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Abstract
We study the RTT orthosymplectic super Yangians and present their Drinfeld realiza-
tions for any parity sequence, generalizing the results of Jing et al. (Commun Math
Phys 361(3):827–872, 2018) for non-super case, Molev (Algebras Representation
Theory, 26, 2023) for a standard parity sequence, and Peng (Commun Math Phys
346(1):313–347, 2016), Tsymbaliuk (Lett Math Phys 110(8):2083–2111, 2020) for
the super A-type.
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1 Introduction

1.1 Summary

The original definition of Yangians Y (g) associated to any simple Lie algebra g is
due to [6], where these algebras are realized as Hopf algebras with a finite set of
generators (known as the J -realization). The representation theory of such algebras
is best developed using their alternative (new) Drinfeld realization (also known as the
current realization) proposed in [7], though the Hopf algebra structure is much more
involved in this presentation (for example, a proof of the coproduct formula was given
only recently in [17]).

For g = gln , a closely related algebra Y rtt(gln) was studied earlier in the work of
Faddeev’s school on the quantum inverse scattering method, see e.g. [11] where the
algebra generators were encoded by an n × n square matrix T (u) subject to a single
RTT relation

R(u − v)T1(u)T2(v) = T2(v)T1(u)R(u − v) (1.1)

involving Yang’s R-matrix R(u) satisfying the Yang–Baxter equation with a spectral
parameter

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u) . (1.2)

We note that the sln-version Y rtt(sln) is recovered by imposing an extra relation

qdet T (u) = 1 . (1.3)

The Hopf algebra structure on both Y rtt(gln) and Y rtt(sln) is extremely simple with
the coproduct

� : T (u) �→ T (u) ⊗ T (u) . (1.4)

This RTT realization is well suited for the development of both the representation
theory and the corresponding integrable systems (involving Bethe subalgebras on the
mathematical side).

An explicit isomorphism from the new Drinfeld to the RTT realizations of type
A Yangians is constructed using the Gauss decomposition of T (u), a complete proof
been provided in [5] (curiously enough the trigonometric version of this result was

123



Orthosymplectic Yangians Page 3 of 100    43 

established a decade earlier in [8]). A similar explicit isomorphism for the remaining
classical BC D-types was obtained only a decade later in [18], where it was again
constructed using the Gauss decomposition of the generating matrices T (u)which are
subject to the RTT relations (1.1) with the rational solutions of (1.2) first discovered
in [30]. An implicit existence of such an isomorphism for any gwas noted by Drinfeld
back in the 1980s, while a detailed proof of his result was established only recently
in [27].

Finally, we note that the RTT realization of the (antidominantly) shifted Yangians
Yμ(g) from [4] was recently obtained in [10, 13] for classical g. This significantly
simplifies some of their basic structures such as the coproduct homomorphisms
� : Yμ1+μ2(g) → Yμ1(g) ⊗ Yμ2(g), cf. (1.4), and allows to introduce integrable sys-
tems on the corresponding quantized Coulomb branches of 3d N = 4 quiver gauge
theories. An important aspect of this setup in A-type is that the central series qdet T (u)

encodes all masses of the corresponding physical theory, cf. (1.3).

The theory of Yangians associated with Lie superalgebras is still far from a full
development. In particular, there is no uniform J - or Drinfeld realizations of those. The
cases studied mostly up to date involve rather the RTT realization. The general linear
RTT Yangians Y rtt(gl(n|m)) and the orthosymplectic RTT Yangians Y rtt(osp(N |2m))

first appeared in [23] and [1], respectively, using the super-analogs of the Yang’s and
Zamolodchikov-Zamolodchikov’s rational R-matrices.

A novel feature of Lie superalgebras is that they admit several non-isomorphic
Dynkin diagrams. The isomorphism of the Lie superalgebras corresponding to differ-
ent Dynkin diagrams of the same finite/affine type was obtained by Serganova in the
Appendix to [19]. Likewise, one may define various quantizations of the universal
enveloping superalgebras starting from different Dynkin diagrams, and establish-
ing isomorphisms among those is quite a non-trivial task. In the case of quantum
finite/affine superalgebras in their Drinfeld-Jimbo realization, this was accomplished
by Yamane in [28] two decades ago.

Despite the absence of the definition of super Yangians, the rational setup admits
somebenefits.As an example, theRTT realization ofY rtt(gl(n|m))manifestly provides
an isomorphism between these algebras corresponding to different Dynkin diagrams,
which is far from being obvious when considering their Drinfeld realizations as devel-
oped in [24, 26]. We note however that the positive subalgebras in the Drinfeld
realization do essentially depend on a choice of the Dynkin diagram.

One of the major objectives of the present note is to generalize [26, §2] to the
orthosymplectic Yangians. To this end, we study the RTT Yangians Y rtt(osp(N |2m))

and their extended versions X rtt(osp(N |2m)) associated to an arbitrary Dynkin
diagram. Alike the aforementioned gl(n|m)-type, these algebras are manifestly iso-
morphic, while their Drinfeld realizations look quite different. In fact, one of our key
results is the Drinfeld realization of these algebras for all Dynkin diagrams. We note
that the case of N ≥ 3 and the standard Dynkin diagram was recently treated in [21].

Our approach is quite straightforward, generalizing [5] for A-type, [18] for BC D-
types, and [21] for the distinguished Dynkin diagram. The above crucially used the
rank reduction embeddings that are compatible with the Gauss decompositions. Let
us emphasize that while the proof of the existence of such embeddings solely utilized
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the RTT formalism in non-super case of [18], this approach is not fully applicable in
the present setup (due to the possible singularity of R(u) at u = 1), and we rather use
an update of the corresponding core computation from [21]. With the help of these
embeddings, the quadratic relations in the Drinfeld presentation of orthosymplectic
Yangians are derived from the super A-type analog and rank ≤ 2 cases handled by
brute force. Additionally, we also have Serre relations (standardly deduced from their
Lie-theoretic counterparts). The Drinfeld realization of osp(1|2)-Yangians previously
appeared in [2], where many details were missing and an opposite Gauss decomposi-
tion was used.

We note that the orthosymplectic type simultaneously resembles all three classical
types B, C, D. In the sequel note [14], we construct orthosymplectic Lax matrices
generalizing our orthogonal and symplectic Lax matrices from [9, 13].

While we were preparing the present note and [14], the work [22] appeared that
independently treats the N = 1 case. The arguments of loc.cit. are quite similar to
ours and also crucially rely on the Drinfeld realization of X rtt(osp(1|2)), thus filling
in the aforementioned gaps of [2].

1.2 Outline

The structure of the present paper is the following:

• In Sect. 2, we recall basic results on the orthosymplectic Lie superalgebras
osp(V ). We recover their Dynkin diagrams of [12] from the parity sequences
ϒV ∈ {0̄, 1̄}�dim(V )/2	,see Sect. 2.3 as well as recall their Serre-type presentations
from [29] highlighting the presence of the higher order Serre relations of orders 3, 4,
6, or 7 for specific parity sequences ϒV , see Sect. 2.4.

• In Sect. 3, we introduce the RTT (extended) Yangians X rtt(osp(V )), Y rtt(osp(V ))

and establish their basic properties. We emphasize that both algebras X rtt(osp(V ))

and Y rtt(osp(V )) depend (up to isomorphism) only on the total number of 0̄’s and 1̄’s
inϒV , according to Lemma 3.12 and Corollary 3.24. Thus, all of them are isomorphic
to the (extended) orthosymplectic Yangians X rtt(osp(N |2m)) and Y rtt(osp(N |2m))

of [1], which correspond to the standard parity case (where all 0̄’s are placed after
all 1̄’s). This observation allows us to generalize some of the basic structural results
of [1], such as the tensor product decomposition (3.19) and the PBW-type results of
Proposition 3.29 and Corollary 3.34, to arbitrary parity sequences ϒV .

The rest of this note is devoted to the Gauss decomposition (3.35) of the generator
matrix T (u). To this end, we first establish our key technical tool of rank reduction in
Theorem 3.47 (the proof of which closely follows the arguments of [21, §3]). The latter
implies the commutativity of some of the generating currents, see Corollary 3.52. We
also establish Lemma 3.55 that significantly simplifies several computations in the rest
of the note. Finally, we recall the defining relations among the generating currents of
the super A-type Yangians Y rtt(gl(V)) in Theorem 3.70, and deduce the corresponding
relations for the currents of X rtt(osp(V )) with ϒV = ϒV , see Corollaries 3.89, 3.91.

• InSect. 4,we recover explicit formulas for all entries of thematrices E(u), F(u), H(u)

from the Gauss decomposition (3.35) in terms of the generating currents ei (u), fi (u),
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hi (u) from (3.36, 3.40). We also derive a factorized formula for the central series
cV (u) of (3.16) in Lemmas 4.31, 4.45, 4.49. In Sect. 4.4, we establish some higher
order relations generalizing those from Sect. 2.4.

• In Sect. 5, we establish quadratic relations between the generating currents
ei (u), fi (u), hı (u) of X rtt(osp(V )) in rank ≤ 2. The arguments are straightforward
(though tedious) and we present them in a uniform way (eliminating the smaller rank
reduction of [18] for non-super types).

• In Sect. 6, we present Drinfeld realizations of RTT (extended) orthosymplectic
super Yangians X rtt(osp(V )) and Y rtt(osp(V )), associated with any parity sequence,
see Theorems 6.33 and 6.100. The corresponding relations follow from those for
Y rtt(gl(V)) and Y rtt(sl(V)) through Corollaries 3.89, 3.91, the commutativity of Corol-
lary 3.52, theSerre relations (the higher order ones generalize those fromSect. 4.4), and
the quadratic relations in rank≤ 2 as established in Sect. 5. To prove the sufficiency of
these relations, we use the standard argument (originating from [5]) of passing through
the associated graded algebras and utilize the PBW result of Corollary 3.34.

• In Appendix A, we recall the isomorphisms X rtt(so3) 
 Y rtt(gl2), Y rtt(so3) 

Y rtt(sl2) of [3], see Proposition A.5, whose proof is based on the important 6-fold
R-matrix fusion of Lemma A.3. We then establish similar isomorphisms X rtt(so6) 

Y rtt(gl4), Y rtt(so6) 
 Y rtt(sl4) in Proposition A.11, the proof of which is based on the
analogous 6-fold R-matrix fusion of Lemma A.9. Finally, we explain in Remark A.13
why applying the above R-matrix fusion approach to Y rtt(gl(1|2)) recovers an algebra
that looks surprisingly different from X rtt(osp(2|2)), despite osp(2|2) 
 sl(1|2). We
conclude by matching the resulting two 16 × 16 R-matrices with those of [25], see
Remark A.22.

2 Orthosymplectic Lie superalgebras

In this section, we recall the basic results on orthosymplectic Lie superalgebras. We
recover their various Dynkin diagrams from the parity sequences and discuss their
Serre-type presentations.

2.1 Setup and notations

Fix N ≥ 1, m ≥ 0, and consider the set I := {1, 2, . . . , N + 2m} equipped with an
involution ′:

i ′ := N + 2m + 1 − i . (2.1)

Consider a superspace V = V0̄ ⊕ V1̄ with a C-basis v1, . . . , vN+2m such that each
vi is either even (that is, vi ∈ V0̄) or odd (that is, vi ∈ V1̄), the dimensions are
dim(V0̄) = N , dim(V1̄) = 2m, and the vectors vi , vi ′ have the same parity for any i
(in particular, v(N+1)/2+m ∈ V0̄ for odd N ), cf. (2.1). The latter condition means that

i = i ′ , (2.2)
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where for i ∈ I, we define its Z2-parity i ∈ Z2 via:

i =
{
0̄ if vi ∈ V0̄

1̄ if vi ∈ V1̄
. (2.3)

We also define the sequence θV := (θ1, θ2, . . . , θN+2m) of ±1’s via:

θi = 1 and θi ′ = (−1)i for any 1 ≤ i ≤ 
 N
2 � + m . (2.4)

It implies that

θi ′ = (−1)iθi ∀ i ∈ I . (2.5)

For a superalgebra A and its two homogeneous elements x and x ′, we define

[x, x ′] = adx (x ′) := xx ′ − (−1)|x |·|x ′|x ′x and {x, x ′} := xx ′ + (−1)|x |·|x ′|x ′x ,

(2.6)
where |x | denotes theZ2-grading of x andwe use conventions (−1)0̄=1, (−1)1̄=−1.

