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We generalize the study of standard Lyndon loop words from [16] to a more general class of orders on
the underlying alphabet, as suggested in [16, Remark 3.15]. The main new ingredient is the exponent-
tightness of these words, which also allows to generalize the construction of PBW bases of the
untwisted quantum loop algebra Uq(Lg) via the combinatorics of loop words.

1 Introduction
1.1 Summary
An interesting basis of the free Lie algebra generated by a finite family {ei}i∈I was constructed in the
1950s using the combinatorial notion of Lyndon words. A few decades later, this was generalized to any
finitely generated Lie algebra a in [11]. Explicitly, if a is generated by {ei}i∈I, then any order on the finite
alphabet I gives rise to the combinatorial basis e� as � ranges through all standard Lyndon words.

The key application of [11] was to simple finite-dimensional g, or more precisely, to its maximal
nilpotent subalgebra n+. According to the root space decomposition:

n+ =
⊕
α∈�+

Q · eα , �+ =
{
positive roots

}
, (1.1)

with elements eα called root vectors. By the PBW theorem, we thus have

U(n+) =
k∈N⊕

γ1≥···≥γk∈�+
Q · eγ1 . . . eγk (1.2)

for any total order on �+, with N = Z≥0. Furthermore, a triangular decomposition

g = n+ ⊕ h ⊕ n− (1.3)

induces the corresponding triangular decomposition of the universal enveloping:

U(g) = U(n+) ⊗ U(h) ⊗ U(n−) . (1.4)
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2 | S. Khomych et al.

Moreover, the root vectors satisfy (R∗ shall denote nonzero elements of a ring R)

[eα , eβ ] = eαeβ − eβeα ∈ Q∗ · eα+β (1.5)

whenever α, β ∈ �+ satisfy α+β ∈ �+. Thus, formula (1.5) provides an algorithm for constructing all the
root vectors (1.1) inductively starting from ei = eαi , where {αi}i∈I ⊂ �+ are the simple roots of g. Therefore,
all the root vectors {eα}α∈�+ , and hence the PBW basis (1.2), can be read off from the combinatorics of �+.

The above discussion can be naturally adapted to the quantizations. Let Uq(g) be the Drinfeld–Jimbo
quantum group of g, a q-deformation of the universal enveloping algebra U(g). For one thing, it admits
a triangular decomposition similar to (1.4):

Uq(g) = Uq(n
+) ⊗ Uq(h) ⊗ Uq(n

−) . (1.6)

Here, Uq(n
+) is the positive subalgebra of Uq(g), explicitly generated by {̃ei}i∈I subject to q-Serre relations.

There exists a PBW basis analogous to (1.2):

Uq(n
+) =

k∈N⊕
γ1≥···≥γk∈�+

Q(q) · ẽγ1 . . . ẽγk .

The q-deformed root vectors ẽα ∈ Uq(n
+) are defined via Lusztig’s braid group action, which requires

one to choose a reduced decomposition of the longest element in the Weyl group of g. It is well-known
([18]) that this choice precisely ensures that the order ≥ on �+ is convex, in the sense of Definition 2.17.
Moreover, as follows from the Levendorsky–Soibelman property [13], the q-deformed root vectors satisfy
the following q-analogue of the relation (1.5):

[̃eα , ẽβ ]q = ẽα ẽβ − q(α,β)ẽβ ẽα ∈ Q(q)∗ · ẽα+β (1.7)

whenever α, β, α + β ∈ �+ satisfy α < α + β < β as well as the minimality property

� ∃ α′, β ′ ∈ �+ s.t. α < α′ < β ′ < β and α + β = α′ + β ′ ,

and (·, ·) denotes the scalar product corresponding to the root system of type g. Thus, similarly to the
Lie algebra case, we conclude that the q-deformed root vectors can be defined (up to scalar multiples)
as iterated q-commutators of ẽi = ẽαi (i ∈ I), using the combinatorics of �+ and the chosen convex order
on it.

Following [7, 21, 24], let us recall that Uq(n
+) can be also defined as a subalgebra of the q-shuffle

algebra:

Uq(n
+)

�
↪−→F =

k∈N⊕
i1,...,ik∈I

Q(q) · [i1 . . . ik] ,

where F has a basis I∗, consisting of finite length words in I, and is endowed with the quantum shuff le
product. As mentioned above, there is a natural bijection

� : �+ ∼−→
{
standard Lyndon words

}
, (1.8)

established in [11]. This induces the lexicographic order on �+ via

α < β ⇐⇒ �(α) < �(β) lexicographically .

As shown in [12, 22] this total order is convex, and hence can be applied to obtain quantum root vectors
ẽα ∈ Uq(n

+) for any positive root α, as in (1.7). Moreover, [12] shows that the quantum root vector ẽα is
uniquely characterized (up to a scalar multiple) by the property that �(eα) is an element of Im� whose
leading order term [i1 . . . ik] (in the lexicographic order) is precisely �(α).
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It is natural to ask if the above results can be generalized from simple g to affine Lie algebras ĝ. The
main complication arises from the fact that not all root subspaces of ĝ are one-dimensional. In [1], an
analogue of (1.8) was established and all standard Lyndon words were explicitly computed for ĝ with
g of A-type. On the other hand, considering a different (new Drinfeld) “polarization” of quantum loop
algebras

Uq(Lg) = Uq(Ln+) ⊗ Uq(Lh) ⊗ Uq(Ln−) ,

the above complication disappears as Uq(Ln+) is a q-deformation of the universal enveloping algebra of
n+[t, t−1] all of which root subspaces are one-dimensional. In particular, many of the above results were
adapted to the loop setup in [16].

In this note, we are interested in the generalization of all combinatorial aspects of [16] (we shall be
using the results of [16, Section 5] that are omitted in its journal version [17]), excluding all shuffle
algebra considerations, to the so-called “weighted” version. To this end, we order the infinite alphabet
I = {i(d) | i ∈ I, d ∈ Z} via

i(d) < j(e) ⇐⇒ d/ci > e/cj or d/ci = e/cj and i < j , (1.9)

for any fixed collection of “weights” {ci}i∈I ∈ ZI
>0 (the case ci = 1 ∀ i recovers the setup of [16]). This

induces the lexicographic order on the loop words [i(d1)

1 . . . i(dk)

k ] with respect to which we may define the
notion of standard Lyndon loop words by analogy with [11], which though requires some preliminary work
similar to [16]. Then, there exists a one-to-one correspondence:

� : �+ × Z ∼−→
{
standard Lyndon loop words

}
.

The lexicographic order on the right-hand side induces a convex order on the left-hand side, with respect
to which one can define elements

e�(α,d) ∈ Uq(Ln+) (1.10)

for all (α, d) ∈ �+ × Z. We have the following analogue of the PBW theorem:

Uq(Ln+) =
k∈N⊕

�1≥···≥�k standard Lyndon loop words

Q(q) · e�1 . . . e�k . (1.11)

There are also analogues of the constructions above with + ↔ − and e ↔ f .
By analogy with the results of [12, 22], the total order on �+ × Z given by

(α, d) < (β, e) ⇐⇒ �(α, −d) < �(β, −e) lexicographically (1.12)

is convex, cf. Proposition 3.18. In fact, this order comes from a certain reduced word in the affine Weyl
group associated to g (= the Coxeter group associated to ĝ), in accordance with Theorem 4.7. Therefore,
the root vectors (1.10) exactly match (up to constants) the classical construction of [2, 4, 15], once we
pass it through the “affine to loop” isomorphism of Theorem 5.14.

1.2 Outline
The structure of the present paper is as follows:

• In Section 2, we recall the notion of (standard) Lyndon words, their basic properties, and the
application to simple Lie algebras through the bijection (1.8).

• In Section 3, we study the loop Lie algebras Lg and generalize the results of the previous section
to the loop setup with the order given by (1.9). The key new ingredient, in comparison to [16], is
played by Theorem 3.6 and Proposition 3.8.
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4 | S. Khomych et al.

• In Section 4, we show that the order (1.12) on �+ ×Z corresponds to a certain reduced decomposi-
tion in the extended affine Weyl group of g. We further refine this result in Propositions 4.9–4.10.

• In Section 5, we construct PBW-type bases (1.11) of the quantum loop algebra Uq(Lg) by adapting
the arguments of [16] with the help of Proposition 4.10.

• In Section 6, we adapt most of our results to more general orders (6.1) on I.
• In Appendix A, we provide a link to the C++ code and explain how it inductively computes standard

Lyndon loop words in all types, and present some examples.

2 Combinatorial Approach to Lie Algebras
In this section, we recall the results of [11] and [12] that provide a combinatorial construction of an
important basis of finitely generated Lie algebras, with the main application to the maximal nilpotent
subalgebra of a simple Lie algebra.

2.1 Lyndon words
Let I be a finite ordered alphabet, and let I∗ be the set of all finite length words in the alphabet I. For
u = [i1 . . . ik] ∈ I∗, we define its length by |u| = k. We introduce the lexicographic order on I∗ in a standard
way:

[i1 . . . ik] < [j1 . . . jl] if

⎧⎪⎪⎨
⎪⎪⎩

i1 = j1, . . . , ia = ja, ia+1 < ja+1 for some a ≥ 0

or

i1 = j1, . . . , ik = jk and k < l

.

Definition 2.2. A word � = [i1 . . . ik] is called Lyndon if it is smaller than all of its cyclic
permutations:

[i1 . . . ia−1ia . . . ik] < [ia . . . iki1 . . . ia−1] ∀ a ∈ {2, . . . , k} .

For a word w = [i1 . . . ik] ∈ I∗, the subwords

wa| = [i1 . . . ia] and w|a = [ik−a+1 . . . ik]

with 0 ≤ a ≤ k will be called a prefix and a suffix of w, respectively. We call such a prefix or a suffix proper
if 0 < a < k. It is straightforward to show that Definition 2.2 is equivalent to the following one:

Definition 2.3. A word w is Lyndon if it is smaller than all of its proper suffixes:

w < w|a ∀ 0 < a < |w| .

The following simple result is well-known:

Lemma 2.4. If �1 < �2 are Lyndon, then �1�2 is also Lyndon, and so �1�2 < �2�1.

We recall the following two basic facts from the theory of Lyndon words:

Proposition 2.5. ([14, Proposition 5.1.3]) Any Lyndon word � has a factorization

� = �1�2 (2.1)

defined by the property that �2 is the longest proper suffix of � which is also a Lyndon word.
Under these circumstances, �1 is also a Lyndon word.

The factorization (2.1) is called the costandard factorization of a Lyndon word.
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Proposition 2.6. ([14, Proposition 5.1.5]) Any word w has a unique factorization

w = �1 . . . �k , (2.2)

where �1 ≥ · · · ≥ �k are all Lyndon words.

The factorization (2.2) is called the canonical factorization of a word.

2.7 Standard Lyndon words
Let a be a Lie algebra generated by a finite set {ei}i∈I labelled by the alphabet I.

Definition 2.8. The standard bracketing of a Lyndon word � is given inductively by:

• e[i] = ei ∈ a for i ∈ I,
• e� = [e�1 , e�2 ] ∈ a, where � = �1�2 is the costandard factorization (2.1).

The major importance of this definition is due to the following result of Lyndon:

Theorem 2.9. ([14, Theorem 5.3.1]) If a is a free Lie algebra in the generators {ei}i∈I, then the set{
e� | �-Lyndon word

}
provides a basis of a.

It is natural to ask if Theorem 2.9 admits a generalization to Lie algebras a generated by {ei}i∈I but
with some defining relations. The answer was provided a few decades later in [11]. To state the result,
define we, ew ∈ U(a) for any w ∈ I∗:

• For a word w = [i1 . . . ik] ∈ I∗, we set

we = ei1 . . . eik ∈ U(a). (2.3)

• For a word w ∈ I∗ with the canonical factorization w = �1 . . . �k of (2.2), we set

ew = e�1 . . . e�k ∈ U(a) . (2.4)

It is well-known that the elements (2.3) and (2.4) are connected by the following triangularity
property:

ew =
∑
v≥w

cv
w · ve with cv

w ∈ Z and cw
w = 1 . (2.5)

The following definition is due to [11]:

Definition 2.10. (a) A word w is called standard if we cannot be expressed as a linear combination
of ve for various v > w.

