸ ︷︷ ︸

k times

a a + 1 . . . b for all k ≥ 1. As a a + 1 . . . b starts with

a letter a that is larger than 1, the first letter of �a−1(δ), we obtain SL(kδ + αa→b) > SL((k + 1)δ + αa→b) for
any k ≥ 1. In the remaining case k = 0, we also have SL(αa→b) > SL(δ + αa→b), as SL(αa→b) starts with a
letter min{a, . . . , b}, which is larger than 1, the first letter of SL(δ + αa→b).

• α = αa→b with 1 ≺ a � b ≺ i.
The proof of SL(kδ +αa→b) > SL((k+1)δ +αa→b) for any k ≥ 0 is exactly the same as above, with �b+1(δ)

used instead of �a−1(δ).
• α = αa→b with 1 ≺ a ≺ i ≺ b.
Combining formula (4.60) with the inequalities i ± 1 > i > 1 = first letter of �i(δ), we obtain SL(kδ +

αa→b) > SL((k+1)δ+αa→b) for any k ≥ 1. In the remaining case k = 0, we also have SL(αa→b) > SL(δ+αa→b),
as 1 /∈ [a; b].

• α = αa→b with a = i or b = i and 1 /∈ [a; b].
The proof of SL(kδ + αa→b) > SL((k + 1)δ + αa→b) for any k ≥ 0 is exactly the same as above, where we

now use one of (4.61)–(4.63) instead of (4.60).
• α = αb→a with 1 ∈ [b; a].
According to (4.64), we have SL(kδ +αb→a) = �1 �b→a(δ)︸ ︷︷ ︸

(k−1) times

�2 for all k ≥ 1. Here, we have �2 ≤ �b→a(δ), due

to (4.80), so that �2 < �b→a(δ)�2. Thus, we obtain SL(kδ + αb→a) < SL((k + 1)δ + αb→a) for any k ≥ 1. In the
remaining case k = 0, we also have SL(αb→a) < SL(δ + αb→a), due to (4.81). �

Remark 5.5. It follows from the proof that the chain Chα monotonously increases if α = kδ +αa→b

with min{̂I} ∈ [a; b], and monotonously decreases otherwise.

Remark 5.6. For any k ≥ 1 and c �= 1, we also have SL(αc+1→c−1) �c+sgn(i−c)(δ)︸ ︷︷ ︸
(k−1) times

c > SL(αc+1→c−1)

�c+sgn(i−c)(δ)︸ ︷︷ ︸
k times

c, cf. (4.57). Since the order among length n words {SL(αc+1→c−1) | c �= 1} determines

the order among the n words in the right-hand side of (4.57) for any k, we also see that
{SL(kδ, r)}k≥1 monotonously decreases:

SL(δ, r) > SL(2δ, r) > SL(3δ, r) > · · · ∀ 1 ≤ r ≤ n.

5.7 Pre-convexity in type A(1)
n

Motivated by Definition 2.18, we shall call an order < on �̂+,re pre-convex if

α < α + β < β or β < α + β < α ∀ α, β, α + β ∈ �̂+,re. (5.3)

Proposition 5.8. The restriction of (5.2) to �̂+,re is pre-convex.

Proof. Without loss of generality, we can assume that (4.52) holds, so that the formulas of Theorem 4.7
apply. The proof follows by a direct case-by-case analysis:

• α = αa→b + kδ, β = α(b+1)→c + rδ for 1 ≺ a � b ≺ c ≺ i.
◦ Case 1: k, r > 0. In this case, we have SL(α) = �b+1(δ)︸ ︷︷ ︸

k times

b(b − 1) . . . a, SL(β) = �c+1(δ)︸ ︷︷ ︸
r times

c(c − 1) . . . (b + 1),

SL(α + β) = �c+1(δ)︸ ︷︷ ︸
(k+r) times

c(c − 1) . . . a. The inequality SL(α) < SL(α + β) is a consequence of �c+1(δ) > �b+1(δ)