Given two superspaces A = A0̄ ⊕ A1̄ and B = B0̄ ⊕ B1̄, their tensor product
A ⊗ B is also a superspace with (A ⊗ B)0̄ = A0̄ ⊗ B0̄ ⊕ A1̄ ⊗ B1̄ and (A ⊗ B)1̄ =
A0̄ ⊗ B1̄ ⊕ A1̄ ⊗ B0̄. Furthermore, if A and B are superalgebras, then A ⊗ B is made
into a superalgebra, the graded tensor product of the superalgebras A and B, via the
following multiplication:

(x ⊗ y)(x ′ ⊗ y′) = (−1)|y|·|x ′|(xx ′) ⊗ (yy′) (2.7)

for any x ∈ A|x |, x ′ ∈ A|x ′|, y ∈ B|y|, y′ ∈ B|y′|.
We will use only the graded tensor products of superalgebras throughout this paper.

2.2 Orthosymplectic Lie superalgebras

A standard basis of the general linear Lie superalgebra gl(V ) is formed by the elements
Ei j (1 ≤ i, j ≤ N + 2m) of parity i + j with the commutation relations

[Ei j , Ek�] = δk j Ei� − δ�i (−1)(i+ j)(k+�) Ekj .

Consider a bilinear form BG : V × V → C defined by the anti-diagonal matrix

G = (gi j )
N+2m
i, j=1 with gi j = δi j ′θi .

We regard the orthosymplectic Lie superalgebra osp(V ) associated with the bilinear
form BG as the Lie subalgebra of gl(V ) spanned by the elements

Fi j = Ei j − (−1)i · j+iθiθ j E j ′i ′ ∀ 1 ≤ i, j ≤ N + 2m . (2.8)
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We note that Fj ′i ′ = −(−1)i · j+iθiθ j · Fi j . Furthermore, the elements

{
Fi j

∣∣∣ i + j < N + 2m + 1
}⋃{

Fii ′
∣∣∣ |vi | = 1̄ , 1 ≤ i ≤ N

2 + m
}

(2.9)

form a basis of osp(V ). In what follows, we shall also need the explicit commutation
relations:

[Fi j , Fk�] = δk j Fi� − δ�i (−1)(i+ j)(k+�) Fkj

−δki ′(−1)i · j+iθiθ j Fj ′� + δ� j ′(−1)i ·k+�·kθi ′θ j ′ Fki ′ . (2.10)

The Lie superalgebra osp(V ) is Z2-graded: osp(V ) = osp(V )0̄ ⊕ osp(V )1̄. We
choose the Cartan subalgebra h of osp(V ) (which by definition is just a Cartan subal-
gebra of osp(V )0̄) to consist of all diagonal matrices. Thus, h has a basis {Fii }ri=1 with
r = �N/2	 + m. Let {e∗

i }ri=1 denote the dual basis of h
∗. We consider the root space

decomposition osp(V ) = h ⊕⊕α∈� osp(V )α , where � ⊂ h∗ is the root system. We
further have a decomposition � = �0 ∪ �1 into even and odd roots.

2.3 Dynkin diagrams with labels via parity sequences

In this subsection, we explain how various Dynkin diagrams (with labels) of the
orthosymplectic Lie superalgebras osp(V ) can be easily read off the corresponding
parity sequence

ϒV := (|v1|, . . . , |vr|) = (1, . . . , r ) ∈ {0̄, 1̄}r where r = �N/2	 + m . (2.11)

Following [29, §2.1] (cf. [12, §2.2]), let us first recall the construction of the Cartan
matrices and Dynkin diagrams for the orthosymplectic Lie superalgebras osp(V ).
To this end, we consider the non-degenerate invariant bilinear form (·, ·) : osp(V ) ×
osp(V ) → C defined via

(X , Y ) = 1

2
sTr(XY ),

that is the supertrace form associated with the natural action osp(V ) � V . Its restric-
tion to the Cartan subalgebra h of osp(V ) is non-degenerate, thus giving rise to an
identification h 
 h∗ and inducing a bilinear form (·, ·) : h∗ ×h∗ → C. Explicitly, we
have (for 1 ≤ i, j ≤ r):

(e∗
i , e∗

j ) = δi j (−1)i = δi j ·
{
1 if vi ∈ V0̄

−1 if vi ∈ V1̄
. (2.12)

Remark 2.13 We note that [12] used {εk}�N/2	
k=1 ∪ {δi }m

i=1 with (εk, εl) = ∓δkl and

(δi , δ j ) = ±δi j . Our uniform choice of {e∗
i }�N/2	+m

i=1 with the pairing (2.12) is better
suited for the discussions below.
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A root β ∈ � is called isotropic if (β, β) = 0 (in particular, β ∈ �1). In what
follows, we need

l2min := min
{|(β, β)| ∣∣β ∈ �, not isotropic

}
. (2.14)

Let 
 = {α1, . . . , αr} be the set of simple roots of �, relative to a Borel subalgebra
of osp(V ) (that is, the maximal solvable subalgebra of osp(V ) containing a Borel
subalgebra of osp(V )0̄). Define the symmetrized Cartan matrix of osp(V ) associated
with the choice 
 of simple roots via

B = (bi j )
r
i, j=1 with bi j = (αi , α j ) . (2.15)

We also define the diagonal matrix D = diag(d1, . . . , dr) via (cf. (2.14))

di =
{

(αi ,αi )
2 if (αi , αi ) �= 0

l2min/2
κ if (αi , αi ) = 0

, where κ =
{
0 if N is odd

1 if N is even
. (2.16)

Finally, we define the Cartan matrix of osp(V ) associated with the choice
 of simple
roots via

A = D−1B = (ai j )
r
i, j=1 . (2.17)

Let us now recall a construction of the Dynkin diagram of osp(V ) from the Cartan
matrix A. It is a graph with r vertices, colored in one of the three colors: vertex i is

colored white if αi is an even root, gray if αi is an odd isotropic root, black
if αi is an odd not isotropic root. We join i-th and j-th vertices with ni j lines, where:

ni j =
{
max{|ai j |, |a ji |} if aii + a j j ≥ 2

|ai j | if aii = a j j = 0
. (2.18)

Finally, if the i-th vertex is not gray and is connected by more than one edge to the
j-th vertex, then we orient them from i-th toward j-th if ai j = −1, and from j-th
toward i-th if ai j < −1.

In the discussions below, we follow the notations of [12]:

– Use a small black dot in a Dynkin diagram to represent a white or gray vertex
– Use an integer K to denote the number of gray vertices among those small black
dots.

The corresponding Lie superalgebras form four classical series, which we now treat
case by case.

• N = 2n with n > 1 (which corresponds to the so-called D(n, m)-series).
In this case, the root system is (cf. [12, (2.9)]):

� =
{

± e∗
i ± e∗

j

∣∣∣ 1 ≤ i < j ≤ n + m
}⋃{

± 2e∗
i

∣∣∣ vi ∈ V1̄ , 1 ≤ i ≤ n + m
}

.
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The latter follows from the explicit description of the basis (2.9), in particular, 2e∗
i

correspond to nonzero Fii ′ . The choice of simple roots crucially depends on the Z2-
parity of the vector vn+m :

(1) If vn+m ∈ V0̄, then the simple positive roots are the same as in the Dn+m-type:

α1 = e∗
1 − e∗

2 , α2 = e∗
2 − e∗

3 , . . . , αn+m−1 = e∗
n+m−1 − e∗

n+m , αn+m = e∗
n+m−1 + e∗

n+m ;

(2) If vn+m ∈ V1̄, then the simple positive roots are as follows:

α1 = e∗
1 −e∗

2 , α2 = e∗
2 −e∗

3 , . . . , αn+m−1 = e∗
n+m−1−e∗

n+m , αn+m = 2e∗
n+m ,

since we have e∗
n+m−1 + e∗

n+m = (e∗
n+m−1 − e∗

n+m) + 2e∗
n+m .

Likewise, the highest root θ depends on the Z2-parity of the vector v1:

(A) If v1 ∈ V0̄, then θ = e∗
1 + e∗

2 as in the Dn+m-type;
(B) If v1 ∈ V1̄, then θ = 2e∗

1.

Let us now use the above to read off the Dynkin diagrams of [12] together with their
labels {ai }n+m

i=1 , the latter defined as the coefficients of the highest root in the basis of
simple roots

θ =
n+m∑
i=1

aiαi .

Case 1: ϒV = (1̄, ∗, . . . , ∗, 1̄, 0̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [12, Table 2]:

22 2
1

1

Indeed, we have (αn+m−1, αn+m−1) = (αn+m, αn+m) = 0 and (αn+m−1, αn+m) =
−2 �= 0. The number K of gray dots among is even since it equals the number of
1 ≤ i ≤ n + m − 2 such that i �= i + 1 and 1 = n + m − 1. Finally, the labels on the
diagram are read off the equality:

2e∗
1 = 2(e∗

1−e∗
2)+· · ·+2(e∗

n+m−2−e∗
n+m−1)+(e∗

n+m−1−e∗
n+m)+(e∗

n+m−1+e∗
n+m) .

Case 2: ϒV = (0̄, ∗, . . . , ∗, 1̄, 0̄) with each ∗ being either 0̄ or 1̄.
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In this case, we get the following diagram with labels from [12, Table 2]:

21 2
1

1

This is analogous to the Case 1, except that now K is odd and the labels on the diagram
are rather read off the following equality:

e∗
1 + e∗

2 = (e∗
1 − e∗

2) + 2(e∗
2 − e∗

3) + · · · + 2(e∗
n+m−2 − e∗

n+m−1) + (e∗
n+m−1 − e∗

n+m) + (e∗
n+m−1 + e∗

n+m) .

Case 3: ϒV = (0̄, ∗, . . . , ∗, 0̄, 0̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [12, Table 2]:

21 2
1

1

Indeed, we have (αn+m−1, αn+m−1) = (αn+m, αn+m) = 2, (αn+m−1, αn+m) = 0.

The number K of gray dots among is even since it equals the number of 1 ≤ i ≤
n + m − 2 such that i �= i + 1 and 1 = n + m − 1. The labels on the diagram are read
off the same equality as in Case 2:

e∗
1 + e∗

2 = (e∗
1 − e∗

2) + 2(e∗
2 − e∗

3) + · · · + 2(e∗
n+m−2 − e∗

n+m−1) + (e∗
n+m−1 − e∗

n+m) + (e∗
n+m−1 + e∗

n+m) .

Case 4: ϒV = (1̄, ∗, . . . , ∗, 0̄, 0̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [12, Table 2]:

22 2
1

1

This is analogous to the Case 3, except that now K is odd and the labels on the diagram
are rather read off the same equality as in Case 1:

2e∗
1 = 2(e∗

1 − e∗
2) + 2(e∗

2 − e∗
3) + · · · + 2(e∗

n+m−2 − e∗
n+m−1) + (e∗

n+m−1 − e∗
n+m ) + (e∗

n+m−1 + e∗
n+m ) .
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Case 5: ϒV = (1̄, ∗, . . . , ∗, 1̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [12, Table 2]:

22 2 1

Indeed, we have αn+m =2e∗
n+m so that (αn+m, αn+m)=−4 and (αn+m−1, αn+m)=2.