(b) A Lyndon word � is called standard Lyndon if e� cannot be expressed as a linear combination
of em for various Lyndon words m > �.

The following result is nontrivial and justifies the above terminology:

Proposition 2.11. ([11]) A Lyndon word is standard iff it is standard Lyndon.

The major importance of this definition is due to the following result:

Theorem 2.12. ([11]) For any Lie algebra a generated by a finite collection {ei}i∈I, the set{
e� | �-standard Lyndon word

}
provides a basis of a.

We also have the following simple properties of standard words:
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6 | S. Khomych et al.

Proposition 2.13. ([11]) (a) Any subword of a standard word is standard.
(b) A word w is standard iff it can be written (uniquely) as w = �1 . . . �k, where �1 ≥ · · · ≥ �k are

standard Lyndon words.

Thus, combining the classical Poincaré–Birkhoff–Witt theorem for U(a) with Theorem 2.12, Proposi-
tion 2.13, and the triangularity property (2.5), we obtain the following PBW-type theorem:

U(a) =
k∈N⊕

�1≥···≥�k standard Lyndon words

Q · e�1 . . . e�k =
⊕

w–standard words

Q · ew =
⊕

w–standard words

Q · we . (2.6)

2.14 Application to simple Lie algebras
Let g be a simple Lie algebra with the root system � = �+ � �−. Let {αi}i∈I ⊂ �+ be the simple roots, and
Q = ⊕i∈I Zαi be the root lattice. We endow Q with the symmetric pairing (·, ·) : Q ⊗ Q → Z so that the
Cartan matrix (aij)i,j∈I and the symmetrized Cartan matrix (dij)i,j∈I of g are given by

aij = 2(αi, αj)

(αi, αi)
and dij = (αi, αj) .

Explicitly, g is generated by {ei, fi, hi}i∈I subject to the following defining relations:

[ei, [ei, · · · , [ei, ej] · · · ]]︸ ︷︷ ︸
1−aij Lie brackets

= 0 if i �= j , (2.7)

[hi, ej] = dijej, [hi, hj] = 0 , (2.8)

as well as the opposite relations with e’s replaced by f ’s, and finally the relation:

[ei, fj] = δijhi . (2.9)

We will consider the triangular decomposition (1.3), where n+, h, n− are the Lie subalgebras of g

generated by the ei, hi, fi, respectively. We write Q+ ⊂ Q for the monoid generated by {αi}i∈I. The Lie
algebra g is naturally Q-graded via

deg ei = αi , deg hi = 0 , deg fi = −αi .

The Lie algebra g admits the standard root space decomposition:

g = h ⊕
⊕
α∈�

gα (2.10)

with dimgα = 1 for all α ∈ �. We pick root vectors eα ∈ gα so that gα = Q · eα . Thus, the Lie subalgebra
n+ decomposes into n+ =⊕α∈�+ gα and is Q+-graded. Explicitly, n+ is generated by {ei}i∈I subject to the
classical Serre relations (2.7).

Fix any order on the set I. According to Theorem 2.12, n+ has a basis consisting of the e�’s, as � ranges
over all standard Lyndon words. Evoking the above Q+-grading of the Lie algebra n+, it is natural to
define the grading of words via

deg [i1 . . . ik] = αi1 + · · · + αik ∈ Q+ .

Due to the decomposition (2.10) and the fact that the root vectors {eα}α∈�+ ⊂ n+ all live in distinct degrees
α ∈ Q+, we conclude that there exists a bijection (1.8):

� : �+ ∼−→
{
standard Lyndon words

}

such that deg �(α) = α for all α ∈ �+, which we call the Lalonde-Ram’s bijection.
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2.15 Results of Leclerc
The Lalonde–Ram’s bijection (1.8) was described explicitly in [12]. To state the result, we recall that for
a root α =∑i∈I kiαi ∈ �+, its height is ht(α) =∑i ki.

Proposition 2.16. ([12, Proposition 25]) The bijection � is inductively given by:

• for simple roots, we have �(αi) = [i],
• for other positive roots, we have the following Leclerc’s algorithm:

�(α) = max
{
�(γ1)�(γ2)

∣∣∣α = γ1 + γ2 , γ1, γ2 ∈ �+ , �(γ1) < �(γ2)
}

. (2.11)

The formula (2.11) recovers �(α) once we know �(γ ) for all {γ ∈ �+ | ht(γ ) < ht(α)}. We shall also need
one more important property of �. To the end, let us recall:

Definition 2.17. A total order on the set of positive roots �+ is convex if:

α < α + β < β

for all α < β ∈ �+ such that α + β is also a root.

Remark 2.18. It is well-known [18] that convex orders on �+ are in bijection with the reduced
decompositions of the longest element w0 ∈ W in the Weyl group of g.

The following result is [12, Proposition 26], where it was attributed to the preprint of Rosso [22] (a
detailed proof can be found in [16, Proposition 2.34]):

Proposition 2.19. Consider the order on �+ induced from the lexicographic order on standard
Lyndon words:

α < β ⇐⇒ �(α) < �(β) lexicographically .

This order is convex.

3 Standard Lyndon Loop Words
We will now extend the description above to the Lie algebra of loops into g:

Lg = g[t, t−1] = g ⊗Q Q[t, t−1]

with the Lie bracket given simply by

[x ⊗ tm, y ⊗ tn] = [x, y] ⊗ tm+n for any x, y ∈ g , m, n ∈ Z .

The triangular decomposition (1.3) extends to a similar decomposition at the loop level
Lg = Ln+ ⊕ Lh ⊕ Ln−, and our goal is to describe Ln+ along the lines of the previous section. To this
end, we think of Ln+ as being generated by e(d)

i = ei ⊗ td for all i ∈ I, d ∈ Z. Associate to e(d)

i the letter i(d),
and call d the exponent of i(d).

We thus obtain the infinite alphabet I = {i(d) | i ∈ I, d ∈ Z} and any word in these letters will be called
a loop word:

[
i(d1)

1 . . . i(dk)

k

]
. (3.1)

We shall now introduce a family of total orders on I, which will thus induce lexicographic orderings on
loop words (3.1). To this end, we fix a total order on I and choose a tuple of positive integers {ci}i∈I ∈ ZI

>0
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8 | S. Khomych et al.

(we call ci the weight of i). Following [16, Remark 3.15], we shall compare the loop letters of I via (1.9):

i(d) < j(e) ⇐⇒ d
ci

>
e
cj

or
d
ci

= e
cj

and i < j .

Due to its importance, we shall call the ratio d/ci the relative exponent of i(d) ∈ I. We also define the
weighted height of roots via:

f (α) =
∑
i∈I

ki · ci for any α =
∑
i∈I

kiαi ∈ �+ . (3.2)

All the results of subsection 2.1 continue to hold in the present setup, so we have a notion of Lyndon
loop words. Since Ln+ is Q+ ×Z-graded via deg e(d)

i = (αi, d), it makes sense to extend this grading to loop
words via

deg
[
i(d1)

1 . . . i(dk)

k

]
= (αi1 + · · · + αik , d1 + · · · + dk) .

The obvious generalization of (1.1) is:

Ln+ =
⊕
α∈�+

⊕
d∈Z

Q · e(d)
α

with e(d)
α = eα ⊗ td for all α ∈ �+, d ∈ Z. We note that Ln+ still has one-dimensional Q+ ×Z-graded pieces,

which is essential for the treatment of [11] to carry through.
On the other hand, the definition of standard (Lyndon) loop words in the present setup is a non-trivial

task since the alphabet I is infinite. Motivated by the treatment of [16] in the case when all ci = 1, we
shall likewise consider a filtration by finitely generated Lie algebras L(s)n+ of (3.4), corresponding to the
finite alphabets

I(s) =
{
i(d)
∣∣∣ i ∈ I, −s · ci ≤ d ≤ s · ci

}
∀ s ∈ N . (3.3)

We will establish some basic properties of the corresponding standard Lyndon loop words for L(s)n+

which ultimately imply that the notion of a “standard Lyndon loop word” does not actually depend on
the particular L(s)n+ with respect to which it is defined. We shall thus obtain the loop analogue (3.13) of
the bijection (1.8).

3.1 Filtration and basic properties
We now wish to extend Definition 2.10 in order to obtain a notion of standard (Lyndon) loop words, but
here we must be careful as the alphabet I is infinite. In particular, the key assumption “for any word v,
there are only finitely many words u of the same length and > v in the lexicographic order” of [11,§2]
clearly fails. To deal with this issue, we consider the increasing filtration:

Ln+ =
∞⋃

s=0

L(s)n+

defined with respect to the finite-dimensional Lie subalgebras (see notation (3.2)):

Ln+ ⊃ L(s)n+ =
⊕
α∈�+

s·f (α)⊕
d=−s·f (α)

Q · e(d)
α ∀ s ∈ N . (3.4)

As a Lie algebra, L(s)n+ is generated by {e(d)

i | i ∈ I, |d| ≤ s · ci}. We may thus apply Definition 2.10 to yield a
notion of standard (Lyndon) loop words with respect to the finite-dimensional Lie algebras L(s)n+, with
the words made up only of i(d) ∈ I(s).

The following result is proved completely analogously to [16, Proposition 2.23] (which in turn is an
adaptation of the analogous results from [12], cf. (2.11)):
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Standard Lyndon Loop Words | 9

Proposition 3.2. There exists a bijection:

� :
{
(α, d) ∈ �+ × Z

∣∣∣ |d| ≤ s · f (α)
}

∼−→
{

standard Lyndon loop
words for L(s)n+

}
, (3.5)

determined by �(αi, d) = [i(d)
]

and the following (generalized) Leclerc’s algorithm:

�(α, d) = max
(γ1,d1)+(γ2,d2)=(α,d)

γk∈�+ , |dk |≤s·f (γk)

�(γ1,d1)<�(γ2,d2)

{
concatenation �(γ1, d1)�(γ2, d2)

}
. (3.6)

Since standard Lyndon loop words give rise to bases of the finite-dimensional Lie algebras L(s)n+, then
the analogue of property (2.6) gives us:

U(L(s)n+) =
k∈N⊕

�1≥···≥�k standard Lyndon loop words
with all relative exponents in [−s,s]

Q · e�1 . . . e�k =

⊕
w–standard loop words with

all relative exponents in [−s,s]

Q · ew =
⊕

w–standard loop words with
all relative exponents in [−s,s]

Q · we . (3.7)

We shall next establish some properties of the bijection (3.5). We start with the following monotonicity
property:

Proposition 3.3. Fix s ∈ Z>0. For any positive root α ∈ �+ and any integer d ∈ [−s · f (α) + 1, s · f (α)],
the bijection (3.5) satisfies the following inequality:

�(α, d) < �(α, d − 1) . (3.8)

Proof. The proof is completely analogous to that of [16, Proposition 2.25]. �

3.4 Exponent-tightness
While many properties of the bijection (3.5) can be established very similarly to the special case (when
ci = 1 for all i) of [16], the naive generalization of [16, Proposition 2.26] shall not suffice. We discuss the
key upgrades in this subsection.

We start with the following definition:

Definition 3.5. A loop word w =
[
i(d1)

1 . . . i(dn)
n

]
is called exponent-tight if

i(dk)

k ≥ i(dr+1)
r for all 1 ≤ k, r ≤ n . (3.9)

When w is a Lyndon loop word, it clearly suffices to verify (3.9) only for k = 1. The following is the
main result of this subsection:

Theorem 3.6. For any root α ∈ �+ and any integer d ∈ {−s · f (α), . . . , s · f (α)}, the standard Lyndon
loop word �(α, d) is exponent-tight.