(due to Lemma 4.5), while the inequality SL(α + β) < SL(β) is obvious as �c+1(δ) starts with 1 < c.
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◦ Case 2: k = 0, r > 0. In this case, we have SL(β) = �c+1(δ)︸ ︷︷ ︸
r times

c(c−1) . . . (b+1), SL(α+β) = �c+1(δ)︸ ︷︷ ︸
r times

c(c−1) . . . a,

while SL(α) starts with a letter > 1. Therefore, we immediately get SL(α) > SL(α + β) > SL(β).
◦ Case 3: k > 0, r = 0. In this case, we have SL(α) = �b+1(δ)︸ ︷︷ ︸

k times

b(b − 1) . . . a, SL(α + β) = �c+1(δ)︸ ︷︷ ︸
k times

c(c − 1) . . . a,

while SL(β) starts with a letter > 1. Evoking the inequality �c+1(δ) > �b+1(δ), we immediately get SL(α) <

SL(α + β) < SL(β).
◦ Case 4: k = r = 0. In this case, α, β, α + β ∈ �+, hence the claim follows from Proposition 2.20 (a

priori we do not know which of the two possible orders holds).
• α = αa→b + kδ, β = αb+1→c + rδ for i ≺ a � b ≺ c � 0.
◦ Case 1: k, r > 0. In this case, we have SL(α) = �a−1(δ)︸ ︷︷ ︸

k times

a a + 1 . . . b, SL(β) = �b(δ)︸ ︷︷ ︸
r times

b + 1 b + 2 . . . c, SL(α +

β) = �a−1(δ)︸ ︷︷ ︸
(k+r) times

a a + 1 . . . c. The inequality SL(β) < SL(α + β) is a consequence of �a−1(δ) > �b(δ) (due to

Lemma 4.5), while the inequality SL(α + β) < SL(α) is obvious as �a−1(δ) starts with 1, which is < a.
◦ Case 2: k = 0, r > 0. In this case, we have SL(β) = �b(δ)︸ ︷︷ ︸

r times

b + 1 b + 2 . . . c, SL(α + β) = �a−1(δ)︸ ︷︷ ︸
r times

a a + 1 . . . c,

while SL(α) starts with a letter > 1. Evoking the inequality �a−1(δ) > �b(δ), we immediately get SL(β) <

SL(α + β) < SL(α).
◦ Case 3: k > 0, r = 0. In this case, we have SL(α) = �a−1(δ)︸ ︷︷ ︸

k times

a a + 1 . . . b, SL(α + β) = �a−1(δ)︸ ︷︷ ︸
k times

a a + 1 . . . c,

while SL(β) starts with a letter > 1. Therefore, we get

SL(α) < SL(α + β) < SL(β).

◦ Case 4: k = r = 0. In this case, the claim follows from Proposition 2.20 again.
• α = αa→(i−1) + kδ, β = αi + rδ for 1 ≺ a ≺ i.
◦ Case 1: k > 0, r ≥ 0. In this case, we have SL(α) = �i(δ)︸︷︷︸

k times

i − 1 i − 2 . . . a, SL(α + β) =
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�i(δ)︸︷︷︸
k+r

2 times

i �i(δ)︸︷︷︸
k+r

2 times

i − 1 . . . a if 2 | (k + r)

�i(δ)︸︷︷︸
k+r+1

2 times

i − 1 . . . a �i(δ)︸︷︷︸
k+r−1

2 times

i if 2 � (k + r)
, and SL(β) = �i(δ)︸︷︷︸

r times

i.

If 2 | (k + r) and k > k+r
2 > r, then clearly SL(α) < SL(α + β) < SL(β). If 2 | (k + r) and k ≤ k+r

2 ≤ r, then
clearly SL(α) > SL(α + β) > SL(β).

If 2 � (k + r) and k ≥ k+r+1
2 > r, then clearly SL(α) < SL(α + β) < SL(β). If 2 � (k + r) and k < k+r+1

2 ≤ r,
then clearly SL(α) > SL(α + β) > SL(β).

◦ Case 2: k = 0, r > 0. In this case, SL(α) starts with a letter > 1, SL(β) = �i(δ)︸︷︷︸
r times

i, SL(α + β) =
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�i(δ)︸︷︷︸
r
2 times

i �i(δ)︸︷︷︸
r
2 times

i − 1 . . . a if 2 | r

�i(δ)︸︷︷︸
r+1

2 times

i − 1 . . . a �i(δ)︸︷︷︸
r−1

2 times

i if 2 � r
. Therefore, we immediately get SL(α) > SL(α + β) > SL(β).