The number K of gray dots among is even since it equals the number of 1 ≤ i ≤
n + m − 1 such that i �= i + 1 and 1 = n + m. The labels on the diagram are read off
the following equality:

2e∗
1 = 2(e∗

1 − e∗
2) + 2(e∗

2 − e∗
3) + · · · + 2(e∗

n+m−1 − e∗
n+m) + (2e∗

n+m) .

Case 6: ϒV = (0̄, ∗, . . . , ∗, 1̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [12, Table 2]:

21 2 1

This is analogous to the Case 5, except that now K is odd and the labels on the diagram
are rather read off the following equality:

e∗
1 + e∗

2 = (e∗
1 − e∗

2) + 2(e∗
2 − e∗

3) + · · · + 2(e∗
n+m−1 − e∗

n+m) + (2e∗
n+m) .

• N = 2 (which corresponds to the so-called C(m + 1)-series.1)
The descriptions of simple roots {αi }m+1

i=1 and the highest root θ are the same as for
even N > 2. The corresponding parity sequence ϒV consists of a single 0̄ and m 1̄’s,
hence, the following cases:

(1) For ϒV = (0̄, 1̄, . . . , 1̄), one clearly obtains the (labeled) Dynkin diagram
of [12, p. 463]2:

21 2 1

(2) For ϒV = (1̄, . . . , 1̄, 0̄, 1̄, . . . , 1̄), one obtains the following (labeled) Dynkin
diagram with two consecutive black dots being gray and the rest being white:

22 2 1

1 Wewarn the reader not to confuse this with the symplecticCm+1-series, corresponding to osp(0|2m +2).
2 We note that this choice actually differs from the standard choice made in [21] for even N > 2, cf. (2.20).
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(3) For ϒV = (1̄, . . . , 1̄, 0̄), one obtains the following (labeled) Dynkin diagram:

22 2
1

1

• N = 2n + 1 with n ≥ 1 (which corresponds to the so-called B(n, m)-series).
In this case, the root system is (cf. [12, (2.7)]):

� =
{

± e∗
i ± e∗

j

∣∣∣ 1 ≤ i < j ≤ n + m
}⋃{

± e∗
i

∣∣∣ 1 ≤ i ≤ n + m
}

⋃ {± 2e∗
i

∣∣∣ vi ∈ V1̄, 1 ≤ i ≤ n + m
}
.

The latter follows from the explicit description of the basis (2.9). In contrast to the
case of even N , the simple roots are uniformly given by:

α1 = e∗
1 − e∗

2 , α2 = e∗
2 − e∗

3 , . . . , αn+m−1 = e∗
n+m−1 − e∗

n+m , αn+m = e∗
n+m .

Similarly to the case of even N , the highest root θ depends on the parity of v1:

θ =
{

e∗
1 + e∗

2 if v1 ∈ V0̄

2e∗
1 if v1 ∈ V1̄

.

We shall now match the (labeled) Dynkin diagrams of [12, Table 2] with the parity
sequences.

Case 1: ϒV = (0̄, ∗, . . . , ∗, 0̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [12, Table 2]:

21 2 2

The number K of gray dots among is even since it equals the number of 1 ≤ i ≤
n + m − 1 such that i �= i + 1 and 1 = n + m, while the labels on the diagram are
read off the following equality:

e∗
1 + e∗

2 = (e∗
1 − e∗

2) + 2(e∗
2 − e∗

3) + · · · + 2(e∗
n+m−1 − e∗

n+m) + 2(e∗
n+m) .

Case 2: ϒV = (1̄, ∗, . . . , ∗, 0̄) with each ∗ being either 0̄ or 1̄.
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In this case, we get the following diagram with labels from [12, Table 2]:

22 2 2

The number K of gray dots among is odd since it equals the number of 1 ≤ i ≤
n + m − 1 such that i �= i + 1 and 1 �= n + m, while the labels on the diagram are
read off the following equality:

2e∗
1 = 2(e∗

1 − e∗
2) + 2(e∗

2 − e∗
3) + · · · + 2(e∗

n+m−1 − e∗
n+m) + 2(e∗

n+m) .

Case 3: ϒV = (1̄, ∗, . . . , ∗, 1̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [12, Table 2]:

22 2 2

The number K of gray dots among is even since it equals the number of 1 ≤ i ≤
n + m − 1 such that i �= i + 1 and 1 = n + m, while the labels are read off the same
equality as in Case 2:

2e∗
1 = 2(e∗

1 − e∗
2) + 2(e∗

2 − e∗
3) + · · · + 2(e∗

n+m−1 − e∗
n+m) + 2(e∗

n+m) .

Case 4: ϒV = (0̄, ∗, . . . , ∗, 1̄) with each ∗ being either 0̄ or 1̄.
In this case, we get the following diagram with labels from [12, Table 2]:

21 2 2

The number K of gray dots among is odd since it equals the number of 1 ≤ i ≤
n + m − 1 such that i �= i + 1 and 1 �= n + m, while the labels are read off the same
equality as in Case 1:

e∗
1 + e∗

2 = (e∗
1 − e∗

2) + 2(e∗
2 − e∗

3) + · · · + 2(e∗
n+m−1 − e∗

n+m) + 2(e∗
n+m) .

• N = 1 (which corresponds to the so-called B(0, m)-series).
In this case, there is only one parity sequence ϒV = (1̄ , . . . , 1̄), that is, |v1| =

. . . = |vm | = 1̄. The corresponding root system is (cf. [12, (2.8)]):

� =
{
±e∗

i ±e∗
j

∣∣∣ 1 ≤ i < j ≤ m
}⋃{

±e∗
i

∣∣∣ 1 ≤ i ≤ m
}⋃{

±2e∗
i

∣∣∣ 1 ≤ i ≤ m
}

,
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with simple roots given by

α1 = e∗
1 − e∗

2 , α2 = e∗
2 − e∗

3 , . . . , αm−1 = e∗
m−1 − e∗

m , αm = e∗
m ,

and the highest root
θ = 2e∗

1 .

This obviously corresponds to the (labeled) Dynkin diagram of [12, p. 463]:

22 2 2

Remark 2.19 We note the following uniform formula for the first label:

a1 =
{
1 if |v1| = 0̄

2 if |v1| = 1̄
.

The parity sequence (2.11) is called standard if

ϒV = (1̄, . . . , 1̄, 0̄, . . . , 0̄) . (2.20)

2.4 Chevalley–Serre type presentation

We conclude this section with the Chevalley–Serre-type presentation of the orthosym-
plectic Lie superalgebras. This result is a partial case of such a presentation for
all simple contragredient Lie superalgebras, established in [29, Main Theorem]. Let
A = (ai j )i, j be the Cartan matrix of (2.17).

Theorem 2.21 [29] The Lie superalgebra osp(V ) is generated by {ei , fi , hi }ri=1, with
the Z2-grading

|ei | = | fi | =
{
0̄ if αi ∈ �0

1̄ if αi ∈ �1
, |hi | = 0̄ , (2.22)

subject to the quadratic Chevalley relations

[hi , h j ] = 0 ,

[hi , e j ] = ai j e j , [hi , f j ] = −ai j f j ,

[ei , f j ] = δi j hi ,

(2.23)

the standard Serre relations

(adei )
1−ai j (e j ) = 0 = (ad fi )

1−ai j ( f j ) for i �= j , with aii �= 0 or ai j = 0 ,

[ei , ei ] = 0 = [ fi , fi ] if aii = 0 , (2.24)

and the higher order Serre relations (2.27, 2.31, 2.33, 2.35) that are described in detail
below.
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We shall now specify the aforementioned higher order Serre relations of degrees
4, 3, 6, or 7.

• For the sub-diagram

j t k with (α j , αt ) · (αt , αk) < 0 (2.25)

or one of the following sub-diagrams

j t k or j t k (2.26)

the associated higher order Serre relations are:

[[e j , et ], [et , ek]
] = 0 ,[[ f j , ft ], [ ft , fk]
] = 0 .

(2.27)

Remark 2.28 (a)Wenote that the relations
[
et ,
[
e j , [et , ek]

]]=0,
[

ft ,
[

f j , [ ft , fk]
]]=0

of [29, §3.2.1(1,2,3)] are equivalent to (2.27), due to the relations [et , et ] = 0 and
[ ft , ft ] = 0.

(b) The above relations (2.27) also hold for the analogs of (2.25, 2.26) with the white
t-th vertex.

In our setup, sub-diagrams (2.26) occur only if N = 2n + 1, n + m ≥ 3, n + m �=
n + m − 1 (and k = n + m, t = n + m − 1, j = n + m − 2). Likewise, sub-
diagrams (2.25) occur either if t < �N/2	+m −1 and t �= t + 1 (with j = t −1, k =
t+1) or N = 2n, j = n+m−3, t = n+m−2, k = n+m andϒV = (∗, . . . , ∗, 1̄, 0̄, 0̄)
where each ∗ is either 0̄ or 1̄.

Remark 2.29 As noted in [29, §2.2], the condition (α j , αt ) · (αt , αk) < 0 in sub-
diagrams (2.25) cannot be ignored. In our setup, that excludes the corresponding
sub-diagrams for N = 2n, n + m ≥ 3, t = n + m − 2, j = n + m − 1, k = n + m,
and ϒV = (∗, . . . , ∗, 1̄, 0̄, 0̄) where each ∗ is either 0̄ or 1̄.

• For the sub-diagram

i
s

t

(2.30)
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the associated higher order Serre relations are:

[
et , [es, ei ]

]− [es, [et , ei ]
] = 0 ,[

ft , [ fs, fi ]
]− [ fs, [ ft , fi ]

] = 0 ,
(2.31)

cf. [29, §3.2.1(6)]. In our setup, that occurs only if N = 2n, n + m ≥ 3, and the parity
sequence isϒV = (∗, . . . , ∗, 1̄, 0̄)where each ∗ is either 0̄ or 1̄ (and i = n+m−2, t =
n + m − 1, s = n + m).

• For the sub-diagram

j t k (2.32)

the associated higher order Serre relations are:

[
[e j , et ],

[[e j , et ], [et , ek]
]] = 0 ,[

[ f j , ft ],
[[ f j , ft ], [ ft , fk]

]] = 0 ,
(2.33)

cf. [29, §3.2.1(4)]. In our setup, that occurs only if N = 2n, n + m ≥ 3, and the
parity sequence is ϒV = (∗, . . . , ∗, 1̄, 0̄, 1̄) where each ∗ is either 0̄ or 1̄ (and j =
n + m − 2, t = n + m − 1, k = n + m).

• For the sub-diagram

ji t k (2.34)

the associated higher order Serre relations are:

[[
ei , [e j , et ]

]
,
[[e j , et ], [et , ek]

]] = 0 ,[[
fi , [ f j , ft ]

]
,
[[ f j , ft ], [ ft , fk]

]] = 0 ,
(2.35)

cf. [29, §3.2.1(5)]. In our setup, that occurs only if N = 2n, n + m ≥ 4, and ϒV =
(∗, . . . , ∗, 0̄, 0̄, 1̄)where each ∗ is either 0̄ or 1̄ (and i = n+m −3, j = n+m −2, t =
n + m − 1, k = n + m).

Remark 2.36 (a) For odd N or even N but with the parity sequences ϒV ending in 0̄0̄
or 1̄1̄, there may be only degree 4 higher order Serre relations.

(b) For even N ≥ 6 − 2m and parity sequences ϒV ending in 1̄0̄, we get new degree
3 Serre relations.

(c) For even N ≥ 8 − 2m and parity sequences ϒV ending in 0̄1̄, we get new degree
6 or 7 Serre relations.
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Remark 2.37 (a) The degree 6 Serre relations (2.33) as well as the degree 7 Serre
relations (2.35) always hold in osp(V ) with N = 2n for any parity sequence ϒV .