The proof of this result relies on Lemma 3.7 and Proposition 3.8 proved below. In what follows, we
write i(d) ∈ w to denote that w contains the letter i(d) ∈ I. If a loop word w has a Q×Z-degree deg w = (α, d),
then we will use the notation

hdeg w = α and vdeg w = d , (3.10)

and call these two notions the horizontal and the vertical degree, respectively.
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10 | S. Khomych et al.

Lemma 3.7. Any two exponent-tight loop words v and w of the same Q × Z-degree contain the
same multisets of letters.

Proof. First, let us show that if i(k) ∈ w then also i(k) ∈ v. Assuming the contradiction, we must have
i(k

′) ∈ v for some k′ �= k, as hdeg v = hdeg w. Without loss of generality, we may assume that k′ ≥ k + 1,
so that i(k

′) ≤ i(k+1). As vdeg v = vdeg w, there are two letters j(t) ∈ w and j(t
′) ∈ v, such that t′ ≤ t − 1, so

that j(t) ≤ j(t
′+1). Since both words v and w are exponent-tight, we also have

i(k+1) ≤ j(t) and j(t
′+1) ≤ i(k

′) .

Combining the above inequalities, we obtain:

j(t) ≤ j(t
′+1) ≤ i(k

′) ≤ i(k+1) ≤ j(t) ,

so that j(t) = j(t
′+1) = i(k

′) = i(k+1). Hence, i(k) = j(t
′) ∈ v, a contradiction.

Thus, any letter of w is contained in v and vice-versa. It remains to show that multiplicities of all
letters in w and v are the same. Since hdeg v = hdeg w, the sum of all multiplicities of i(•) ∈ w is the
same as that of i(•) ∈ v for any i ∈ I. Thus, the claim is obvious if both w and v contain i(k) and no other
i(k

′) for k′ �= k. Assume now that w (and hence also v) contains i(k), i(k
′) for k′ > k. Then k′ = k + 1, due

to i(k
′) ≥ i(k+1). In this case, we may not have j(t), j(t+1) ∈ w for any j �= i and t ∈ Z. Otherwise, we would

have i(k+1) ≥ j(t+1) ≥ i(k+1), due to exponent-tightness, and so j(t) = i(k), a contradiction with j �= i. Thus,
for any j �= i, there is only one value of exponent such that j(•) is contained in w (and hence in v). As
deg v = deg w, we thus also conclude that multiplicities of i(k), i(k+1) in w and v are the same. �

Proposition 3.8. Let v = [i(d1)

1 . . . i(dm)
m ] and w = [j(t1)

1 . . . j(tm)
m ] be two exponent-tight loop words such

that hdeg w = hdeg v, vdeg w = vdeg v + 1, and j(t1)

1 ≤ j(tr)
r for all r. Then:

(a) The first letter j(t1)

1 of the loop word w equals max1≤a≤m {i(da+1)
a };

(b) The multisets of the other letters coincide: {i(da)
a }m

a=1 − {j(t1−1)

1 } = {j(ta)
a }m

a=2.

Proof. Let i(dr+1)
r = max1≤a≤m {i(da+1)

a }. Since v is exponent-tight, so is any loop word u formed by the
letters {i(da)

a }a �=r ∪ {i(dr+1)
r } (a loop word is exponent-tight iff any loop word formed by the same multiset

of letters is exponent-tight). But then w and u must have the same multisets of letters, according to
Lemma 3.7. Since the loop word u satisfies (b), v is exponent-tight and w starts with its smallest letter,
we obtain both properties (a) and (b). �

Remark 3.9. Following the setup of Proposition 3.8, one may vice-versa express the multiset of
letters of v through the one for w: {i(da)

a }m
a=1 = {j(t1−1)

1 } ∪ {j(ta)
a }m

a=2.

Now we are ready to present the proof of Theorem 3.6.

Proof of Theorem 3.6. The proof proceeds by induction on the height n = ht(α).
The base case of the induction is n = 2. Let �(α, d) = [i(d1)

1 i(d2)

2 ], where i(d1)

1 < i(d2)

2 and i1 �= i2. We
claim that i(d1−1)

1 > i(d2+1)

2 , as otherwise we would get �(α, d) = [i(d1)

1 i(d2)

2 ] < [i(d1−1)

1 i(d2+1)

2 ], a contradiction
with Leclerc’s algorithm (3.6). But then, invoking (3.6), we obtain �(α, d) ≥ i(d2+1)

2 i(d1−1)

1 . This implies the
desired inequality i(d1)

1 ≥ i(d2+1)

2 , establishing the base of the induction.
Let us now prove the step of the induction, assuming the assertion holds for all roots of height < n. If

not, then for some root α ∈ �+ of height n and some d ∈ Z, we have �(α, d) = [i(d1)

1 . . . i(dn)
n ] with i(dr+1)

r > i(d1)

1

for some 1 < r ≤ n. Let us consider the costandard factorization of �(α, d):

�(α, d) = �(γ1, k1)�(γ2, k2) ,

where α = γ1 + γ2, d = k1 + k2, �(γ1, k1) < �(γ2, k2), and roots γ1, γ2 have height < n. By the induction
hypothesis, i(dr)

r /∈ �(γ1, k1), so that i(dr)
r ∈ �(γ2, k2). Arguing as above, we claim that �(γ1, k1−1) > �(γ2, k2+1),

as otherwise according to (3.8) we would get �(α, d) = �(γ1, k1)�(γ2, k2) < �(γ1, k1 − 1)�(γ2, k2 + 1), a
contradiction with (3.6). The inequality �(γ1, k1 − 1) > �(γ2, k2 + 1) implies

�(α, d) ≥ �(γ2, k2 + 1)�(γ1, k1 − 1) , (3.11)
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Standard Lyndon Loop Words | 11

due to (3.6). Since ht(γ2) < n, both words �(γ2, k2) and �(γ2, k2 + 1) are exponent-tight by the induction
hypothesis. Therefore, the first letter of �(γ2, k2 +1) is i(dt+1)

t = maxht(γ1)<a≤n{i(da+1)
a }, due to Proposition 3.8.

Note that i(dt+1)
t ≤ i(d1)

1 , according to (3.11). Therefore, we get i(dr+1)
r ≤ i(dt+1)

t ≤ i(d1)

1 , a contradiction. �

Remark 3.10. Let us emphasize that applying directly the argument from the proof of [16,
Proposition 2.26], one rather gets a weaker statement:

�(α, d) =
[
i(d1)

1 . . . i(dn)
n

]
with

⌊
d

f (α)

⌋
≤ dr

cir
≤
⌈

d
f (α)

⌉
∀ 1 ≤ r ≤ n (3.12)

with f (α) defined in (3.2). In particular, if ci = N > 1 for all i ∈ I (thus, the order on I is the same
as for ci = 1 and so �(α, d) are the same as in [16]), then (3.12) only implies |dr − dt| ≤ N, while
Theorem 3.6 implies a much finer bound |dr − dt| ≤ 1.

The following is a simple corollary of Theorem 3.6:

Corollary 3.11. (a) For α ∈ �+, d > 0, the first letter of �(α, d) has exponent > 0.
(b) For α ∈ �+, d ≤ 0, the first letter of �(α, d) has exponent ≤ 0.

Proof. Let �(α, d) = [i(d1)

1 . . . i(dn)
n ]. Then i(d1)

1 ≤ i(dr)
r and so d1

ci1
≥ dr

cir
for any r. Thus, if d1 ≤ 0, then dr ≤ 0 for

any r, and so d =∑n
r=1 dr ≤ 0, implying part (a).

To prove (b), we note that i(d1)

1 ≥ i(dr+1)
r for any r by Theorem 3.6, thus d1

ci1
≤ dr+1

cir
. If d1 > 0, then dr ≥ 0

for all r, and so d =∑n
r=1 dr > 0, a contradiction. �

3.12 Stabilization
As an important consequence of Theorem 3.6, we obtain:

Proposition 3.13. Any loop word w with relative exponents in [−s, s] is standard (Lyndon) with
respect to L(s)n+ iff it is standard (Lyndon) with respect to L(s+1)n+.

Proof. While the proof of [16, Proposition 2.28] can be directly generalized with the help of Theorem 3.6,
let us present a shorter argument. Consider loop words

� = �(α, d) of (3.5) with respect to L(s)n+ ,

�′ = �(α, d) of (3.5) with respect to L(s+1)n+ .

Combining (3.12) with Theorem 3.6 and Proposition 3.8, we see that both words � and �′ contain the
same multisets of letters (all thus being elements of I(s)). Additionally, their standard bracketings e�, e�′

are both nonzero multiples of e(d)
α . By the very definition of standard Lyndon loop words, this implies

that � = �′. �

The above result implies that the notion of a “standard Lyndon loop word” does not depend on the
particular L(s)n+ with respect to which it is defined. We conclude that there exists a bijection:

� : �+ × Z ∼−→
{
standard Lyndon loop words

}
(3.13)

satisfying property (3.6) with s = ∞ as well as Theorem 3.6 and Proposition 3.8.

3.14 Periodicity
While � of (3.13) is a bijection between infinite sets, it is actually determined by the values of � only on
a finite “block” of �+ × Z:

L =
{
(α, d)

∣∣∣α ∈ �+, 0 ≤ d < f (α)
}
, (3.14)

cf. notation (3.2). More precisely, we have the following periodicity property:
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12 | S. Khomych et al.

Proposition 3.15. For any (α, d) ∈ �+ ×Z, the standard Lyndon loop word �(α, d + f (α)) is obtained
from the standard Lyndon loop word �(α, d) by increasing all exponents of its letters i(•) by ci

(i.e., increasing all relative exponents by 1).

Proof. Let ϒ denote the aforementioned bijective map on the set of loop words:

ϒ :
[
i(d1)

1 . . . i(dk)

k

]
�→
[
i
(d1+ci1

)

1 . . . i
(dk+cik

)

k

]
. (3.15)

Note that u < v iff ϒ(u) < ϒ(v) in accordance with (1.9). Thus, (3.15) preserves the property of a loop
word being Lyndon. Likewise, if � = �1�2 is the costandard factorization of �, then ϒ(�) = ϒ(�1)ϒ(�2)

is the costandard factorization of ϒ(�). This also implies that eϒ(�) = ϒ̃(e�), where ϒ̃ is the Lie algebra
isomorphism:

ϒ̃ : Ln+ ∼−→ Ln+ given by e(d)
α �→ e(d+f (α))

α .

Hence, (3.15) also preserves the property of a Lyndon loop word being standard. �

Similarly to [16, Proposition 2.31], we also note the following simple property:

Proposition 3.16. The restriction of (3.13) to �+ × {0} matches (1.8).

Proof. This is simply the s = 0 case of Proposition 3.13. �

Since U(Ln+) is the direct limit as s → ∞ of the U(L(s)n+), then (3.7) implies:

U(Ln+) =
k∈N⊕

�1≥···≥�k standard Lyndon loop words

Q · e�1 . . . e�k =

⊕
w–standard loop words

Q · ew =
⊕

w–standard loop words

Q · we .

(3.16)

3.17 Convexity and minimality
We conclude this section with a few fundamental properties of the total order on �+ × Z induced
by transporting the lexicographic order on loop words via the bijection (3.13). A straightforward
generalization of [16, Proposition 2.34] establishes that this order is convex, a notion that is a direct
generalization of Definition 2.17:

Proposition 3.18. For all (α, d), (β, e), (α + β, d + e) ∈ �+ × Z, we have:

�(α, d) < �(α + β, d + e) < �(β, e)

if �(α, d) < �(β, e).

This result admits the following natural generalization:

Corollary 3.19. Consider any k, k′ ≥ 1 and any

(γ1, d1), . . . , (γk, dk), (γ ′
1, d′

1), . . . , (γ ′
k′ , d′

k′ ) ∈ �+ × Z

such that (γ1, d1) + · · · + (γk, dk) = (γ ′
1, d′

1) + · · · + (γ ′
k′ , d′

k′ ). Then we have:

min
{
�(γ1, d1), . . . , �(γk, dk)

}
≤ max

{
�(γ ′

1, d′
1), . . . , �(γ ′

k′ , d′
k′ )
}
.