◦ Case 3: k = r = 0. In this case, the claim follows from Proposition 2.20 again. In fact, we get SL(α) >

SL(α + β) > SL(β) since SL(α) > SL(β) (as i < a, . . . , i − 1).
• α = αa→b + kδ, β = α(b+1)→i + rδ for 1 ≺ a � b ≺ i − 1.
◦ Case 1: k, r > 0. Combining (4.58, 4.62) and Lemma 4.5, we obtain

SL(α) = �b+1(δ)︸ ︷︷ ︸
k times

b b − 1 . . . a < �i(δ) < SL(β) , SL(α + β) .

It thus remains to prove that SL(α + β) < SL(β). This is obvious unless k = 1 and 2 � r, as
SL(α + β) contains more copies of �i(δ)’s in the beginning than SL(β), due to (4.62) and � k+r

2 � > � r
2 �.
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Meanwhile, for k = 1 and 2 � r we have

SL(α + β) = �i(δ)︸︷︷︸
r+1

2

i �i(δ)︸︷︷︸
r+1

2

i − 1 . . . a < �i(δ)︸︷︷︸
r+1

2

i − 1 . . . b + 1 �i(δ)︸︷︷︸
r−1

2

i = SL(β) .

◦ Case 2: k = 0, r > 0. We have SL(α(b+1)→i+rδ)SL(αa→b) ≤ SL(αa→i+rδ), due to Proposition 3.4. Therefore:
SL(β) < SL(β)SL(α) ≤ SL(αa→i + rδ) = SL(α + β). On the other hand, SL(α) starts with min{a, . . . , b}, which
is > 1 = the first letter of SL(α + β). Hence, SL(β) < SL(α + β) < SL(α).

◦ Case 3: r=0, k>0. In this case, we have SL(α) < SL(α+β) < SL(β), due to �b+1(δ) < �i(δ) (by Lemma 4.5)
and 1 < i.

◦ Case 4: k = r = 0. In this case, the claim follows from Proposition 2.20 again. In fact, we get SL(α) >

SL(α + β) > SL(β) since SL(α) > SL(β) (as i < a, . . . , i − 1).
• α = αa→b + kδ, β = α(b+1)→c + rδ for 1 ≺ a � b ≺ i − 1 and i ≺ c � 0.
The proof is absolutely analogous to the previous case, but we should now look at r mod 3 (rather

than r mod 2) and use formula (4.60) instead of (4.62).
• α = αa→(i−1) + kδ, β = αi→b + rδ for 1 ≺ a ≺ i ≺ b � 0.
◦ Case 1: k, r > 0. Let us compare the multiplicity of the word �i(δ) in the beginning of our words: it

is k for SL(α), � r
2 � for SL(β), and � k+r

3 � for SL(α + β). If r = 2k + 3 or r > 2k + 4, then k < � k+r
3 � < � r

2 � (as
� k+r

3 � ≤ k+r+2
3 < r

2 ≤ � r
2 � for r > 2k + 4), and so SL(β) < SL(α + β) < SL(α). If r < 2k − 3, then likewise

k > � k+r
3 � > � r

2 � (as � k+r
3 � ≥ k+r

3 > r+1
2 ≥ � r

2 �), and so SL(α) < SL(α + β) < SL(β). Thus, it remains to
consider r ∈ {2k − 3, 2k − 2, 2k − 1, 2k, 2k + 1, 2k + 2, 2k + 4}. Let us illustrate the argument for r = 2k − 2,
while the other six cases are treated completely analogously. For r = 2k − 2, � r

2 � < k = � k+r
3 �, and so it

suffices to prove that SL(α) < SL(α + β). Comparing formulas (4.58, 4.60), we see that either SL(α) is a
proper prefix of SL(α + β) if i − 1 > i + 1, or its first letter after k copies of �i(δ) is smaller than that of
SL(α + β) if i − 1 < i + 1. Thus SL(α) < SL(α + β).