(b) The degree 3 Serre relations (2.31) hold in osp(V ) with N = 2n iff vn+m is even
(we note that for odd vn+m the corresponding Dynkin diagram does not have the s ↔ t
Z2-symmetry either).

3 RTT orthosymplectic Yangians

In this section, we recall the definition of the RTT (extended) Yangians of osp(V ) and
their basic properties. We establish the key rank-reduction result in Theorem 3.47,
prove Lemma 3.55, and explain the relevance of the defining relations for super A-
type Yangians to the present setup.

3.1 RTT extended orthosymplectic super-Yangian

Let P : V ⊗ V → V ⊗ V be the permutation operator defined by

P =
N+2m∑
i, j=1

(−1) j ei j ⊗ e ji , (3.1)

whose action is explicitly given by:

P(v j ⊗ vi ) = (−1)i · j vi ⊗ v j .

Evoking the definition (2.4), we also consider the operator Q : V ⊗ V → V ⊗ V
defined by

Q =
N+2m∑
i, j=1

(−1)i · jθiθ j ei j ⊗ ei ′ j ′ , (3.2)

whose action is explicitly given by:

Q(va ⊗ vb) =

⎧⎪⎨
⎪⎩
0 if b �= a′∑N+2m

i=1 θi vi ⊗ vi ′ if b = a′ , a > 
 N
2 � + m

(−1)a∑N+2m
i=1 θi vi ⊗ vi ′ if b = a′ , a ≤ 
 N

2 � + m

.

We also introduce a constant κ via:

κ = N
2 − m − 1 . (3.3)

Consider the rational R-matrix (a super-version of the one considered in [30]):

R(u) = I − P

u
+ Q

u − κ
∈ End V ⊗ End V . (3.4)
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According to [1]3, it satisfies the famous Yang–Baxter equation with a spectral param-
eter:

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u) . (3.5)

Following [1, §III], we define the RTT extended Yangian of osp(V ), denoted by
X rtt(osp(V )), to be the associative C-superalgebra generated by {t (r)

i j }r≥1
1≤i, j≤N+2m

with the Z2-grading |t (r)
i j | = i + j and subject to the following defining relation

(commonly called the RTT relation, see (1.1)):

R(u − v)T1(u)T2(v) = T2(v)T1(u)R(u − v) , (3.6)

viewed as an equality in End V ⊗ End V ⊗ X rtt(osp(V )). Here, T (u) is the series in
u−1 with coefficients in the algebra End V ⊗ X rtt(osp(V )), defined by:

T (u) =
N+2m∑
i, j=1

(−1)i · j+ j ei j ⊗ ti j (u) with ti j (u) := δi j +
∑
r≥1

t (r)
i j u−r . (3.7)

Therefore, T1(u) =∑N+2m
i, j=1 (−1)i · j+ j ei j ⊗ 1 ⊗ ti j (u) and

T2(v) =∑N+2m
i, j=1 (−1)i · j+ j1 ⊗ ei j ⊗ ti j (v).

Remark 3.8 We identify the operator
∑N+2m

i, j=1 (−1)i · j+ j ei j ⊗ ti j (u) with the matrix

(ti j (u))N+2m
i, j=1 . Evoking the multiplication (2.7) for the graded tensor products, we see

that the extra sign (−1)i · j+ j ensures that the product of matrices is calculated in the
usual way.

Henceforth, for A∈End V ⊗ End V we shall often use the notation
〈vi ⊗ vk |A|v j ⊗ v�〉 to denote the coefficient of vi ⊗ vk in A(v j ⊗ v�). In partic-
ular, comparing the matrix coefficients 〈vi ⊗ vk | · · · |v j ⊗ v�〉 of both sides of the
defining relation (3.6), it is straightforward to see that the latter is equivalent to the
following system of relations:

[ti j (u), tk�(v)] = (−1)i · j+i ·k+ j ·k
u−v

(
tk j (u)ti�(v) − tk j (v)ti�(u)

)
− 1

u−v−κ
(3.9)

×
(
δki ′
∑N+2m

p=1 (−1)i+i · j+ j ·pθi θp tpj (u)tp′�(v) − δ� j ′
∑N+2m

p=1 (−1)i ·k+ j ·k+i ·pθ j ′θp′ tkp′ (v)tip(u)
)

for all 1 ≤ i, j, k, � ≤ N + 2m. Here, we only use (2.2), (2.7), and the property (2.5).

Remark 3.10 As follows from the direct verification using (3.9), the assignment
(cf. [21, (2.9)])

τ : ti j (u) �→ (−1)i · j+ j t j i (u) ∀ 1 ≤ i, j ≤ N + 2m (3.11)

3 While [1, Theorem 2.5] established (3.5) only for the standard parity sequence (2.20), the general case
follows immediately by using the S(� N

2 	 + m)-symmetry as in our proof of Lemma 3.12.
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gives rise to an anti-automorphism τ of the superalgebra X rtt(osp(V )), that is, we
have:

τ(xy) = (−1)|x |·|y|τ(y)τ (x) for any homogeneous x, y ∈ X rtt(osp(V )) .

In the particular case of the standard parity sequence (2.20), corresponding to the
case v1, . . . , vm ∈ V1̄, we recover the RTT extended Yangian X rtt(osp(N |2m)). The
latter was introduced in [1] and revised more recently in [21]; in particular, the rela-
tion (3.9) recovers [1, (3.3)], cf. [21, (2.8)]. Meanwhile, for a general parity sequence
we actually get isomorphic superalgebras, due to the following simple result:

Lemma 3.12 The superalgebra X rtt(osp(V )) depends only on dim(V0̄), dim(V1̄), up
to an isomorphism. Thus, X rtt(osp(V )) is isomorphic to the RTT extended Yangian
X rtt(osp(N |2m)).

Proof Let U be another superspace with a C-basis u1, . . . , uN+2m such that each ui

is even or odd, |ui | = |ui ′ |, and dim(V0̄) = dim(U0̄), dim(V1̄) = dim(U1̄). Pick a
permutation σ ∈ S(� N

2 	 + m) such that vi ∈ V and uσ(i) ∈ U have the same parity
for all 1 ≤ i ≤ � N

2 	 + m.4 We then extend σ to a permutation σ ∈ S(N + 2m) by

σ(i ′) = σ(i)′ ∀ 1 ≤ i ≤ � N
2 	 + m , σ ( N+1

2 + m) = N+1
2 + m for odd N .

(3.13)
Then, the assignment

t (r)
i j �→ t (r)

σ (i),σ ( j) ∀ i, j ∈ I , r ≥ 1 (3.14)

is compatible with (3.9), thus giving rise to an isomorphism
X rtt(osp(V )) ∼−→ X rtt(osp(U )). ��

3.2 RTT orthosymplectic super Yangian

Consider the matrix supertransposition t defined by (At )i j = (−1)i · j+ jθiθ j (A) j ′i ′ .
In particular:

T t (u)i j = (−1)i · j+ jθiθ j t j ′i ′(u) . (3.15)

As shown in [1]5, the product T (u − κ)T t (u) is a scalar matrix:

T (u − κ)T t (u) = cV (u) · Id , (3.16)

where cV (u) = 1 +∑r≥1 cr u−r with all cr belonging to the center Z X rtt(osp(V ))

of X rtt(osp(V )) and, in fact, freely generating Z X rtt(osp(V )), which can be shown as
in [3] for non-super case.

4 We abstain from using r instead of � N
2 	 + m in this section, since we now have a similar looking index

r ≥ 1.
5 While [1, Theorem 3.1] established this only for the standard parity sequence (2.20), the general case
follows immediately by utilizing the S(� N

2 	 + m)-symmetry as in our proof of Lemma 3.12.
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For any formal power series f (u) ∈ 1 + u−1
C[[u−1]], the assignment

μ f : T (u) �→ f (u)T (u) (3.17)

gives rise to a superalgebra automorphism μ f of X rtt(osp(V )). Following [1, 21] for
the standard parity and [18] for non-super case, we define the RTT Yangian of osp(V ),
denoted by Y rtt(osp(V )), as the following C-subalgebra of X rtt(osp(V )):

Y rtt(osp(V )) :=
{

y ∈ X rtt(osp(V ))

∣∣∣μ f (y) = y ∀ f (u) ∈ 1 + u−1
C[[u−1]]

}
.

(3.18)
Similarly to [21, (2.7)] for the standard parity (2.20), cf. [3] for non-super case, we
have the tensor product decomposition

X rtt(osp(V )) 
 Z X rtt(osp(V )) ⊗ Y rtt(osp(V )) . (3.19)

Thus, theRTTYangianY rtt(osp(V )) can be also realized as a quotient of X rtt(osp(V )):

Y rtt(osp(V )) 
 X rtt(osp(V ))/(cV (u)−g(u)) ∀ g(u) ∈ 1+u−1
C[[u−1]] . (3.20)

Remark 3.21 There is a unique series zV (u) = 1+∑r≥1 zr u−r with zr ∈ C[c1, c2, . . .]
satisfying

zV (u − κ)zV (u) = cV (u) , (3.22)

cf. [3, Theorem 3.1]. According to (3.16), the automorphisms μ f of (3.17) map
cV (u) to f (u) f (u − κ)cV (u), hence, μ f (zV (u)) = f (u)zV (u). Therefore, the series
{τi j (u)}i, j∈I defined by

δi j +
∑
r≥1

τ
(r)
i j u−r = τi j (u) := zV (u)−1ti j (u) (3.23)

are μ f -invariant, and so their coefficients {τ (r)
i j }r≥1

i, j∈I
belong to Y rtt(osp(V )) of (3.18).

The corresponding matrix T (u) = (τi j (u))N+2m
i, j=1 satisfies the RTT relation (3.6) and

T (u − κ)T t (u) = Id. This clarifies why (3.20) is usually stated for g(u) = 1, cf. [3,
Corollary 3.2] for non-super case.

Evoking Lemma 3.12, we thus immediately obtain:

Corollary 3.24 The superalgebra Y rtt(osp(V )) depends only on dim(V0̄), dim(V1̄), up
to an isomorphism. In particular, Y rtt(osp(V )) is isomorphic to Y rtt(osp(N |2m)) of
[1, 21].

Remark 3.25 For m = 0, the assignment T (u) �→ T (u) gives rise to isomorphisms

X rtt(osp(N |0)) ∼−→ X rtt(soN ) and Y rtt(osp(N |0)) ∼−→ Y rtt(soN ) .
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For N = 0, the assignment T (u) �→ T (−u) gives rise to isomorphisms

X rtt(osp(0|2m)) ∼−→ X rtt(sp2m) and Y rtt(osp(0|2m)) 
 Y rtt(sp2m) .

Thus, the orthosymplectic setup generalizes classical BC D-types all at once.

3.3 Relation to Lie superalgebras and PBW theorem

For i, j ∈ I, define t̂ (1)i j := (−1)i t (1)i j . Their commutation relations

[t̂ (1)i j , t̂ (1)k� ] = δk j t̂
(1)
i� − δ�i (−1)(i+ j)(k+�) t̂ (1)k j

−δki ′(−1)i · j+iθiθ j t̂ (1)j ′� + δ� j ′(−1)i ·k+�·kθi ′θ j ′ t̂ (1)ki ′

follow immediately by evaluating the u−1v−1-coefficients in the defining rela-
tion (3.9). On the other hand, comparing the (i, j) matrix coefficients of both sides
of (3.16), we also obtain:

t̂ (1)j ′i ′ = −(−1)i · j+iθiθ j t̂ (1)i j ∀ i �= j , t̂ (1)i ′i ′ + t̂ (1)i i = (−1)i c1 ,

where c1 is the coefficient of u−1 in cV (u) from (3.16). Thus, we get an algebra
homomorphism

ι : U (osp(V )⊕C·c) −→ X rtt(osp(V )) given by c �→ c1 , Fi j �→ t̂ (1)i j − (−1)i

2 δi j c1 .