Proof. The proof is completely analogous to that of [16, Corollary 2.37]. �
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An important consequence of this Corollary is the following result, which will play a crucial role in
our proof of Theorem 5.8 below:

Proposition 3.20. If �1 < �2 are standard Lyndon loop words such that �1�2 is also a standard
Lyndon loop word, then we cannot have:

�1 < �′
1 < �′

2 < �2

for standard Lyndon loop words �′
1, �′

2 such that deg �1 + deg �2 = deg �′
1 + deg �′

2.

Proof. The proof is completely analogous to that of [16, Proposition 2.38]. �

4 Lyndon Words and Weyl Groups
In this section, we show that the order (1.12) on �+ ×Z induced by (3.13) is related to the construction of
[19, 20] applied to a reduced decomposition of a translation element in the extended affine Weyl group
encoding the weights ci.

4.1 Affine Lie algebras
In this subsection, we recall the next simplest class of Kac-Moody Lie algebras after the simple ones,
the affine Lie algebras. Let g be a simple finite-dimensional Lie algebra, {αi}i∈I be the simple roots, and
θ ∈ �+ be the highest root. The labels of the Dynkin diagram of g are the positive integers {θi}i∈I such
that

θ =
∑
i∈I

θiαi . (4.1)

We define Î = I�{0}. Consider the affine root lattice Q̂ with the generators {αi}i∈̂I which admits a natural
identification

Q̂ ∼−→ Q × Z with αi �→ (αi, 0) ∀ i ∈ I, α0 �→ (−θ , 1) . (4.2)

We endow Q̂ with the symmetric pairing defined by:

(
(α, n), (β, m)

) = (α, β) ∀ α, β ∈ Q , n, m ∈ Z.

As opposed from the non-degenerate pairing on Q itself, the pairing on affine type root systems has a
one-dimensional kernel, which is spanned by the minimal imaginary root δ = α0 + θ = (0, 1) ∈ Q ×Z. This
implies the fact that:

(α0 + θ , −) = 0 ⇐⇒ d0j +
∑
i∈I

θidij = 0 ∀ j ∈ I , (4.3)

where {dij}i,j∈̂I is the symmetrized affine Cartan matrix. Let (aij)i,j∈̂I be the affine Cartan matrix, giving
rise to the affine Lie algebra ĝ generated by {ei, fi, hi}i∈̂I with the defining relations (2.7)–(2.9). We note that
(4.3) implies that

c = h0 +
∑
i∈I

θihi is a central element of ĝ .

The associated affine root system �̂ = �̂+ � �̂− has the following description:

�̂+ = {�+ × Z≥0
} � {0 × Z>0

} � {�− × Z>0
}
,

�̂− = {�− × Z≤0
} � {0 × Z<0

} � {�+ × Z<0
}
.
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14 | S. Khomych et al.

With this notation, we have the following root space decomposition, cf. (2.10):

ĝ = ĥ ⊕
⊕
α∈�̂

ĝα where ĥ ⊂ ĝ − Cartan subalgebra.

The rich theory of affine Lie algebras is mainly based on the following key result:

Claim 4.2. There exists a Lie algebra isomorphism:

ĝ/(c) ∼−→ Lg

determined on the generators by the following formulas:

ei �→ ei ⊗ t0 fi �→ fi ⊗ t0 hi �→ hi ⊗ t0 ∀ i ∈ I ,

e0 �→ fθ ⊗ t1 f0 �→ eθ ⊗ t−1 h0 �→ −[eθ , fθ ] ⊗ t0 ,

where eθ and fθ are root vectors of degrees θ and −θ , respectively.

4.3 Affine Weyl groups
We have already mentioned in Remark 2.18 that convex orders of �+ are in 1-to-1 correspondence with
reduced decompositions of the longest element of the finite Weyl group W associated to g. To define
the latter, consider the coroot lattice:

Q∨ =
⊕
i∈I

Z · α∨
i ,

where for any α ∈ �+ the corresponding coroot α∨ is defined via α∨ = 2α
(α,α)

. The finite Weyl group W,
that is, the abstract Coxeter group associated to the Cartan matrix (aij)i,j∈I, acts faithfully on the coroot
lattice Q∨ and the root lattice Q:

W � Q∨ and W � Q (4.4)

via the following assignments (∀ i ∈ I, μ ∈ Q∨, λ ∈ Q):

si(μ) = μ − (αi, μ)α∨
i and si(λ) = λ − (λ, α∨

i )αi .

In the present setup, we need the affine Weyl group, defined as the semidirect product Ŵ = W � Q∨

with respect to the action (4.4). It is well-known that Ŵ is also the Coxeter group associated to the
Cartan matrix (aij)i,j∈̂I. In other words, the affine Weyl group is generated by the symbols {si}i∈̂I defined
by:

s0 = (sθ , −θ∨) and si = (si, 0) ∀ i ∈ I .

The affine analogue of the action W � Q from (4.4) is

Ŵ � Q̂ , (4.5)

where the generators of the affine Weyl group act by the following formulas:

si(λ, d) = (λ − (λ, α∨
i )αi, d

) ∀ i ∈ I ,

s0(λ, d) = (λ − (λ, θ∨)θ , d + (λ, θ∨)
)
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for all (λ, d) ∈ Q×Z � Q̂, see (4.2). An important feature of the affine Weyl group is that it contains a large
commutative subalgebra 1 � Q∨ ⊂ Ŵ which acts on the affine root lattice Q̂ � Q × Z by translations:

μ̂(λ, d) = (λ, d − (λ, μ)
) ∀μ ∈ Q∨, λ ∈ Q, d ∈ Z . (4.6)

Henceforth, we write μ̂ for the element 1 � μ ∈ Ŵ and call it a translation element.
Finally, we also need to consider the extended affine Weyl group, defined as the semidirect product

Ŵext = W � P∨, where P∨ is the coweight lattice. Thus, P∨ = ⊕i∈I Z · ω∨
i with the fundamental coweights

ω∨
i dual to the simple roots:

(αj, ω
∨
i ) = δij . (4.7)

In particular, Q∨ is a finite index subgroup of P∨. It is well-known that

Ŵext � T � Ŵ, (4.8)

where the finite subgroup T of Ŵext is naturally identified with a subgroup of automorphisms of the
Dynkin diagram of ĝ. The semi-direct product (4.8) is such that τsi = sτ(i)τ for any τ ∈ T and i ∈ Î. Finally,
the action (4.5) extends to

Ŵext � Q̂

via τ(αi) = ατ(i) for τ ∈ T , i ∈ Î. We still have the following formula, akin to (4.6):

μ̂(λ, d) = (λ, d − (λ, μ)
) ∀μ ∈ P∨, λ ∈ Q, d ∈ Z . (4.9)

4.4 Reduced decompositions
Recall that the length of an element x ∈ Ŵ, denoted by l(x) ∈ N, is the smallest number l ∈ N such
that we can write x = si1−l

. . . si0 for various i1−l, . . . , i0 ∈ Î. Every such factorization is called a reduced
decomposition of x. Given such a reduced decomposition, the terminal subset of the affine root system is:

Ex =
{
si0 si−1 . . . sik+1

(αik )

∣∣∣ 0 ≥ k > −l
}

⊂ �̂ . (4.10)

It is well-known that Ex is independent of the reduced decomposition of x, and consists of the positive
affine roots (all with multiplicity one) that are mapped to negative ones under the action of x:

Ex =
{̃
λ ∈ �̂+

∣∣∣ x(̃λ) ∈ �̂−
}

. (4.11)

In particular, we get the following description of the length of x:

l(x) = #
{̃
λ ∈ �̂+

∣∣∣ x(̃λ) ∈ �̂−
}

.

The aforementioned length function l : Ŵ → N naturally extends to Ŵext via

l(τw) = l(w) for any τ ∈ T , w ∈ Ŵ .

Thus, the length l(x) of x ∈ Ŵext is the smallest number l such that we can write:

x = τsi1−l
. . . si0 (4.12)

for various i1−l, . . . , i0 ∈ Î and (a uniquely determined) τ ∈ T . Given a reduced decomposition of x ∈ Ŵext

as in (4.12) with l = l(x), define Ex via (4.10). We note that Ex is still described via (4.11) since τ acts by
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permuting negative affine roots. Therefore, Ex is independent of the reduced decomposition of x and we
still have:

l(x) = #
{̃
λ ∈ �̂+

∣∣∣ x(̃λ) ∈ �̂−
}

.

The following result is well-known (cf. [16, Proposition 3.9]):

Proposition 4.5. For any μ ∈ P∨ such that (αi, μ) ∈ Z>0 for all i ∈ I, we have

Eμ̂ =
{
(α, d)

∣∣∣α ∈ �+, 0 ≤ d < (α, μ)
}
, (4.13)

and consequently

l(μ̂) =
∑

α∈�+
(α, μ) .

4.6 Identification of orders
We start by recalling the classical construction of [3]. Pick any μ ∈ P∨ such that (αi, μ) ∈ Z>0 for all i ∈ I.
Let l = l(μ̂) and consider any reduced decomposition:

μ̂ = τsi1−l
si2−l

. . . si0 . (4.14)

Extend i1−l, . . . , i0 to a τ -quasiperiodic bi-infinite sequence {ik}k∈Z via:

ik+l = τ(ik) ∀ k ∈ Z . (4.15)

To such a bi-infinite sequence (4.15), one assigns the following bi-infinite sequence of affine roots:

βk =
⎧⎨
⎩si1 si2 . . . sik−1

(−αik ) if k > 0

si0 si−1 . . . sik+1
(αik ) if k ≤ 0

. (4.16)

According to [19, 20], the sequences:

β1 > β2 > β3 > · · · (4.17)

β0 < β−1 < β−2 < · · · (4.18)

give convex orders of the sets �+ × Z<0 and �+ × Z≥0, respectively. We note that βk+l = μ̂(βk) for any
k ∈ Z. Due to (4.9), if βk = (α, d) and βk+l = (α′, d′), then

α = α′ and d = d′ + (α, μ) . (4.19)

This reveals a periodicity of the entire set �+ × Z, not just �+ × Z<0 and �+ × Z≥0.
Evoking the setup of Section 3, let us consider

μ =
∑
i∈I

ciω
∨
i (4.20)

so that f (α) = (α, μ) for any α ∈ �+, cf. (3.2) and (4.7). The following is the first main result of this section,
which naturally generalizes [16, Theorem 3.14]:

Theorem 4.7. There exists a reduced decomposition of μ̂ ∈ Ŵext such that:

• the order (4.17) of the roots {(α, d) |α ∈ �+, d < 0} matches the lexicographic order of the standard
Lyndon loop words �(α, −d) via (1.12),
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• the order (4.18) of the roots {(α, d) |α ∈ �+, d ≥ 0} matches the lexicographic order of the standard
Lyndon loop words �(α, −d) via (1.12).

Proof. Recall the finite subset L = {(α, d) |α ∈ �+, 0 ≤ d < f (α)} ⊂ �̂+ from (3.14), ordered via:

(α, d) < (β, e) ⇐⇒ �(α, −d) < �(β, −e) . (4.21)

If (α, d), (β, e) ∈ L with (α, d) < (β, e) and (α + β, d + e) ∈ �̂, then clearly (α + β, d + e) ∈ L, as well as
(α, d) < (α + β, d + e) < (β, e), due to Proposition 3.18.

Furthermore, we claim that if λ̃, μ̃ ∈ �̂+ with λ̃ + μ̃ ∈ L, then at least one of λ̃ or μ̃ belongs to L and is
< λ̃ + μ̃. There are two cases to consider:

(1) If λ̃ = (α, d), μ̃ = (β, e) with α, β ∈ �+ and d, e ≥ 0, we can assume without loss of generality that
�(α, −d) < �(β, −e). By Proposition 3.18, we have �(α, −d) < �(α + β, −d − e) < �(β, −e). It remains to
prove d < f (α). If not, then e < f (β) as d+e < f (α+β). Hence, the first letter of �(α, −d) has a relative
exponent ≤ −1 and the first letter of �(β, −e) has a relative exponent > −1, due to Corollary 3.11
and Proposition 3.15, which contradicts �(α, −d) < �(β, −e).