◦ Case 2: k = 0, r > 0. Comparing the first letters, we get SL(α) > SL(α + β). It thus remains to prove
SL(α + β) > SL(β). For r = 3 or r > 4, this follows from � r

2 � > � r
3 �. The cases r ∈ {1, 2, 4} are treated

similarly to r = 2k − 2 in Case 1.
◦ Case 3: k > 0, r = 0. Comparing the first letters, we get SL(β) > SL(α + β), while SL(α + β) > SL(α) is

verified alike SL(α + β) > SL(β) in Case 2.
◦ Case 4: k = r = 0. In this case, the claim follows from Proposition 2.20 again. In fact, we get SL(α) >

SL(α + β) > SL(β) since SL(α) > SL(β) (as i < a, . . . , i − 1).
The next four cases are absolutely similar to the previous four:
• α = αi + kδ, β = αi+1→b + rδ for i ≺ b � 0.
• α = αi→b + kδ, β = αb+1→c + rδ for i ≺ b ≺ c � 0.
• α = αa→b + kδ, β = αb+1→c + rδ for 1 ≺ a ≺ i ≺ b ≺ c � 0.
• α = αa→i + kδ, β = αi+1→b + rδ for 1 ≺ a ≺ i ≺ b � 0.
Finally, let us treat the remaining three cases that utilize (4.64) and its proof.
• α = (αa→b + kδ), β = (αb+1→c + rδ) for 1 ∈ [a; b] and 1 /∈ [b + 1; c].
◦ Case 1: c ∈ [b + 1; a − 2].
If k > 0, r > 0, then SL(α) < SL(α)SL(β) ≤ SL(α + β) with the second inequality proved in case 1)

of our proof of (4.64). Hence, it remains to show that SL(α + β) < SL(β). By Corollary 4.13, SL(α + β)

starts with min{SL(αa→a−2) 1, SL(αc+2→c) 1} < SL(αc+2→c)c + 1 = �c+1(δ). On the other hand, SL(β) starts
with �i(δ) ≥ �c+1(δ) if i ∈ [(b + 1) → c), with �c+1(δ) if 1 ≺ b + 1 � c ≺ i, with �b(δ) > �c+1(δ) for i ≺ b + 1 � c
(by Lemma 4.5). This completes the proof of SL(α) < SL(α + β) < SL(β) for k, r > 0. The inequalities are
similar when k �= r = 0 or r �= k = 0. Finally, for k = r = 0 the claim follows from Proposition 2.20. In fact,
since 1 is the minimal element of Î, we get SL(α) < SL(α + β) < SL(β).

◦ Case 2: c ∈ [a; 0].
Note that SL(αb+1→c+rδ) > SL(αb+1→c+(r+k+1)δ) by Remark 5.5. We also have SL(αb+1→c+(r+k+1)δ) >

SL(αa→c + (r + k + 1)δ), due to an already established pre-convexity for roots (αa→c + (r + k + 1)δ) +
αb+1→a−1 = αb+1→c + (r + k + 1)δ. Combining the two inequalities above, we obtain SL(α + β) < SL(β).
Evoking Corollary 4.13, we see that SL(α) starts with �11 ≤ SL(αa−2→a)1 < �a−1(δ), so that SL(α) < �a−1(δ).
On the other hand, SL(α + β) is lexicographically larger than �a−1(δ), due to explicit formulas of
Theorem 4.7 and Lemma 4.5. Combining these inequalities, we obtain SL(α) < SL(α + β).

• α = (αa→b + kδ), β = (αb+1→c + rδ) for 1 /∈ [a; b] and 1 ∈ [b + 1; c].
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The proof in this case is completely analogous to the previous one.
• α = αa→b + kδ, β = αb+1→c + rδ for 1 ∈ [a; b] and 1 ∈ [b + 1; c].
According to (4.81), we have SL(αa→b+kδ) ≥ SL(αa→b) and SL(αb+1→c+rδ) ≥ SL(αb+1→c) for k, r ≥ 0. Thus,

SL(αa→b + kδ) ≥ SL(αa→c+1) and SL(αb+1→c + rδ) ≥ SL(αa−1→c) by Lemma 4.5 as 1 ∈ [a; c + 1] ⊂ [a; b] and
1 ∈ [a − 1; c] ⊆ [b + 1; c]. Evoking the proof of Lemma 4.11, see (4.82), we conclude that one of the words
SL(αa−1→c) and SL(αa→c+1) is > SL(αa→c + (k + r + 1)δ). This implies that max{SL(α), SL(β)} > SL(α + β).
The other inequality is obvious: min{SL(α), SL(β)} < SL(α + β), cf. our treatment of case 2) in the proof
of (4.64). This competes the proof for any k, r ≥ 0. �
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