(3.26)
In fact, the homomorphism ι of (3.26) is a superalgebra embedding, due to the
Poincaré-Birkhoff-Witt (PBW) theorem for the RTT extended orthosymplectic Yan-
gians that we recall next.

To this end, let us endow the RTT extended Yangian X rtt(osp(V )) with a filtration
defined via

deg t (r)
i j = r − 1 ∀ i, j ∈ I , r ≥ 1 . (3.27)

Let gr X rtt(osp(V )) denote the associated graded algebra with respect to this filtration.
For any element x ∈ X rtt(osp(V )), we use x̃ to denote its image in gr X rtt(osp(V )).
In particular, t̃ (r)

i j and c̃r will be the images of t (r)
i j and cr (the coefficient of u−r in

cV (u) from (3.16)) in the (r − 1)-th component of gr X rtt(osp(V )). Due to (3.9), we
have a superalgebra homomorphism

π : gr X rtt(osp(V )) −→ U (osp(V )[z]) ⊗ C[c1, c2, . . . ]
given by t̃ (r)

i j �→ (−1)i Fi j z
r−1 + 1

2δi jcr
(3.28)

with π(̃cr ) = cr . The following result was stated first in [1] and proved recently
in [16]:
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Proposition 3.29 (a) The homomorphism π of (3.28) is actually an isomorphism,
that is

gr X rtt(osp(V )) 
 U (osp(V )[z]) ⊗ C[c1, c2, . . . ] . (3.30)

(b) Endowing the subalgebra Y rtt(osp(V )) of X rtt(osp(V )) with the induced filtration,
we have

gr Y rtt(osp(V )) ∼−→ U (osp(V )[z]) via τ̃
(r)
i j �→ (−1)i Fi j z

r−1 . (3.31)

Remark 3.32 Viewing Y rtt(osp(V )) rather as the filtered quotient
X rtt(osp(V ))/(c1, c2, . . . ), see Remark 3.21, we can recast (3.31) in the following
form (which does not involve τ -generators):

gr Y rtt(osp(V )) ∼−→ U (osp(V )[z]) via t̃ (r)
i j �→ (−1)i Fi j z

r−1 . (3.33)

As a direct corollary, one obtains the PBW theorem for the RTT orthosymplectic
Yangians:

Corollary 3.34 The algebra X rtt(osp(V )) (respectively, Y rtt(osp(V ))) is generated by
the elements t (r)

i j and cr (respectively, elements τ
(r)
i j ) with the conditions i + j ≤

N + 2m + |vi |, r ≥ 1. Moreover, given any total order on the set of these generators,
the ordered monomials, with the powers of odd generators not exceeding 1, form a
basis of the algebra X rtt(osp(V )) (respectively, Y rtt(osp(V ))).

3.4 Gauss decomposition and rank reduction

To derive the Drinfeld realization of X rtt(osp(V )) and subsequently of Y rtt(osp(V )),
we consider the Gauss decomposition of the generator matrix T (u) from (3.7):

T (u) = F(u) · H(u) · E(u) . (3.35)

Here, H(u), F(u), E(u) are the diagonal, lower-triangular, andupper-triangularmatri-
ces

H(u) = diag
(

h1(u), h2(u), . . . , h2′(u), h1′(u)
)

,

F(u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
f21(u) 1 · · · 0

...
...

. . .
...

f1′1(u) f1′2(u) · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, E(u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 e12(u) · · · e11′(u)

0 1 · · · e21′(u)

...
...

. . .
...

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,
(3.36)

with hı (u), f j i (u), ei j (u) ∈ X rtt(osp(V ))[[u−1]] for 1 ≤ ı ≤ N + 2m and 1 ≤ i <

j ≤ N + 2m, cf. Remark 3.8. Define the elements {h(r)
ı , e(r)

i j , f (r)
j i }r≥1

1≤ı,i, j≤N+2m,i< j
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of X rtt(osp(V )) via

ei j (u) =
∑
r≥1

e(r)
i j u−r , f j i (u) =

∑
r≥1

f (r)
j i u−r , hı (u) = 1 +

∑
r≥1

h(r)
ı u−r .

In particular, we have h1(u) = t11(u), fi1(u) = ti1(u)t11(u)−1, e1i (u) =
t11(u)−1t1i (u) for i > 1.

Remark 3.37 Completely analogously to [21, Lemma 4.1], one proves by induction
that

τ : ei j (u) �→ (−1)i · j+ j f j i (u) , f j i (u) �→ (−1)i · j+i ei j (u) , hı (u) �→ hı (u)

(3.38)
for 1 ≤ i < j ≤ 1′, 1 ≤ ı ≤ 1′, where τ is the anti-automorphism of X rtt(osp(V ))

given by (3.11).

One of our main results is the Drinfeld realization of X rtt(osp(V )), with the gen-
erators{

h(r)
ı , e(r)

i , f (r)
i

∣∣∣ 1 ≤ i ≤ � N
2 	 + m, 1 ≤ ı ≤ � N

2 	 + m + 1, r ≥ 1
}

(3.39)

and an explicit collection of the defining relations, where:

e(r)
i = e(r)

i,i+1 , f (r)
i = f (r)

i+1,i for 1 ≤ i < � N
2 	 + m{

e(r)
n+m = e(r)

n+m−1,n+m+1 , f (r)
n+m = f (r)

n+m+1,n+m−1 if N = 2n , n + m = 0̄

e(r)
n+m = e(r)

n+m,n+m+1 , f (r)
n+m = f (r)

n+m+1,n+m if N = 2n + 1 or N = 2n , n + m = 1̄
.

We shall use the corresponding generating series ei (u), fi (u) defined via

ei (u) =
∑
r≥1

e(r)
i u−r , fi (u) =

∑
r≥1

f (r)
i u−r ∀ 1 ≤ i ≤ � N

2 	 + m . (3.40)

The fact that the elements above generate X rtt(osp(V )) is straightforward, see explicit
formulas in Sects. 4.1–4.3. The aforementioned relations will be read off from the
super A-type of [24, 26] (recalled in Sect. 3.6) as well as rank ≤ 2 cases, carried
out case by case in Sects. 5.1–5.2. Finally, the proof that these relations are indeed
defining will proceed in the standard way by passing through the associated graded
algebras, see the proof of Theorem 6.33.

Let us now introduce the key ingredient that will be used through the rest of this
paper:

rank reduction embeddings ψV ,s : X rtt(osp(V [s])) ↪→ X rtt(osp(V )) .

For 1 ≤ s ≤ � N−1
2 	 + m, let V [s] denote the following subspace of the superspace V :

V [s] = span
{
vi
∣∣ s < i < s′} . (3.41)

123



   43 Page 24 of 100 R. Frassek, A. Tsymbaliuk

Let X rtt(osp(V [s])) denote the corresponding RTT extended orthosymplectic Yangian,
defined via the RTT relation using the corresponding R-matrix R[s](u), cf. (3.4). To
define the latter, we use the operators P [s], Q[s] ∈ End V [s] ⊗ End V [s] given by the
formulas alike (3.1, 3.2) but with the indices s < i, j < s′ in the summations, while
the associated constant κ [s] is easily seen to be related to κ of (3.3) via:

κ [s] = κ −
s∑

i=1

(−1)i . (3.42)

We also consider the following (N +2m −2s)×(N +2m −2s) submatrices of (3.36):

H [s](u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

hs+1(u) 0 · · · 0

0 hs+2(u) · · · 0
...

...
. . .

...

0 0 · · · h(s+1)′(u)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.43)

F [s](u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
fs+2,s+1(u) 1 · · · 0

...
...

. . .
...

f(s+1)′,s+1(u) f(s+1)′,s+2(u) · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.44)

E [s](u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 es+1,s+2(u) · · · es+1,(s+1)′(u)

0 1 · · · es+2,(s+1)′(u)

...
...

. . .
...

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.45)

and define
T [s](u) := F [s](u) · H [s](u) · E [s](u) . (3.46)

Accordingly, the entries of the matrix T [s](u) will be denoted by t [s]i j (u) with s <

i, j < s′.
Generalizing [18, Theorem 3.1, Proposition 4.1] for non-super case (RTT extended

orthogonal/symplectic Yangians) and [21, Theorem 3.1, Proposition 4.2] for N ≥ 3
and the standard parity sequence (2.20), we have the following powerful rank reduc-
tion:

Theorem 3.47 The assignment TV [s](u) �→ T [s]
V (u) gives rise to a superalgebra

embedding
ψV ,s : X rtt(osp(V [s])) ↪→ X rtt(osp(V )) , (3.48)

where we use indices V [s] and V solely to distinguish the corresponding generator
T -matrices.
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Remark 3.49 (a) First, we note that all ψV ,s can be constructed as compositions of
various ψV [?],1. This is based on the following natural compatibility between the
maps (3.48):

ψV ,s ◦ ψV [s],t = ψV ,s+t : X rtt(osp(V [s+t])) −→ X rtt(osp(V )) . (3.50)

(b) The proof of [21, Theorem 3.1] establishes Theorem 3.47 for odd v1 (we note that
while the author considers the standard parity (2.20), the proof of [21, Theorem 3.1]
only uses |v1| = 1̄).

(c) As noted in [21], the proof for the RTT extended orthogonal/symplectic Yangians
from [18] cannot be fully extended to the present setup since the value R(1) is not
always well-defined.

Proof of Theorem 3.47 As follows from Remark 3.49(a), it suffices to show that ψV ,1
is a superalgebra embedding. The key is to show that it is a superalgebra homo-
morphism (to verify its injectivity, it suffices to show that the associated graded
grψV ,1 : gr X rtt(osp(V [1])) → gr X rtt(osp(V )) is injective, which follows from
Proposition 3.29(a) as in [18, Proof of Theorem 3.1]).

To prove that TV [1](u) �→ T [1]
V (u) gives rise to a superalgebra homomorphism

we consider two cases depending on the first element of the parity sequence ϒV .
If v1 is odd (i.e. ϒV starts with 1̄), then the proof is already contained in [21], see
Remark 3.49(b). The case of even v1 is treated completely similarly, so we shall only
identify the key changes in the respective formulas of [21]:

◦ The R(u) of [21] is now given by R(u) = 1 − P
u + Q

u−κ+1 , where P = P [1] and
Q = Q[1].

◦ The operators K ±, Ǩ ± ∈ End V ⊗ End V of [21] are now defined as follows:

K + =
2′∑

i=2

θi ei1 ⊗ ei ′1′, Ǩ + =
2′∑

i=2

θi e1i ⊗ e1′i ′ ,

K − =
2′∑

i=2

θi ei1′ ⊗ ei ′1, Ǩ − =
2′∑

i=2

θi e1′i ⊗ e1i ′ .

Then, the operators K = K + + K −, Ǩ = Ǩ + + Ǩ − still satisfy [21, (3.7)–(3.8)].
◦ The formula after (3.8) in [21] shall now read as

K T1(u)T2(v) = − 1

u − v − κ + 1
QT1(u)T2(v)

+ (u−v+1)(u−v− κ)

(u − v)(u − v − κ + 1)
K −T1(u)T2(v) + u − v − κ

u− v− κ + 1
K +T2(v)T1(u)R(u − v) ,

while its companion will be

T2(v)T1(u)Ǩ = − 1

u − v − κ + 1
T2(v)T1(u)Q
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+ (u − v + 1)(u − v − κ)

(u − v)(u − v − κ + 1)
T2(v)T1(u)Ǩ − + u − v − κ

u − v − κ + 1
R(u − v)T1(u)T2(v)Ǩ + .

Plugging these formulas into [21, (3.8)] and rearranging terms, we get the same
formula as in the middle of p. 9 in [21], but with u − v − κ + 1 used instead of
u − v − κ − 1.