(2) In the remaining case, we may assume λ̃ = (α + β, d), μ̃ = (−β, e), so that α, β, α + β ∈ �+ and
d ≥ 0, e > 0. Then d < d+e < f (α) < f (α+β), so that λ̃ ∈ L. It remains to verify �(α+β, −d) < �(α, −d−e).
Since (α+β, −d) = (β, e)+(α, −d−e), it suffices to prove �(β, e) < �(α, −d−e), due to Proposition 3.18.
But applying Corollary 3.11 once again, we see that the exponent of the first letter in �(β, e) is > 0,
while the exponent of the first letter in �(α, −d − e) is ≤ 0, hence, indeed �(β, e) < �(α, −d − e).

Invoking [18] (which also applies to finite subsets in affine root systems), we get:

(I) there is a unique element x ∈ Ŵ such that L = Ex,
(II) the order of L arises via a unique reduced decomposition of x, where the set Ex of (4.10) is ordered

via αi0 < si0 (αi−1 ) < · · · < si0 si−1 . . . si2−l
(αi1−l

).

However, as follows from (4.13), we have

L = Eμ̂ =
{
β0, β−1, . . . , β1−l

}
. (4.22)

There is a unique τ ∈ T such that τ−1μ̂ ∈ Ŵ. Thus, we obtain L = Eμ̂ = Eτ−1μ̂. Therefore, in view of the
uniqueness statement of (I), the result of (II) implies that there exists a reduced decomposition (4.14) of
μ̂ such that the ordered finite sequence β0 < β−1 < · · · < β1−l exactly coincides with L ordered via (4.21).

The proof of Theorem 4.7 now follows by combining (4.19), Proposition 3.15, and Theorem 3.6,
precisely as in [16]. Indeed, let us split �+ × Z into the blocks:

LN =
{
(α, d)

∣∣∣α ∈ �+, N · f (α) ≤ d < (N + 1)f (α)
}

so that ⊔
N≥0

LN = �+ × Z≥0 = {βk}k≤0 ,
⊔
N<0

LN = �+ × Z<0 = {βk}k>0 .

According to (4.19) and L0 = L = {β0, . . . , β1−l}, we have:

LN =
{
β−Nl, β−Nl−1, . . . , β1−(N+1)l

}
∀ N ∈ Z .

For any (α, d) ∈ LN, the relative exponent of the first letter in �(α, −d) lies in (−N − 1; −N], due to
Corollary 3.11 and Proposition 3.15. Thus, for any (α, d) ∈ LM, (β, e) ∈ LN with M > N, we have
�(α, −d) > �(β, −e). As for the affine roots from the same block, consider βr−Nl, βs−Nl ∈ LN with
1 − l ≤ s < r ≤ 0. If βr = (α, d) and βs = (β, e), then βr−Nl = (α, d + N · f (α)) and βs−Nl = (β, e + N · f (β)), due to
(4.19). On the other hand, the words �(α, −d − N · f (α)) and �(β, −e − N · f (β)) are obtained from �(α, −d)

and �(β, −e), respectively, by decreasing each relative exponent by N, due to Proposition 3.15. Since the
latter operation obviously preserves the lexicographic order, and �(α, −d) < �(β, −e) as a consequence
of r > s, we obtain the required inequality �(α, −d − N · f (α)) < �(β, −e − N · f (β)). �
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18 | S. Khomych et al.

Remark 4.8. Since �(α, −d) < �(β, −e) if d < 0 ≤ e, a consequence of Corollary 3.11, we actually
have the stronger result that the order of �+ × Z given by:

· · · < β3 < β2 < β1 < β0 < β−1 < β−2 < · · ·

matches the lexicographic order of the standard Lyndon loop words �(α, −d).

In the next section, we shall need a certain generalization of (4.22). To this end, for any i ∈ I and d ≥ 0,
we define the subset L<(i,d) of �+ × Z via

L<(i,d) =
{
(α, p)

∣∣∣α ∈ �+, p ∈ Z≥0, �(α, −p) < �(αi, −d)
}
.

We also define a collection of nonnegative integers {pj}j∈I via:

pj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d if j = i⌈
d·cj

ci

⌉
if

d·cj

ci
/∈ Z

d·cj

ci
if

d·cj

ci
∈ Z and j > i

d·cj

ci
+ 1 if

d·cj

ci
∈ Z and j < i

. (4.23)

Finally, for any positive root α =∑i∈I kiαi ∈ �+, we define p(α) ∈ N via

p(α) =
∑
i∈I

kipi .

Proposition 4.9. For any i ∈ I and d ≥ 0, we have

L<(i,d) =
{
(α, p)

∣∣∣α ∈ �+, 0 ≤ p < p(α)
}
.

Proof. First, let us prove that �(α, −p) < �(αi, −d) = i(−d) implies p < p(α). Let j(−e) be the first letter of
�(α, −p), so that j(−e) < i(−d). Hence, e/cj ≤ d/ci and the inequality is strict if j ≥ i. This is equivalent to
e < pj, due to the definition (4.23). Then for any letter ı(−s) ∈ �(α, −p), we have ı(−s+1) ≤ j(−e) < i(−d) with
the first inequality due to Theorem 3.6. As above, this implies s − 1 < pı , so that s ≤ pı . Summing all
these inequalities, we obtain the desired inequality p < p(α).

Let us prove the opposite implication by contradiction: assume that �(α, −p) > �(αi, −d) for some
α ∈ �+ and p < p(α). Let j(−e) be the first letter of �(α, −p), so that j(−e) ≥ i(−d). As �(α, −p) is Lyndon, any
letter ı(−s) ∈ �(α, −p) satisfies j(−e) ≤ ı(−s). Therefore, s/cı ≥ d/ci and the inequality is strict for ı < i. Thus,
s ≥ pı . Summing all these inequalities, we obtain p ≥ p(α), a contradiction. This completes our proof of
�(α, −p) < �(αi, −d) for any 0 ≤ p < p(α). �

In view of Proposition 4.5, the above result can be recast as follows:

Proposition 4.10. For any i ∈ I and d ≥ 0, we have L<(i,d) = Eω̂i,d , where

ωi,d =
∑
j∈I

pjω
∨
j ∈ P∨ (4.24)

with pj’s defined in (4.23).

5 Quantum Groups and PBW Bases
In this section, we combine the results of Subsection 4.6 with the PBW-type bases [2, 3] of quantum
affine algebras (in the Drinfeld–Jimbo realization) to produce a family of PBW-type combinatorial bases
of quantum loop algebras (in the new Drinfeld realization), thus generalizing the construction of [12]
for the finite type.
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5.1 Quantum groups
We shall follow the notation of Subsection 2.14, corresponding to a simple finite-dimensional g.
Consider the q-numbers, q-factorials, and q-binomial coefficients:

[k]i = qk
i − q−k

i

qi − q−1
i

, [k]!i = [1]i . . . [k]i ,
(

n
k

)
i
= [n]!i

[k]!i [n − k]!i

for any i ∈ I, where qi = q
dii
2 .

Definition 5.2. The Drinfeld-Jimbo quantum group of g, denoted by Uq(g), is an associative Q(q)-
algebra generated by {ei, fi, ϕ

±1
i }i∈I subject to the following defining relations (for all i, j ∈ I):

1−aij∑
k=0

(−1)k
(

1 − aij

k

)
i
ek

i eje
1−aij−k
i = 0 if i �= j , (5.1)

ϕiej = qdij ejϕi , ϕiϕj = ϕjϕi , (5.2)

as well as the opposite relations with e’s replaced by f ’s, and finally the relation:

[ei, fj] = δij · ϕi − ϕ−1
i

qi − q−1
i

. (5.3)

The algebra Uq(g) is naturally Q-graded via

deg ei = αi , deg ϕi = 0 , deg fi = −αi .

Furthermore, it admits the triangular decomposition (1.6):

Uq(g) = Uq(n
+) ⊗ Uq(h) ⊗ Uq(n

−) ,

where Uq(n
+), Uq(h), and Uq(n

−) are the subalgebras of Uq(g) generated by the ei’s, ϕ±1
i ’s, and fi’s,

respectively. In fact, the associative algebra Uq(n
+) is generated by ei’s with the defining relations (5.1);

cf., for example, [9,§4.21].
If we write ϕi = qhi

i and take the limit q → 1, then Uq(g) degenerates to U(g). It is thus natural that
many features of the latter also admit q-deformations. For example, let us recall the notion of standard
Lyndon words from Subsections 2.1–2.7, and consider the following q-version of Definition 2.8 and the
construction (2.4):

Definition 5.3. ([12]) For any word w, define ew ∈ Uq(n
+) by:

e[i] = ei

for all i ∈ I, and then recursively by:

e� = [e�1 , e�2 ]q = e�1 e�2 − q(deg �1,deg �2)e�2 e�1

if � is a Lyndon word with the costandard factorization (2.1), and:

ew = e�1 . . . e�k

if w is an arbitrary word with the canonical factorization �1 . . . �k, as in (2.2).
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20 | S. Khomych et al.

We also define fw ∈ Uq(n
−) by replacing e’s by f ’s in the above Definition. Then we have the following

natural q-deformation of the PBW theorem (2.6):

Theorem 5.4. We have:

Uq(n
+) =

k∈N⊕
�1≥···≥�k standard Lyndon words

Q(q) · e�1 . . . e�k =
⊕

w–standard words

Q(q) · ew .

The analogous result also holds with n+ ↔ n− and e ↔ f .

This result is a consequence of the usual PBW theorem for Uq(n
±), since e�’s are simply renormal-

izations of the standard root vectors constructed in [15] using the braid group action, according to [12,
Theorem 28] (cf. also [16, Section 5.5]).

5.5 Quantum loop algebras
To introduce a loop version of the above algebras, consider the generating series

ei(z) =
∑
k∈Z

ei,k

zk
, fi(z) =

∑
k∈Z

fi,k

zk
, ϕ±

i (z) =
∞∑

l=0

ϕ±
i,l

z±l

as well as the formal delta function δ(z) =∑k∈Z zk. For any i, j ∈ I, we set:

ζij

( z
w

)
= z − wq−dij

z − w
.

Definition 5.6. The quantum loop group (in the new Drinfeld realization) of g, denoted by Uq(Lg),
is an associative Q(q)-algebra generated by {ei,k, fi,k, ϕ±

i,l}k∈Z,l∈N
i∈I subject to the following defining

relations (for all i, j ∈ I):

ei(z)ej(w)ζji

(w
z

)
= ej(w)ei(z)ζij

( z
w

)
, (5.4)

∑
σ∈S(1−aij)

1−aij∑
k=0

(−1)k
(

1 − aij

k

)
i
· ei(zσ(1)) . . . ei(zσ(k))ej(w)ei(zσ(k+1)) . . . ei(zσ(1−aij)) = 0 if i �= j , (5.5)

ϕ±
i (z)ej(w)ζji

(w
z

)
= ej(w)ϕ±

i (z)ζij

( z
w

)
, (5.6)

ϕ±
i (z)ϕ±′

j (w) = ϕ±′
j (w)ϕ±

i (z) , ϕ+
i,0ϕ

−
i,0 = 1 , (5.7)

as well as the opposite relations with e’s replaced by f ’s, and finally the relation:

[
ei(z), fj(w)

] = δij

qi − q−1
i

δ
( z

w

)
·
(
ϕ+

i (z) − ϕ−
i (w)

)
. (5.8)

The algebra Uq(Lg) is naturally Q × Z-graded via

deg ei,k = (αi, k) , deg ϕ±
i,l = (0, ±l) , deg fi,k = (−αi, k)

for i ∈ I, k ∈ Z, l ∈ N. If x ∈ Uq(Lg) has a Q × Z-degree deg x = (α, d), then we set

hdeg x = α and vdeg x = d ,

and call these the horizontal and the vertical degrees of x, respectively; cf. (3.10).
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Finally, the algebra Uq(Lg) also admits the triangular decomposition (cf. [8,§3.3]):

Uq(Lg) = Uq(Ln+) ⊗ Uq(Lh) ⊗ Uq(Ln−) , (5.9)

where Uq(Ln+), Uq(Lh), Uq(Ln−) are the subalgebras of Uq(Lg) generated by the ei,k’s, ϕ±
i,l ’s, and fi,k’s, respec-

tively. In fact, the associative algebra Uq(Ln+) is generated by ei,k’s with the defining relations (5.4, 5.5).
Let us now present a loop version of Definition 5.3:

Definition 5.7. For any loop word w, define ew ∈ Uq(Ln+) and fw ∈ Uq(Ln−) by:

e[i(d)] = ei,d and f[i(d)] = fi,−d

for all i ∈ I, d ∈ Z, and then recursively by:

e� = [e�1 , e�2 ]q = e�1 e�2 − q(hdeg �1,hdeg �2)e�2 e�1 , (5.10)

f� = [f�1 , f�2 ]q = f�1 f�2 − q(hdeg �1,hdeg �2)f�2 f�1 (5.11)

if � is a Lyndon loop word with the costandard factorization (2.1), and:

ew = e�1 . . . e�k and fw = f�1 . . . f�k

if w is an arbitrary loop word with the canonical factorization �1 . . . �k, as in (2.2).

Note that deg ew = − deg fw = deg w for all loop words w. The following is the main result of this
section, which generalizes (3.16) as well as Theorem 5.4:

Theorem 5.8. We have:

Uq(Ln+) =
k∈N⊕

�1≥···≥�k standard Lyndon loop words

Q(q) · e�1 . . . e�k =
⊕

w–standard loop words

Q(q) · ew .

The analogous result also holds with Uq(Ln+) ↔ Uq(Ln−) and e ↔ f .

The proof of this result occupies the rest of this section. While it looks similar to the proof of [16,
Theorem 4.24], we shall crucially utilize Proposition 4.10.

5.9 Quantum affine algebras
Let us recall the notion of Drinfeld–Jimbo quantum affine algebras and their relation to quantum loop
algebras Uq(Lg). We use the notations of Subsection 4.1.

Definition 5.10. The Drinfeld–Jimbo quantum affine algebra of ĝ, denoted by Uq (̂g), is defined
exactly as Uq(g) in Definition 5.2, but using Î instead of I.

Let Uq (̂n
+), Uq (̂h), Uq (̂n

−) be the subalgebras generated by the ei’s, ϕ±1
i ’s, fi’s, respectively (with i ∈ Î).

We have a triangular decomposition analogous to (1.6):

Uq (̂g) = Uq (̂n
+) ⊗ Uq (̂h) ⊗ Uq (̂n

−) . (5.12)

The algebra Uq (̂g) is naturally Q̂ � Q × Z-graded via

deg e0 = α0 = (−θ , 1) , deg f0 = −α0 = (θ , −1) , deg ϕ0 = 0 = (0, 0) ,

deg ei = αi = (αi, 0) , deg fi = −αi = (−αi, 0) , deg ϕi = 0 = (0, 0)
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for i ∈ I, where θ is the highest root of �+. Invoking the positive integers {θi}i∈I introduced in (4.1), we
note that the following element is central in Uq (̂g):

C = ϕ0

∏
i∈I

ϕ
θi
i . (5.13)

Let us now recall the construction of the root vectors of Uq (̂g), presented in [2, 15]. Following
Subsection 4.6, pick the coweight μ =∑i∈I ciω

∨
i ∈ P∨ as in (4.20), and set μ̂ = 1 � μ ∈ Ŵext. We consider

the reduced decomposition:

μ̂ = τsi1−l
si2−l

. . . si0

from Theorem 4.7 with τ ∈ T . Following (4.15), let us extend {ik|− l < k ≤ 0} to a τ -quasiperiodic bi-infinite
sequence {ik}k∈Z via ik+l = τ(ik) for any k ∈ Z. We construct the following set of positive affine roots:

β̃k =
⎧⎨
⎩si1 si2 . . . sik−1

(αik ) if k > 0

si0 si−1 . . . sik+1
(αik ) if k ≤ 0

=
⎧⎨
⎩−βk if k > 0

βk if k ≤ 0
, (5.14)

with βk defined in (4.16). Following [2], we shall order those roots as follows:

β̃0 < β̃−1 < β̃−2 < β̃−3 < · · · < β̃4 < β̃3 < β̃2 < β̃1 . (5.15)

Remark 5.11. Formula (5.14) provides all real positive roots of �̂+:

�̂re,+ =
{
�+ × Z≥0

}
�
{
�− × Z>0

}
⊂ �̂+ . (5.16)

Furthermore, (5.15) induces convex orders on the corresponding halves:

�+ × Z≥0 =
{
β̃0 < β̃−1 < β̃−2 < · · ·

}
, �− × Z>0 =

{
· · · < β̃3 < β̃2 < β̃1

}
. (5.17)

To have a complete theory, in particular for the PBW theorem of [2], one also needs to deal with
the imaginary roots, but they will not feature in the present paper.

We may define the (q-deformed) root vectors:

E±β̃ ∈ Uq (̂n
±)

for all β̃ ∈ �̂re,+ of (5.16) via

Eβ̃k
=
⎧⎨
⎩Ti1 . . . Tik−1

(eik ) if k > 0

T−1
i0

. . . T−1
ik+1

(eik ) if k ≤ 0
(5.18)

and

E−β̃k
=
⎧⎨
⎩Ti1 . . . Tik−1

(fik ) if k > 0

T−1
i0

. . . T−1
ik+1

(fik ) if k ≤ 0
(5.19)

where {Ti}i∈̂I determine Lusztig’s affine braid group action [15] on Uq (̂g).

Remark 5.12. We note that E−β̃ ∈ Uq (̂n
−) for β̃ ∈ �̂re,+ in [2] are defined via

E−β̃ := �(Eβ̃ ) , (5.20)
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where the Q-algebra anti-involution � of Uq (̂g) is determined by:

� : ei �→ fi, fi �→ ei, ϕ±1
i �→ ϕ∓1

i , q �→ q−1 ∀ i ∈ Î .

Formulas (5.19) and (5.20) agree, as � commutes with the affine braid group action:

� ◦ Ti = Ti ◦ � ∀ i ∈ Î . (5.21)

According to [16,(5.28)] (based on [2, Proposition 7]), we have

[E±β̃ , E±α̃]q = E±β̃E±α̃ − q(α̃,β̃)E±α̃E±β̃ ∈ Q(q)∗ · E±(α̃+β̃) (5.22)

for any real positive affine roots α̃ < β̃ which both belong to either �+ ×Z≥0 or �− ×Z>0 and which also
have the additional property that α̃ + β̃ is a positive affine root whose decomposition as the sum of α̃

and β̃ is minimal in the sense that:

� ∃ α̃′, β̃ ′ ∈ �̂re,+ s.t. α̃ < α̃′ < β̃ ′ < β̃ and α̃ + β̃ = α̃′ + β̃ ′ .

Let U±
q (+∞) and U±

q (−∞) denote the “quarter” subalgebras of Uq (̂g) generated by {E±β̃k
| k ≥ 1} and

{E±β̃k
| k ≤ 0}, respectively. According to [16,(5.35, 5.36)] (based on [2]), each of them admits a pair of

opposite PBW decompositions:

U±
q (+∞) =

⊕
n1,n2,···∈N

n1+n2+···<∞

Q(q) · En1

±β̃1
En2

±β̃2
. . . =

⊕
n1,n2,···∈N

n1+n2+···<∞

Q(q) · . . . En2

±β̃2
En1

±β̃1
,

(5.23)

U±
q (−∞) =

⊕
n0,n−1,···∈N

n0+n−1+···<∞

Q(q) · En0

±β̃0
En−1

±β̃−1
. . . =

⊕
n0,n−1,···∈N

n0+n−1+···<∞

Q(q) · . . . En−1

±β̃−1
En0

±β̃0
.

(5.24)

5.13 Interplay of two algebras
The relation between Uq(Lg) of Definition 5.6 and Uq (̂g) of Definition 5.10 goes back to [2, 3, 5] and plays
a crucial role in the theory of quantum affine algebras. In the present setup, it amounts to the following
result, cf. [16, Theorem 5.19]:

Theorem 5.14. There exists an algebra isomorphism:

Uq(Lg) ∼−→ Uq (̂g)/(C − 1) (5.25)

with C of (5.13), determined by the following assignment for all i ∈ I and d ∈ Z:

ei,d �→
⎧⎨
⎩o(i)dE(αi ,d) if d ≥ 0

−o(i)dE(αi ,d)ϕ
−1
i if d < 0

,

fi,d �→
⎧⎨
⎩−o(i)dϕiE(−αi ,d) if d > 0

o(i)dE(−αi ,d) if d ≤ 0
,

(5.26)

where o : I → {±1} is a map satisfying o(i)o(j) = −1 whenever aij < 0.

The proof of this result is similar to that of [16, Theorem 5.19], but it does essentially utilize
Proposition 4.10 as well as simplifies some arguments from [16].
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Proof of Theorem 5.14. The isomorphism (5.25) was proved in [3, Theorem 4.7] with respect to the
following seemingly different formula:

ei,d �→ o(i)dT−d
ω̂∨

i

(ei) , fi,d �→ o(i)dTd
ω̂∨

i
(fi) ∀ i ∈ I, d ∈ Z . (5.27)

Here, the aforementioned action of the affine braid group on Uq (̂g) has been extended to the extended
affine braid group by adding automorphisms {Tτ }τ∈T :

Tτ : ei �→ eτ(i), fi �→ fτ(i), ϕ±1
i �→ ϕ±1

τ(i) ∀ τ ∈ T , i ∈ Î ,

which satisfy the relations Tτ Ti = Tτ(i)Tτ for any τ ∈ T and i ∈ Î.
Therefore, it remains for us to show that (5.26) is equivalent to (5.27) by proving:

T−d
ω̂∨

i

(ei) =
⎧⎨
⎩E(αi ,d) if d ≥ 0

−E(αi ,d)ϕ
−1
i if d < 0

, (5.28)

Td
ω̂∨

i
(fi) =

⎧⎨
⎩−ϕiE(−αi ,d) if d > 0

E(−αi ,d) if d ≤ 0
. (5.29)

It suffices to prove only (5.28) while (5.29) then follows as � commutes with the extended affine braid
group action (due to (5.21) and � ◦ Tτ = Tτ ◦ � for τ ∈ T ).

Fix i ∈ I, d ≥ 0. According to (5.17), there is a unique k ≤ 0 such that

(αi, d) = β̃k = βk = si0 si−1 . . . sik+1
(αik ) . (5.30)

Invoking (4.24), we claim that ω̂i,d ∈ Ŵext has a reduced decomposition of the form

ω̂i,d = τsik+1
. . . si−1 si0 with τ ∈ T . (5.31)

This follows from the equality of terminal sets Esik+1
...si−1

si0
= Eω̂i,d (due to Proposition 4.10 and Theorem 4.7)

and the fact that Ex = Ey iff x−1y ∈ T (already used in the proof of Theorem 4.7). Combining (5.30) and
(5.31), we thus obtain

(αi, d) = s−1
i0

s−1
i−1

. . . s−1
ik+1

(αik ) = ω̂i,d
−1τ(αik ) = ω̂i,d

−1(ατ(ik)) .

In view of (4.9), this implies τ(ik) = i. Hence, we get:

Eβ̃k
= T−1

i0
T−1

i−1
. . . T−1

ik+1
(eik ) = T−1

ω̂i,d
τ(eik ) = T−1

ω̂i,d
(ei) .

According to Proposition 4.5, we have l(ω̂i,d) =∑j∈I pjl(ω̂∨
j ), cf. (4.23), so that

Tω̂i,d =
∏
j �=i

T
pj

ω̂∨
j

· Tpi

ω̂∨
i

=
∏
j �=i

T
pj

ω̂∨
j

· Td
ω̂∨

i
.