◦ Using the equalities I1 I2K ± = K ±, Ǩ ± I1 I2 = Ǩ ±, I1 I2 P̃ = P = P̃ I1 I2, as
well as

K −T1(u)T2(v)J1 J2T 2(v)−1T 1(u)−1 I1 I2 = 0,

I1 I2T 1(u)−1T 2(v)−1 J1 J2T2(v)T1(u)Ǩ − = 0,

we see that the expression of [21, (3.9)] still equals that of [21, (3.10)], but with
u − v − κ + 1 in place of u − v − κ − 1.

◦ The expression of [21, (3.10)] can bewritten in the sameway using [21, (3.12)] and
its companion.Thus, the expression from[21, (3.9)] equals− G1(u)G2(v)W G2(v)G1(u)

(u−v−κ)(u−v−κ+1)
with W as in [21], so that the only difference is in using u − v − κ + 1 instead of
u − v − κ − 1.

◦ Arguing as in [21], we get:

W = K +[t11(u), h1′(v)]Ǩ + = K +[h1(u), h1′(v)]Ǩ + = 0 .

Here, the last equality follows from the identity h1′(v) = cV (v + κ)h1(v + κ)−1

established in (4.5) and the commutativity [h1(u), h1(v)] = 0 which is a direct
consequence of the formula (3.9) applied to [t11(u), t11(v)] (alternatively, it can be
derived from the super A-type reduction of Sect. 3.6). Therefore, the expression
of [21, (3.9)] vanishes.

This completes the proof for the case of even v1. ��
Remark 3.51 We note that the main technical difference between the above formulas
and those of [21, Proof of Theorem 3.1] is that 1

u−v−κ−1 is replaced with 1
u−v−κ+1

everywhere. One can unify these cases by using 1
u−v−κ [1] .

We shall often use the following consequence of Theorem 3.47, verified as its non-
super counterpart of [18, Corollary 3.10] (cf. [21, Corollary 3.3] for the standard parity
sequence (2.20)):

Corollary 3.52 For any 1 ≤ a, b ≤ � and � < i, j < �′, we have the following
commutativity:

[tab(u), t [�]i j (v)] = 0 . (3.53)

In particular,
{
ha(u), eab(u), fba(u)

∣∣1 ≤ a, b ≤ �
}

commute with
{
hı (v), eıj (v),

fj ı (v)
∣∣� < ı, j < �′}.

As the embeddings ψV ,s of (3.48) commute with the automorphisms μ f of (3.17),
we obtain:

Corollary 3.54 The restriction ofψV ,s to the subalgebra Y rtt(osp(V [s]))of X rtt(osp(V [s]))
defines a superalgebra embedding ψV ,s : Y rtt(osp(V [s])) ↪→ Y rtt(osp(V )).
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3.5 Useful lemma

The following result generalizes [18, Lemma 4.3] for non-super case (cf. [21,
Lemma 4.3], where a different proof is provided for N ≥ 3 and the standard par-
ity sequence (2.20)):

Lemma 3.55 For � < i, j, k < �′ with k �= j ′, the following relations hold in
X rtt(osp(V )):

[e�k(u), t [�]i j (v)] = (−1)�·i+�·k+i ·k

u − v
t [�]ik (v)

(
e� j (v) − e� j (u)

)
, (3.56)

[ fk�(u), t [�]j i (v)] = (−1)�· j+�·k+ j ·k

u − v

(
f j�(u) − f j�(v)

)
t [�]ki (v) . (3.57)

To prevent the confusion with the generator 1̄ ∈ Z2, we use |v1| instead of 1 in the
proof below.

Proof It suffices to verify both relations for � = 1, as the general case then follows
immediately from Theorem 3.47. Let us verify (3.56) for � = 1 (the relation (3.57)
follows by applying the anti-automorphism τ of X rtt(osp(V )) given by (3.11) to (3.56)
and using the formulas (3.38)).

First, we note that

t [1]i j (v) = ti j (v) − fi1(v)h1(v)e1 j (v) = ti j (v) − ti1(v)t11(v)−1t1 j (v) . (3.58)

Thus, the defining relation [t1k(u), ti j (v)] = (−1)|v1|(i+k)+i ·k
u−v

(
tik(u)t1 j (v)−tik(v)t1 j (u)

)
of (3.9), which uses i �= 1′ and k �= j ′, can be written in the following form:

[t1k(u), t [1]i j (v)] + [t1k(u), fi1(v)h1(v)e1 j (v)]

= (−1)|v1|(i+k)+i ·k

u − v

(
t [1]ik (u)t1 j (v) − t [1]ik (v)t1 j (u)

)
(3.59)

+ (−1)|v1|(i+k)+i ·k

u − v

(
fi1(u)h1(u)e1k(u)t1 j (v) − fi1(v)h1(v)e1k(v)t1 j (u)

)
.

Let us evaluate the second summand in the left-hand side of (3.59):

[t1k(u), fi1(v)h1(v)e1 j (v)]
= [t1k(u), ti1(v)]e1 j (v) + (−1)(|v1|+i)(|v1|+k)ti1(v)[t1k(u), t11(v)−1t1 j (v)]
= [t1k(u), ti1(v)]e1 j (v) − (−1)(|v1|+i)(|v1|+k)

×
(

fi1(v)[t1k(u), t11(v)]e1 j (v) − fi1(v)[t1k(u), t1 j (v)]
)

= (−1)|v1|(i+k)+i ·k

u − v

(
tik(u)t11(v)e1 j (v) − tik(v)t11(u)e1 j (v)

)
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− (−1)|v1|(i+k)+i ·k

u − v

(
fi1(v)t1k(u)t11(v)e1 j (v) − fi1(v)t1k(v)t11(u)e1 j (v)

)

+ (−1)|v1|(i+k)+i ·k

u − v

(
fi1(v)t1k(u)t1 j (v) − fi1(v)t1k(v)t1 j (u)

)

= (−1)|v1|(i+k)+i ·k

u − v
×
(

tik(u)h1(v)e1 j (v) − tik(v)h1(u)e1 j (v)

+ fi1(v)h1(v)e1k(v)h1(u)
(
e1 j (v) − e1 j (u)

))
, (3.60)

where we used [t1k(u), t11(v)−1] = −t11(v)−1[t1k(u), t11(v)]t11(v)−1 in the sec-
ond equality and applied (3.9) three times in the third equality. Combining (3.59)
and (3.60), we thus obtain:

[t1k(u), t [1]i j (v)] = (−1)|v1|(i+k)+i ·k
u − v

×
(

tik(v)h1(u)e1 j (v) − fi1(v)h1(v)e1k(v)h1(u)e1 j (v) − t [1]ik (v)t1 j (u)
)

= (−1)|v1|(i+k)+i ·k
u − v

t [1]ik (v)h1(u)
(

e1 j (v) − e1 j (u)
)
. (3.61)

As t1k(u) = h1(u)e1k(u) and h1(u) commutes with both t [1]i j (v), t [1]ik (v) by Corol-
lary 3.52, we get:

[e1k(u), t [1]i j (v)] = (−1)|v1|(i+k)+i ·k

u − v
t [1]ik (v)

(
e1 j (v) − e1 j (u)

)

which is precisely (3.56) for � = 1. ��

3.6 RTT Yangian in super A-type: revision

Fix n, m ≥ 0 and consider a superspace V = V0̄ ⊕ V1̄ with a C-basis v1, . . . , vn+m

such that each vi is either even or odd and dim(V0̄) = n, dim(V1̄) = m. We define the
correspondingparity sequenceϒV := (|v1|, . . . , |vn+m |) ∈ {0̄, 1̄}n+m . Let P : V⊗V →
V ⊗ V be the permutation operator defined via P =∑n+m

i, j=1(−1) j ei j ⊗ e ji , cf. (3.1).
Consider the rational R-matrix:

R(u) = I − P

u
∈ End V ⊗ End V , (3.62)

which satisfies the Yang–Baxter equation with a spectral parameter, cf. (3.5):

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u) . (3.63)

The RTT Yangian of gl(V), denoted by Y rtt(gl(V)), is defined as the associative C-
superalgebra generated by {t(r)

i j }r≥1
1≤i, j≤n+m with the Z2-grading |t(r)

i j | = i + j and
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subject to the following defining RTT relation, cf. (1.1, 3.6):

R(u − v)T1(u)T2(v) = T2(v)T1(u)R(u − v) , (3.64)

viewed as an equality in End V ⊗ End V ⊗ Y rtt(gl(V)). Here, T(u) is the series in u−1

with coefficients in the algebra End V ⊗ Y rtt(gl(V )), defined by:

T(u) =
n+m∑
i, j=1

(−1)i · j+ j ei j ⊗ ti j (u) with ti j (u) := δi j +
∑
r≥1

t(r)
i j u−r . (3.65)

The relation (3.64) is equivalent to the following system of relations:

[ti j (u), tk�(v)] = (−1)i · j+i ·k+ j ·k

u − v

(
tk j (u)ti�(v) − tk j (v)ti�(u)

)
(3.66)

for all 1 ≤ i, j, k, � ≤ n + m, cf. (3.9).
For any formal power series f (u) ∈ 1 + u−1

C[[u−1]], the assignment

μ f : T(u) �→ f (u)T(u) (3.67)

gives rise to a superalgebra automorphism μ f of Y rtt(gl(V)), cf. (3.17). The RTT
Yangian of sl(V), denoted by Y rtt(sl(V)), is defined as the following subalgebra of
Y rtt(gl(V)):

Y rtt(sl(V)) :=
{

y ∈ Y rtt(gl(V))

∣∣∣μ f (y) = y ∀ f (u) ∈ 1 + u−1
C[[u−1]]

}
. (3.68)

Remark 3.69 In contrast to (3.19), we note that we have the tensor product decompo-
sition Y rtt(gl(V)) 
 ZY rtt(gl(V)) ⊗ Y rtt(sl(V)) only for n �= m, while for n = m
the center ZY rtt(gl(V)) of Y rtt(gl(V)) actually belongs to Y rtt(sl(V)), see
[26, Theorem 2.48] (generalizing [15]).

For the parity sequence ϒV = (0̄, . . . , 0̄, 1̄, . . . , 1̄), reverse to (2.20), that is:

|v1| = . . . = |vn| = 0̄ and |vn+1| = . . . = |vn+m | = 1̄ ,

we recover the RTT Yangians Y rtt(gl(n|m)), Y rtt(sl(n|m)). By [26, Lemmas 2.24,
Corollary 2.38], we have Y rtt(gl(V)) 
 Y rtt(gl(n|m)) and Y rtt(sl(V)) 
 Y rtt(sl(n|m)),
cf. Lemma 3.12, Corollary 3.24.