As T±1
ω̂∨

j

(ei) = ei for j �= i by [3, Corollary 3.2], we get the desired equality:

E(αi ,d) = Eβ̃k
= T−1

ω̂i,d
(ei) = T−d

ω̂∨
i

(ei) .

For d < 0, the proof is similar and follows the same arguments as in [16]. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/5/rnaf030/8046758 by guest on 02 M
arch 2025



Standard Lyndon Loop Words | 25

5.15 PBW-type bases via quarter subalgebras
The isomorphism (5.25) does not intertwine the triangular decompositions (5.9) and (5.12). In fact, if
we think of Uq(Lg) and Uq (̂g)/(C − 1) as one and the same algebra, then these two decompositions
are “orthogonal” as explained in [16]; cf. [6]. To this end, consider the following “quarter” subalgebras
following [2, Lemmas 5–6]:

U+
q (Ln−) := Uq(Ln−) ∩ Uq (̂b

+
) =
{
subalgebra generated by eβ̃k

, k > 0
}
,

U+
q (Ln+) := Uq(Ln+) ∩ Uq (̂b

+
) =
{
subalgebra generated by eβ̃k

, k ≤ 0
}
,

where we define eβ̃k
in accordance with (5.26) via:

eβ̃k
=
⎧⎨
⎩ϕ−hdeg β̃k

Eβ̃k
if k > 0

Eβ̃k
if k ≤ 0

. (5.32)

Henceforth, given a homogeneous element z of degree
(∑

i∈I kiαi, d
) ∈ Q × Z, set

ϕ±hdeg z := ϕ±∑i∈I kiαi
=
∏
i∈I

ϕ
±ki
i ∈ Uq(Lh) .

Formulas (5.22) still hold when the Eβ̃k
are replaced with the eβ̃k

, since commuting ϕ’s simply produces
powers of q. Likewise, the PBW decompositions (5.23, 5.24) imply that the subalgebras above have the
following PBW bases:

U+
q (Ln−) =

⊕
n1,n2,···∈N

n1+n2+···<∞

Q(q) · . . . en2

β̃2
en1

β̃1
, (5.33)

U+
q (Ln+) =

⊕
n0,n−1,···∈N

n0+n−1+···<∞

Q(q) · . . . en−1

β̃−1
en0

β̃0
. (5.34)

Likewise, we have PBW bases for analogous “quarter” subalgebras of Uq (̂b
−
):

U−
q (Ln−) := Uq(Ln−) ∩ Uq (̂b

−
) =

⊕
n0,n−1,···∈N

n0+n−1+···<∞

Q(q) · en0

−β̃0
en−1

−β̃−1
. . . , (5.35)

U−
q (Ln+) := Uq(Ln+) ∩ Uq (̂b

−
) =

⊕
n1,n2,···∈N

n1+n2+···<∞

Q(q) · en1

−β̃1
en2

−β̃2
. . . , (5.36)

where we define:

e−β̃k
= �(eβ̃k

) =
⎧⎨
⎩E−β̃k

ϕhdeg β̃k
if k > 0

E−β̃k
if k ≤ 0

. (5.37)

The following result allows to construct the PBW bases of Uq(Ln±):

Proposition 5.16. [16, Proposition 5.23] The multiplication map induces a vector space isomor-
phism:

U+
q (Ln−) ⊗ U−

q (Ln−) ∼−→ Uq(Ln−) .

To make the presentation uniform, let us switch from β̃k of (5.14) to βk of (4.16), so that U+
q (Ln−)

and U−
q (Ln−) are generated by {e−βk }k≥1 and {e−βk }k≤0, respectively (note {−βk}k∈Z = �− × Z). Combining
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Proposition 5.16 with the PBW decompositions (5.33, 5.35), we obtain the PBW basis for Uq(Ln−),
cf. [16,(5.69)]:

Proposition 5.17. (a) The subalgebra Uq(Ln−) admits the following PBW basis:

Uq(Ln−) =
⊕

··· ,n−1,n0,n1,n2,···∈N
···+n−1+n0+n1+n2+···<∞

Q(q) · . . . en2−β2
en1−β1

en0
−β0

en−1
−β−1

. . . (5.38)

(b) For any s < r, the root vectors e−βs and e−βr satisfy

e−βs e−βr − q(βs ,βr)e−βr e−βs ∈
⊕

nr−1,...,ns+1∈N
Q(q) · enr−1

−βr−1
. . . ens+1

−βs+1
(5.39)

where the sum is finite as it is taken over all tuples nr−1, . . . , ns+1 ∈ N such that

nr−1βr−1 + · · · + ns+1βs+1 = βr + βs .

The analogous result also holds for Uq(Ln+) with e−βs replaced by eβs .

5.18 Proof of Theorem 5.8
Similarly to [16, Subsection 5.28], we shall now see that Theorem 5.8 is equivalent to the PBW
decomposition (5.38). Recall the reduced decomposition of μ̂ produced by Theorem 4.7 (see Remark 4.8)
so that the ordered set of roots

· · · < β2 < β1 < β0 < β−1 < · · · (5.40)

coincides with �+ × Z ordered in accordance with the bijection (3.13) via:

· · · < �(β2) < �(β1) < �(β0) < �(β−1) < · · · ,

where for any (α, d) ∈ �+ × Z we set (α, d) = (α, −d).
Let � be the anti-involution of Uq(Lg) defined via

� : ei,k �→ fi,k , fi,k �→ ei,k , ϕ±
i,l �→ ϕ±

i,l

for any i ∈ I, k ∈ Z, l ∈ N. Applying � to (5.38), we obtain:

Uq(Ln+) =
k∈N⊕

γ1≥···≥γk∈�+×Z

Q(q) · �(e−γ1 ) . . . �(e−γk ) (5.41)

with the above order on �+ × Z being (5.40). On the other hand, due to (5.39), we obtain:

[�(e−β
′ ), �(e−β)]q ∈

k∈N⊕
�(β)>�(γ1)≥···≥�(γk)>�(β ′)

γ1+···+γk=β+β ′

Q(q) · �(e−γ 1
) . . . �(e−γ k

)

for any β, β ′ ∈ �+ × Z such that β
′
< β, or equivalently �(β ′) < �(β). In particular, if β + β ′ ∈ �+ × Z and

β, β ′ are minimal in the sense:

� ∃ α, α′ ∈ �+ × Z s.t. β
′
< α′ < α < β and α + α′ = β + β ′ (5.42)

we have

[�(e−β
′ ), �(e−β)]q ∈ Q(q)∗ · �(e−β−β

′ ) . (5.43)
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We claim that Theorem 5.8 follows from (5.41). To this end, it suffices to show:

e�(β) ∈ Q(q)∗ · �(e−β) (5.44)

for any β = (α, d) ∈ �+ × Z. We prove (5.44) by induction on the height of α ∈ �+. The base case α = αi

(with i ∈ I) is immediate, due to (5.26, 5.32, 5.37):

e[i(d)] = ei,d = �(fi,d) = ±�(e(−αi ,d)) .

For the induction step, consider the costandard factorization � = �1�2 of � = �(α, d). Since factors of
standard loop words are standard, we have �1 = �(γ1, d1) and �2 = �(γ2, d2) for some (γ1, d1), (γ2, d2) ∈
�+ × Z such that α = γ1 + γ2, d = d1 + d2. By the induction hypothesis, we have e�k ∈ Q(q)∗ · �(e(−γk ,dk))

for k ∈ {1, 2}. However, we note that (γ1, d1) < (α, d) < (γ2, d2) is a minimal decomposition in the sense of
(5.42), according to Proposition 3.20. Therefore, comparing (5.10) with (5.43), we obtain:

e� = [e�1 , e�2 ]q ∈ Q(q)∗ · �([e(−γ2,d2), e(−γ1,d1)]q) = Q(q)∗ · �(e(−α,d))

as we needed to prove. This completes our proof of Theorem 5.8.

6 Generalization to Other Orders
In this section, we generalize our main results to a larger family of orders on the alphabet I = {i(d)}d∈Z

i∈I .
Consider a collection of functions fi : Z → R such that

• fi(0) = 0;
• all fi are strictly increasing unbounded functions;
• there are infinitely many N (both in R>0 and R<0) such that there exist {Ni}i∈I ⊂ ZI satisfying

fi(Ni) = N for all i ∈ I.

We then define an order on I (hence a lexicographic order on the loop words) via:

i(d) < j(e) ⇐⇒ fi(d) > fj(e) or fi(d) = fj(e) and i < j . (6.1)

In the special case fi(d) = d
ci

(with ci ∈ Z>0) this recovers (1.9) considered above.
• First, we need to update the filtration (3.4) of the loop algebra Ln+. To this end, we fix an increasing

sequence {N(+,s)}s∈N of non-negative numbers (respectively, a decreasing sequence {N(−,s)}s∈N of non-
positive numbers) such that N(±,0) = 0 and there exist {N(±,s)

i }i∈I ⊂ (±N)I satisfying fi(N
(±,s)
i ) = N(±,s) for

all i ∈ I. Then, we define L(s)n+ as the finite-dimensional Lie subalgebra of Ln+ generated by

{
e(d)

i

∣∣∣ i ∈ I, N(−,s)
i ≤ d ≤ N(+,s)

i

}
.

We also amend our former definition of I(s) in (3.3) by rather redefining

I(s) =
{
i(d)
∣∣∣ i ∈ I, N(−,s)

i ≤ d ≤ N(+,s)
i

}
∀ s ∈ N .

We may thus apply Definition 2.10 to yield a notion of standard (Lyndon) loop words with respect to
L(s)n+, with the words made up only of i(d) ∈ I(s).

• For N as above, so that there exist {Ni}i∈I satisfying N = fi(Ni) ∀ i, we define

fN : �+ → Z via fN(α) =
∑
i∈I

ki · Ni for any α =
∑
i∈I

kiαi ∈ �+ .
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With this definition at hand, the subalgebra L(s)n+ can be explicitly written as

L(s)n+ =
⊕
α∈�+

fN(+,s) (α)⊕
d=fN(−,s) (α)

Q · e(d)
α .

Then, the results of Proposition 3.2 and Proposition 3.3 still hold true with the only change that −sf (α) ≤
d ≤ sf (α) is replaced with fN(−,s) (α) ≤ d ≤ fN(+,s) (α).

• As before, we call a loop word w =
[
i(d1)

1 . . . i(dn)
n

]
exponent-tight if (3.9) holds. Then, the results of

Theorem 3.6, Lemma 3.7, Proposition 3.8, and Proposition 3.13 still hold true (the proofs are the same).
Therefore, we still have a bijection (3.13)

� : �+ × Z ∼−→
{
standard Lyndon loop words

}

satisfying property (3.6) with s = ∞ as well as Theorem 3.6 and Proposition 3.8.
• On the other hand, the periodicity of Proposition 3.15 no longer holds in this generality. Instead, we

can only express �(α, fN(α)) via �(α, 0):

Lemma 6.1. If �(α, 0) = [i(0)

1 . . . i(0)
n ], then �(α, fN(α)) = [i

(Ni1
)

1 . . . i
(Nin )
n ].

Proof. First, we note that Theorem 3.6 together with Proposition 3.8 for N > 0 (respectively, Remark 3.9

for N < 0) guarantee that the multiset of letters constituting �(α, fN(α)) is exactly {i(Ni1
)

1 , . . . , i
(Nin )
n }. Indeed,

assuming the contradiction for some N > 0 (the case N < 0 is treated analogously), there exists

0 ≤ d < fN(α) such that �(α, d + 1) starts with i
(Nik

+1)

k for some k. As the sum of exponents equals
d + 1 ≤ fN(α), the word �(α, d + 1) and hence �(α, d) also contains a letter i(e)l with e < Nil . This provides a

contradiction with Proposition 3.8, since i(e+1)

l > i
(Nik

+1)

k .

On the other hand, we note that i(Ni) < j(Nj) iff i < j, which guarantees that the loop word [j
(Nj1

)

1 . . . j
(Njn )

n ]
is (standard) Lyndon iff the loop word [j(0)

1 . . . j(0)
n ] is (standard) Lyndon, cf. the proof of Proposition 3.15.