In what follows, we shall use the Drinfeld realization of Y rtt(gl(V)) established
in [26] (cf. [24]), generalizing [15]. To this end, we consider the Gauss decomposition
of the matrix T(u) from (3.65):

T(u) = F(u) · H(u) · E(u) ,

where H(u), F(u), E(u) are the diagonal, lower-triangular, and upper-triangular matri-
ces with matrix coefficients hı (u), f j i (u), ei j (u), as in (3.36). The coefficients of the
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series ei (u) = ei,i+1(u), fi (u) = fi+1,i (u), hı (u) with 1 ≤ i < n +m, 1 ≤ ı ≤ n +m
generate Y rtt(gl(V)). Furthermore, one can specify all the defining relations (thus
recovering the Drinfeld realization of Y rtt(gl(V))):

Theorem 3.70 [26, Theorem 2.32] The algebra Y rtt(gl(V)) is isomorphic to the C-
superalgebra Y (gl(V)) generated by {e(r)

i , f(r)
i ,h(r)

ı | 1 ≤ i < n + m, 1 ≤ ı ≤ n +
m, r ≥ 1} with the Z2-grading |e(r)

i | = |f(r)
i | = i + i + 1, |h(r)

ı | = 0̄, and subject to
the following defining relations:

[hı (u),hj (v)] = 0 , (3.71)

[hı (u), e j (v)] = (−1)ı (δı, j+1 − δı j )
hı (u)
(
e j (u) − e j (v)

)
u − v

, (3.72)

[hı (u), f j (v)] = (−1)ı (δı j − δı, j+1)

(
f j (u) − f j (v)

)
hı (u)

u − v
, (3.73)

[ei (u), f j (v)] = (−1)i+1δi j
hi (u)−1hi+1(u) − hi (v)−1hi+1(v)

u − v
, (3.74)

{
[ei (u), ei (v)] = 0 if i �= i + 1

[ei (u), ei (v)] = (−1)i (ei (u)−ei (v))2

u−v
if i = i + 1

, (3.75)

{
[fi (u), fi (v)] = 0 if i �= i + 1

[fi (u), fi (v)] = −(−1)i (fi (u)−fi (v))2

u−v
if i = i + 1

, (3.76)

u[e◦
i (u), e j (v)] − v[ei (u), e◦

j (v)] = (−1) jδ j,i+1ei (u)e j (v) for i < j , (3.77)

u[f◦i (u), f j (v)] − v[fi (u), f◦j (v)] = −(−1) jδ j,i+1f j (v)fi (u) for i < j , (3.78)

degree 2 Serre relations

[
ei (u), e j (v)] = 0 ,

[
fi (u), f j (v)] = 0 if i �= j, j ± 1 (3.79)

as well as degree 3 Serre relations

{[
ei (u1), [ei (u2), ei±1(v)]]+ [ei (u2), [ei (u1), ei±1(v)]] = 0[
fi (u1), [fi (u2), fi±1(v)]]+ [fi (u2), [fi (u1), fi±1(v)]] = 0

if i = i + 1

(3.80)
and degree 4 Serre relations

⎧⎪⎨
⎪⎩
[[ei−1(u), ei (v1)], [ei (v2), ei+1(w)]]+ [[ei−1(u), ei (v2)], [ei (v1), ei+1(w)]] = 0[[fi−1(u), fi (v1)], [fi (v2), fi+1(w)]]+ [[fi−1(u), fi (v2)], [fi (v1), fi+1(w)]] = 0

if i �= i + 1

(3.81)
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where

ei (u) =
∑
r≥1

e(r)
i u−r , fi (u) =

∑
r≥1

f(r)
i u−r , hı (u) = 1 +

∑
r≥1

h(r)
ı u−r ,

e◦
i (u) =

∑
r≥2

e(r)
i u−r , f◦i (u) =

∑
r≥2

f(r)
i u−r .

Let us record an important consequence of the relations (3.72, 3.73) that we shall
often use:

Corollary 3.82 The following relations hold in Y rtt(gl(V)):

hi (u)ei (u) = ei
(
u − (−1)i )hi (u) , (3.83)

hi+1(u)ei (u) = ei
(
u + (−1)i+1)hi+1(u) , (3.84)

fi (u)hi (u) = hi (u)fi
(
u − (−1)i ) , (3.85)

fi (u)hi+1(u) = hi+1(u)fi
(
u + (−1)i+1) (3.86)

for any 1 ≤ i ≤ n + m − 1.

Proof Let us rewrite ı = j = i case of (3.72) in the following form:

(
u − v − (−1)i

)
hi (u)ei (v) + (−1)i hi (u)ei (u) = (u − v)ei (v)hi (u) . (3.87)

Plugging v = u − (−1)i above, we obtain (3.83). The other three relations are proved
similarly. ��

Let us finally explain the relevance of the above super A-type to the present
orthosymplectic setup. To this end, we fix V with N = 2n or N = 2n + 1 and set
V = span {vi }n+m

i=1 . In particular, V and V have the same parity sequences: ϒV = ϒV.
Then, the defining relations (3.9) for 1 ≤ i, j, k, � ≤ n + m coincide with (3.66).
Therefore, we have a superalgebra homomorphism

Y rtt(gl(V)) −→ X rtt(osp(V )) given by ti j (u) �→ ti j (u) ∀ 1 ≤ i, j ≤ n + m ,

(3.88)
which is injective due to the PBW theorems for Y rtt(gl(V)) and X rtt(osp(V )), see
Corollary 3.34. Combining this with Theorem 3.70, we obtain:

Corollary 3.89 For N = 2n or N = 2n + 1, the currents {ei (u), fi (u), hı (u)}ı≤n+m
i<n+m

of (3.36, 3.40) satisfy the relations from Theorem 3.70.

Likewise, the submatrix T ′(u)=(ti j (u))i, j∈I
′ of T (u) with I

′ ={1, 2 . . . , n+m−1,
n+m +1} also defines an embedding Y rtt(gl(V)) ↪→ X rtt(osp(V )) via T(u) �→ T ′(u).
Moreover, if N = 2n and |vn+m | = 0̄, then we have the following important equalities
(which follow from (5.2)):

en+m,n+m+1(u) = 0 = fn+m+1,n+m(u) . (3.90)
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Thus, in this case the Gauss decomposition of the submatrix T ′(u) is formed by the
corresponding submatrices of F(u), H(u), E(u) from (3.35). Combining this with
Theorem 3.70, we obtain:

Corollary 3.91 The currents {ei+δi,n+m−1(u), fi+δi,n+m−1(u), hı+δı,n+m (u)}ı≤n+m
i<n+m sat-

isfy the relations from Theorem 3.70, if N = 2n and |vn+m | = 0̄.

Due to the two corollaries above, it thus remains to determine the quadratic relations
between the currents {ei (u), fi (u), hı (u)}where at least one of the indices is i = n+m
or ı = n + m + 1, as well as Serre relations. The latter is partially accomplished in
Sect. 4.4 (the full treatment being provided in Sect. 6, see Remark 6.56), while the
former is essentially reduced to the rank ≤ 2 cases due to Corollary 3.52 which are
treated case by case in Sects. 5.1–5.2. But first of all, we shall provide explicit formulas
for all entries of E(u), F(u), H(u) and a factorized formula for the central series cV (u)

in Sects. 4.1–4.3.

4 Explicit Gauss decomposition and higher order relations

In this section, we recover explicit formulas for all entries of the matrices
E(u), F(u), H(u) in the Gauss decomposition (3.35) as well as a factorized formula
for the central series cV (u) of (3.16). We also establish the higher order relations
generalizing those from Sect. 2.4.

4.1 Upper triangular matrix explicitly

In this subsection, we derive explicit formulas for all entries of the matrix E(u)

from (3.35, 3.36) in terms of the generators e(r)
i . We consider three cases (N = 2n and

|vn+m | = 0̄, N = 2n and |vn+m | = 1̄, N = 2n + 1), for which the formulas resemble
those of [13] for the D-type, C-type, and B-type, respectively.

• N = 2n and |vn+m | = 0̄.
This case generalizes (from m = 0 case) the Dn-type formulas of [13, Lem-

mas 2.79, 2.80]:

Lemma 4.1 The following relations hold in X rtt(osp(V )):

(a) en+m,n+m+1(u) = 0.

(b) ei, j+1(u) = (−1) j [ei j (u), e(1)
j, j+1] for i < j < i ′ − 1 and j �= n + m.

(c) ei,n+m+1(u) = (−1)n+m−1 [ei,n+m−1(u), e(1)
n+m] for 1 ≤ i ≤ n + m − 2.

(d) e(i+1)′,i ′(u) = −(−1)i+1+i ·i+1 ei
(
u + κ −∑i

k=1(−1)k
)

for 1 ≤ i ≤ n + m − 1.

(e) e(i+1)′, j ′(u) = −(−1) j · j+1 [e(i+1)′,( j+1)′(u), e(1)
j ] for 1 ≤ j < i ≤ n + m − 1.

(f) eii ′(u) = −(−1)i+1+i ·i+1 ei (u)ei,(i+1)′(u) − (−1)i ·i+1 [ei,(i+1)′(u), e(1)
i ] for

1 ≤ i ≤ n + m − 1.
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(g) ei+1,i ′(u) = (−1)i+1+i ·i+1 ei (u)ei+1,(i+1)′(u) − (−1)i+1+i ·i+1 ei,(i+1)′(u) −
(−1)i ·i+1 [ei+1,(i+1)′(u), e(1)

i ] for 1 ≤ i ≤ n + m − 2.

(h) ei j ′(u) = −(−1) j · j+1 [ei,( j+1)′(u), e(1)
j ] for 1 ≤ j ≤ i − 2 ≤ n + m − 2.

(i) en+m,n+m+2(u) = −en+m(u).

Proof (a) follows from its validity for the n = 1, m = 0 case as established in (5.2)
and Theorem 3.47.

(b) is similar to [13, Lemma 2.79(d,e)], cf. [18, Lemma 5.15]. Due to Theorem 3.47,
it suffices to establish it for i = 1 and 1 < j < 2′, j �= n + m. To this end, evaluating
the v−1-coefficients in the defining relation

[t1 j (u), t j, j+1(v)] = (−1) j

u − v

(
t j j (u)t1, j+1(v) − t j j (v)t1, j+1(u)

)
, (4.2)

we obtain [t1 j (u), t (1)j, j+1] = (−1) j t1, j+1(u). As t1 j (u) = h1(u)e1 j (u), t1, j+1(u) =
h1(u)e1, j+1(u),h1(u) commuteswith e(1)

j, j+1 byCorollary 3.52, andh1(u) is invertible,
we get the desired relation:

e1, j+1(u) = (−1) j [e1 j (u), e(1)
j, j+1] .

We note that e(1)
j, j+1 = e(1)

j for j < n + m, and e(1)
j, j+1 = −(−1) j+ j · j+1 e(1)

( j+1)′ for
j > n + m by (d).

(c) is completely analogous to part (b), but we replace (4.2) rather with

[t1,n+m−1(u), tn+m−1,n+m+1(v)] = (4.3)

(−1)n+m−1

u − v

(
tn+m−1,n+m−1(u)t1,n+m+1(v) − tn+m−1,n+m−1(v)t1,n+m+1(u)

)
.

(d) is similar to [18, (5.18)]. Due to the equality κ [i−1] − (−1)i = κ −∑i
k=1(−1)k ,

cf. (3.42), and Theorem 3.47, it suffices to establish this relation for i = 1. To this
end, we rewrite the relation (3.16) in the form:

T t (u + κ) = T (u)−1cV (u + κ) . (4.4)

Here, we note that T (u)−1 = E(u)−1H(u)−1F(u)−1. In particular, comparing the
(1′, 1′) matrix coefficients of both sides of (4.4), we find:

h1(u + κ) = h1′(u)−1cV (u + κ) . (4.5)

Likewise, comparing the (2′, 1′) matrix coefficients of both sides of (4.4), we get:

(−1)1+1·2θ1′θ2′ t12(u + κ) = −e2′1′(u)h1′(u)−1cV (u + κ) . (4.6)
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Evoking (4.5) and the equality (−1)1+1·2θ1′θ2′ = (−1)2+1·2, we can rewrite (4.6) as
follows:

(−1)2+1·2 h1(u + κ)e12(u + κ) = −e2′1′(u)h1(u + κ) . (4.7)

Applying h1(u+κ)e1(u+κ) = e1(u+κ−(−1)1)h1(u+κ), which follows from (3.83)
and Corollary 3.89, to the left-hand side of (4.7) and multiplying both sides by
h1(u + κ)−1 on the right, we obtain the desired relation:

e2′1′(u) = −(−1)2+1·2 e1
(
u + κ − (−1)1

)
.