This completes the proof. �

We can now prove the following slight generalization of Corollary 3.11:

Lemma 6.2. Fix N, {Ni}i∈I, α ∈ �+, fN(α) ∈ Z as above.
(a) For d > fN(α), the loop word �(α, d) starts with some j(e) such that e > Nj.
(b) For d ≤ fN(α), the loop word �(α, d) starts with some j(e) such that e ≤ Nj.

Proof. Let �(α, d) = [i(d1)

1 . . . i(dn)
n ]. Then i(d1)

1 ≤ i(dr)
r and so fi1 (d1) ≥ fir (dr) for any r. If d1 ≤ Ni1 , then we would

have fir (Nir ) = fi1 (Ni1 ) ≥ fi1 (d1) ≥ fir (dr) and so dr ≤ Nir for any r. That would imply d =∑n
r=1 dr ≤ fN(α), a

contradiction.
To prove (b), we note that i(d1)

1 ≥ i(dr+1)
r for any r by Theorem 3.6. If d1 > Ni1 , then we would have

fir (Nir ) = fi1 (Ni1 ) < fi1 (d1) ≤ fir (dr + 1) so that dr ≥ Nir for all r. That would imply d = ∑n
r=1 dr > fN(α), a

contradiction. �

• The major difference will take place in the generalization of Theorem 4.7 to the present setup. As
the periodicity of Proposition 3.15 no longer holds, the bi-infinite sequence {ik}k∈Z of (4.15) shall rather
be constructed as a limit of finite sequences. Explicitly, to define {ik}k≤0, instead of L from (3.14) we shall
consider

L[s] =
{
(α, d)

∣∣∣α ∈ �+, 0 ≤ d < fN(+,s) (α)
}

∀ s ∈ Z>0.

These “blocks” can be identified with the following terminal sets:

L[s] = E
μ̂(+,s) with μ(+,s) =

∑
i∈I

N(+,s)
i ω∨

i .
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Arguing as in the proof of Theorem 4.7, we get a reduced decomposition (4.14) of μ̂(+,s) such that the
ordered finite sequence β0 < β−1 < · · · < β

1−l(μ̂(+,s))
coincides with L[s] ordered via (4.21). By uniqueness,

such a sequence for L[s+1] refines the one for L[s]. Furthermore, the roots βk = si0 si−1 . . . sik+1
(αik ) for

k ≤ 0 are all distinct and satisfy {βk}k≤0 = �+ × Z≥0. The construction of {ik}k>0 is similar.
• With the above update of Theorem 4.7, the results of Propositions 4.9, 4.10 still hold (for any fixed

i ∈ I, d ∈ Z), once {pj}j∈I from (4.23) are rather redefined via:

pj is the unique integer satisfying j(−pj) ≥ i(−d) > j(−pj+1)

with i ∈ I, d ≥ 0 fixed. This recovers (4.23) if fj(d) = d
cj

for all j (with cj ∈ Z>0).
• With the above update, the analogue of (5.31) and the paragraph afterwards hold, implying

(5.28, 5.29). Thus, the main result of Section 5, the construction of PBW bases of Uq(Ln+) from
Theorem 5.8 still holds (with e�, ew as in Definition 5.7).
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Appendx A. Computer Code
In this Appendix, we present some interesting examples of standard Lyndon loop words that nicely
illustrate the key properties of Theorem 3.6 and Proposition 3.8. We also provide a link to our code used
to evaluate standard Lyndon loop words.

Examples
The first version of our code did not use the key results (Theorem 3.6 and Proposition 3.8), but was
rather based on Remark 3.10, which is a simple generalization of [16, Proposition 2.26]. Thus, when
evaluating �(α, d), the code simply goes through all the ways to split α into an ordered sum of simple
roots, and distribute d between the exponents of these simple roots while satisfying (3.12). In the table
below, we present examples of standard Lyndon loop words computed through this code (which also
nicely illustrate the results of Theorem 3.6 and Proposition 3.8).

Type Order Weights d �(θ , d) �(θ , d + 1) �(θ , d + 2)

A4 1234 1 1 1 1 0 [1(0)2(0)3(0)4(0)] [4(1)3(0)2(0)1(0)] [3(1)2(0)1(0)4(1)]
A5 51324 4 3 1 8 5 19 [3(1)4(8)5(4)2(3)1(3)] [1(4)2(3)3(1)4(8)5(4)] [5(5)4(8)3(1)2(3)1(4)]
B2 21 7 8 18 [1(6)2(6)2(6)] [2(7)1(6)2(6)] [2(7)2(7)1(6)]
B3 123 4 3 1 10 [2(3)1(3)3(1)3(1)2(2)] [2(3)3(1)3(1)2(3)1(3)] [1(4)2(3)3(1)3(1)2(3)]
C3 312 4 3 6 8 [1(2)2(1)1(2)2(1)3(2)] [3(3)2(1)2(1)1(2)1(2)] [2(2)1(2)3(3)2(1)1(2)]
C3 321 1 10 3 17 [2(8)1(0)3(2)2(7)1(0)] [2(8)1(0)2(8)1(0)3(2)] [2(9)1(0)3(2)2(8)1(0)]
D4 3124 4 3 7 5 8 [3(3)2(1)1(1)4(2)2(1)] [1(2)2(1)4(2)3(3)2(1)] [3(4)2(1)4(2)1(2)2(1)]
G2 21 2 3 11 [2(3)1(2)2(2)2(2)1(2)] [2(3)1(2)2(3)1(2)2(2)] [2(3)2(3)1(2)2(3)1(2)]
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Let us clarify the conventions in this table:

• In the column “Order”, the elements i ∈ I are listed in the increasing order.
• In the column “Weights”, the weights ci are listed with i ordered as in [23].
• In all these examples, we choose to consider only the highest root α = θ .

Let us also provide examples of standard Lyndon loop words for the remaining exceptional types
(these were evaluated using our second code presented below):

Type Order Weights d �(θ , d)

F4 1234 1 2 3 2 17 [3(3)2(1)2(1)4(2)3(3)2(1)1(0)3(3)2(1)1(0)4(2)]
F4 1234 1 2 3 2 18 [2(2)1(0)3(3)2(1)1(0)4(2)3(3)2(1)2(1)3(3)4(2)]
E6 142653 1 2 1 2 2 1 9 [5(2)4(1)3(1)6(0)2(1)1(0)3(1)2(1)4(1)3(1)6(0)]
E6 142653 1 2 1 2 2 1 10 [6(1)3(1)2(1)1(0)4(1)3(1)2(1)5(2)4(1)3(1)6(0)]
E7 1234567 4 5 3 7 3 2 5 25 [4(3)5(1)6(0)3(1)7(2)4(2)2(2)1(1)3(1)2(2)4(3)5(1)6(0)3(1)7(2)4(2)5(1)]
E7 1234567 4 5 3 7 3 2 5 26 [4(3)5(1)3(1)7(2)4(2)2(2)1(1)3(1)2(2)4(3)5(1)6(0)3(1)7(2)4(3)5(1)6(0)]
E8 14572386 1 32 13 3 10 9 6 15 46 [8(3)5(1)4(0)6(1)5(1)3(2)4(0)7(1)6(1)5(1)2(6)1(0)3(2)4(0)2(6)3(2)

8(3)5(1)4(0)6(1)5(1)3(2)4(0)7(1)6(1)5(1)8(2)2(6)1(0)]
E8 14572386 1 32 13 3 10 9 6 15 47 [8(3)5(1)4(0)6(1)5(1)3(2)7(1)6(1)2(6)1(0)8(3)5(1)4(0)6(1)5(1)3(2)

4(0)7(1)2(6)3(2)8(3)5(1)4(0)6(1)5(1)3(2)4(0)2(6)1(0)]

The code
The second version of our code was written using Proposition 3.2 as well as Proposition 3.8 which pro-
vides an inductive way to compute exponents of �(α, d). This drastically improves the code performance,
allowing us to compute words for much larger values of the degree d and the weights ci. This code can
be used at the following clickable link (the interested reader can use this code to check the results of
this note as well as to compute standard Lyndon loop words):

• C++ Code 2

(The user should press the “Run” button and they will see the instructions and a small example
afterwards. Type in the input in the console afterwards, following the instructions. Names of Lie algebra
types for input are: A, B, C, D, G2, F4, E6, E7, and E8. This code was written using C++23.)

Divisible weights in type A
In this subsection, we consider a special setup for type An (naturally generalizing [16, Section 7.3]): the
order is 1 < 2 < · · · < n, and the weights c1, c2, . . . , cn ∈ Z>0 are such that ci divides ci+1 for any 1 ≤ i < n. By
induction on n and the periodicity of Proposition 3.15, it suffices to evaluate �(θ , d) for 0 < d ≤ c1 +· · ·+cn.
Let a(k) be the first letter of the standard Lyndon loop word �(θ , d). Then, we have:

�(θ , d) =
[
a(k)(a − 1)(k2) . . . 1(ka) (a + 1)(ka+1) (a + 2)(ka+2) . . . n(kn)

]

with ki =
⌈

k · ca−i+1

ca
− 1
⌉

if 1 < i ≤ a , ki = k · ci

ca
if a < i ≤ n .

It thus suffices to describe the first letter a(k). This is uniquely determined by a sequence encoding
the underlying element a ∈ {1, . . . , n} as d increases from 1 up to c1 + c2 + · · · + cn. Indeed, the exponent
k of a (as well as the exponent of any other i) is then equal to the number of times this a (respectively i)
appears among the first d terms of that sequence, due to Proposition 3.8. One can depict this sequence
by a table placing each n in the top of a new column to the right and then moving top-to-bottom until
getting to the next n. Let us now present a general rule for the construction of this table:

1) At the first step, place n in the top-left corner;
2) At the i-th step (with 2 ≤ i ≤ n), copy the current table and paste it to the right cn−i+2

cn−i+1
−1 times. After

that, add an extra entry n − i + 1 at the bottom of the right-most column;
3) Copy the resulting table and paste it to the right c1 − 1 times.
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Let us illustrate it with some examples. For n = 4 and c1 = 1, c2 = 2, c3 = 6, c4 = 12, the sequence is
4 4 3 4 4 3 4 4 3 2 4 4 3 4 4 3 4 4 3 2 1, and so the table is:

4 4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3

2 2
1

For n = 3 and c1 = 1, c2 = 3, c3 = 15, the sequence is 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 2 1, which is thus
encoded by the following table:

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 2

1

Likewise, for n = 4 and c1 = 1, c2 = 3, c3 = 9, c4 = 27, we get the following table:

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3

2 2 2
1

Remark A.4. We note that similar tables can also be produced for other classical types Bn, Cn, Dn

with the order 1 < 2 < · · · < n. By induction on n, the periodicity of Proposition 3.15, and the
A-type case treated above, it suffices to evaluate �(α, d) for the roots α = m1α1 +· · ·+mnαn ∈ �+

with m1, . . . , mn ≥ 1 and 0 < d ≤ m1c1+· · ·+mncn. The only difference between the corresponding
tables and those for An-type, is that now when adding each i we shall be adding it mi times.
Explicitly, the corresponding table is constructed by the following algorithm:

1) At the first step, build a column of height mn with all entries equal to n;
2) At the i-th step (with 2 ≤ i ≤ n), copy the current table and paste it to the right cn−i+2

cn−i+1
−1 times. After

that, add mn−i+1 times the number n − i + 1 at the bottom of the right-most column;
3) Copy the resulting table and paste it to the right c1 − 1 times.

As an example, consider type C4 with the weights c1 = 1, c2 = 2, c3 = 6, c4 = 12, and α = 2α1 +2α2 +
2α3 + α4 = θ . Then, we get the following table:

4 4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3
3 3 3 3 3 3

2 2
2 2

1
1

The multiset of all letters appearing in �(α, d) is easily determined by this table: if
pi = midi + ri (di ∈ N, 0 ≤ ri < mi) denotes the number of times i appears among the first
d terms of the table, then ri exponents of i are di + 1 and the rest are di.
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