(e) follows from yet another super A-type reduction, similar to that of [18, Propo-
sition 5.6]. Namely, multiplying the bottom-right (n + m) × (n + m) submatrices of
F(u), H(u), E(u) provides an (n + m) × (n + m) matrix satisfying the RTT rela-
tion (3.64) of A-type (with the parity sequence (n + m, n + m − 1, . . . , 1) which
is reverse to ϒV ). Therefore, part (e) now follows from part (b) and the equality
e(1)
( j+1)′, j ′ = −(−1) j+1+ j · j+1 e(1)

j due to part (d).

(f) is similar to [13, Lemma 2.80(a)]. Due to Theorem 3.47, it suffices to establish
this relation for i = 1. Applying the reasoning of part (b) to j = 2′, we obtain
[t12′(u), e(1)

2′1′ ] = (−1)2t11′(u). According to part (d),we have e(1)
2′1′ = −(−1)1·2+2 e(1)

12 .
Thus, the above equality reads:

[h1(u)e12′(u), e(1)
1 ] = −(−1)1·2 h1(u)e11′(u) . (4.8)

But evaluating the v−1-coefficients in the equality [h1(u), e1(v)] = −(−1)1h1(u)
e1(u)−e1(v)

u−v
, which follows from (3.72) and Corollary 3.89, we obtain [h1(u), e(1)

1 ] =
(−1)1h1(u)e1(u). Plugging this into (4.8), and multiplying both sides by h1(u)−1 on
the left, we get the desired relation:

e11′(u) = −(−1)2+1·2 e1(u)e12′(u) − (−1)1·2 [e12′(u), e(1)
1 ] . (4.9)

(g) is similar to [13, Lemma 2.80(b)]. Due to Theorem 3.47, it suffices to establish
this relation for i = 1. To this end, let us compare the v−1-coefficients in the defining
relation

[t22′(u), t2′1′(v)] = (−1)2

u − v

(
t2′2′(u)t21′(v) − t2′2′(v)t21′(u)

)

−
∑N+2m

p=1 (−1)2·pθp tp2′(u)tp′1′(v)

u − v − κ

of (3.9), which togetherwith the equality t (1)2′1′ = e(1)
2′1′ = −(−1)2+1·2e(1)

12 due to part (d)
implies:

[t22′(u), e(1)
12 ] = −(−1)1·2 t21′(u) − (−1)2 t12′(u) . (4.10)
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Note that
t22′(u) = h2(u)e22′(u) + f21(u)h1(u)e12′(u) . (4.11)

Comparing the v−1-coefficients of both sides of the equality [h2(u), e1(v)] =
(−1)2h2(u)

e1(u)−e1(v)
u−v

from (3.72) and Corollary 3.89, we find [h2(u), e(1)
1 ] =

−(−1)2h2(u)e1(u), so that

[h2(u)e22′(u), e(1)
1 ] = h2(u)

(
−(−1)2e1(u)e22′(u) + [e22′(u), e(1)

1 ]
)

. (4.12)

Comparing the v−1-coefficients of both sides of [t21(u), t12(v)] =
(−1)1 t11(u)t22(v)−t11(v)t22(u)

u−v
, we get [ f21(u)h1(u), e(1)

1 ] = −(−1)1(t11(u) − t22(u)),
so that:

[ f21(u)h1(u)e12′(u), e(1)
1 ] = −(−1)2

(
h1(u)− t22(u)

)
e12′(u)+ t21(u)[e12′(u), e(1)

1 ] .

(4.13)
Combining (4.9)–(4.13), we immediately obtain the desired equality:

e21′(u) = (−1)2+1·2e1(u)e22′(u) − (−1)2+1·2 e12′(u) − (−1)1·2 [e22′(u), e(1)
1 ] .

(4.14)
(h) is similar to [13, Lemma 2.80(c)]. Due to Theorem 3.47, it suffices to establish

it for j = 1. We shall proceed by induction on i . Comparing the v−1-coefficients in
the defining relation

[ti2′(u), t2′1′(v)] = (−1)2

u − v

(
t2′2′(u)ti1′(v) − t2′2′(v)ti1′(u)

)
(4.15)

and evoking the aforementioned equality t (1)2′1′ = e(1)
2′1′ = −(−1)2+1·2 e(1)

1 , we obtain:

[ti2′(u), e(1)
1 ] = −(−1)1·2 ti1′(u) . (4.16)

Note that the series featuring in (4.16) are explicitly given by:

ti1′(u) = hi (u)ei1′(u) +
i−1∑
j=1

fi j (u)h j (u)e j1′(u) ,

ti2′(u) = hi (u)ei2′(u) +
i−1∑
j=1

fi j (u)h j (u)e j2′(u) .

(4.17)

Comparing the v−1-coefficients of both sides of [ti1(u), t12(v)] = (−1)1

u−v

(
t11(u)ti2(v)−

t11(v)ti2(u)
)
, we obtain [ti1(u), e(1)

1 ] = (−1)1 ti2(u) = (−1)1 fi2(u)h2(u) +
(−1)1 fi1(u)h1(u)e1(u), so that:

[ fi1(u)h1(u)e12′(u), e(1)
1 ] = (4.18)
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fi1(u)h1(u)
(
[e12′(u), e(1)

1 ] + (−1)2e1(u)e12′(u)
)

+ (−1)2 fi2(u)h2(u)e12′(u) .

For j = 2, we have [ fi2(u), e(1)
1 ] = 0 (which follows from [ fi (u), e(1)

1 ] = 0 for

2 ≤ i ≤ n + m, see Sect. 3.6) as well as [h2(u), e(1)
1 ] = −(−1)2 h2(u)e1(u),see the

proof of (4.12), so that:

[ fi2(u)h2(u)e22′(u), e(1)
1 ] = fi2(u)h2(u)

(
[e22′(u), e(1)

1 ] − (−1)2e1(u)e22′(u)
)

.

(4.19)
For 2 < j ≤ i − 1, we similarly have [ fi j (u), e(1)

1 ] = 0 = [h j (u), e(1)
1 ] by Corol-

lary 3.52, so that:

[ fi j (u)h j (u)e j2′(u), e(1)
1 ]= fi j (u)h j (u)[e j2′(u), e(1)

1 ]=−(−1)1·2 fi j (u)h j (u)e j1′(u),

(4.20)
with the last equality due to the induction assumption.

Combining [hi (u)ei2′(u), e(1)
1 ] = hi (u)[ei2′(u), e(1)

1 ] with the formulas (4.9, 4.14,
4.16–4.20), we immediately obtain the desired equality:

ei1′(u) = −(−1)1·2 [ei2′(u), e(1)
1 ] for 3 ≤ i ≤ n + m . (4.21)

(i) is similar to part (d). Due to Theorem 3.47, it suffices to establish this relation
for n + m = 2. Comparing the (3′, 1′) matrix coefficients of both sides of (4.4), we
obtain:

(−1)1+1·3θ1′θ3′ t13(u + κ) = (T (u)−1)24 · cV (u + κ) . (4.22)

Note that (T (u)−1)24 = (E(u)−1)24h1′(u)−1 = −e24(u)h1′(u)−1, where we use
e23(u) = 0 due to part (a). Evoking (4.5), we can thus bring (4.22) to the following
form:

h1(u + κ)e13(u + κ) = −e24(u)h1(u + κ) . (4.23)

Multiplying both sides of the defining relation [t11(u), t13(v)] = (−1)1

u−v
(t11(u)t13(v)−

t11(v)t13(u)) by (u − v)h1(v)−1 on the left and plugging v = u − (−1)1, one gets
(cf. (3.83)):

h1(u)e13(u) = e13(u − (−1)1)h1(u) . (4.24)

Thus, the relation (4.23) implies e13(u + κ − (−1)1)h1(u + κ) = −e24(u)h1(u + κ).
It remains to note that κ − (−1)1 = 0 as 2 = 0̄. Therefore, we obtain the desired
equality:

e24(u) = −e13(u) . (4.25)

This completes our proof of Lemma 4.1. ��
• N = 2n and |vn+m | = 1̄.

This case generalizes (from n = 0 case) the Cm-type formulas of [13, Lem-
mas 3.11, 3.12]:
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Lemma 4.26 The following relations hold in X rtt(osp(V )):

(a) ei, j+1(u) = (−1) j [ei j (u), e(1)
j, j+1] for i < j < i ′ − 1 and j �= n + m.

(b) ei,n+m+1(u) = − 1
2 [ei,n+m(u), e(1)

n+m] for 1 ≤ i ≤ n + m − 1.

(c) e(i+1)′,i ′(u) = −(−1)i+1+i ·i+1 ei
(
u + κ −∑i

k=1(−1)k
)

for 1 ≤ i ≤ n + m − 1.

(d) e(i+1)′, j ′(u) = −(−1) j · j+1 [e(i+1)′,( j+1)′(u), e(1)
j ] for 1 ≤ j < i ≤ n + m − 1.

(e) eii ′(u) = −(−1)i+1+i ·i+1 ei (u)ei,(i+1)′(u) − (−1)i ·i+1 [ei,(i+1)′(u), e(1)
i ]

for 1 ≤ i ≤ n + m − 1.

(f) ei+1,i ′(u) = (−1)i+1+i ·i+1 ei (u)ei+1,(i+1)′(u) − (−1)i+1+i ·i+1 ei,(i+1)′(u) −
(−1)i ·i+1 [ei+1,(i+1)′(u), e(1)

i ] for 1 ≤ i ≤ n + m − 1.

(g) ei j ′(u) = −(−1) j · j+1 [ei,( j+1)′(u), e(1)
j ] for 1 ≤ j ≤ i − 2 ≤ n + m − 2.

Proof The proof is completely analogous to that of Lemma 4.1. ��
• N = 2n + 1.

This case generalizes (from m = 0 case) the Bn-type formulas of [13, Lem-
mas 4.10, 4.11]:

Lemma 4.27 The following relations hold in X rtt(osp(V )):

(a) ei, j+1(u) = (−1) j [ei j (u), e(1)
j, j+1] for i < j < i ′ − 1.

(b) e(i+1)′,i ′(u) = −(−1)i+1+i ·i+1 ei
(
u + κ −∑i

k=1(−1)k
)

for 1 ≤ i ≤ n + m.

(c) e(i+1)′, j ′(u) = −(−1) j · j+1 [e(i+1)′,( j+1)′(u), e(1)
j ] for 1 ≤ j < i ≤ n + m − 1.

(d) eii ′(u) = −(−1)i+1+i ·i+1 ei (u)ei,(i+1)′(u) − (−1)i ·i+1 [ei,(i+1)′(u), e(1)
i ] for

1 ≤ i ≤ n + m.

(e) ei+1,i ′(u) = (−1)i+1+i ·i+1 ei (u)ei+1,(i+1)′(u) − (−1)i+1+i ·i+1 ei,(i+1)′(u) −
(−1)i ·i+1 [ei+1,(i+1)′(u), e(1)

i ] for 1 ≤ i ≤ n + m − 1.

(f) ei j ′(u) = −(−1) j · j+1 [ei,( j+1)′(u), e(1)
j ] for 1 ≤ j ≤ i − 2 ≤ n + m − 1.

Proof The proof is completely analogous to that of Lemma 4.1. ��

4.2 Lower triangular matrix explicitly

Similarly to the subsection above, we derive explicit formulas for all entries of
the matrix F(u) in terms of the generators f (r)

i , treating three cases that resemble
BC D-type formulas of [13]. The following lemmas can be deduced by applying
the anti-automorphism τ of X rtt(osp(V )) given by (3.11) to the relations in Lem-
mas 4.1, 4.26, 4.27, respectively, and using the formulas (3.38).

• N = 2n and |vn+m | = 0̄.
This case generalizes (from m = 0 case) the Dn-type formulas of [13, Lem-

mas 2.96, 2.97]:
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Lemma 4.28 The following relations hold in X rtt(osp(V )):

(a) fn+m+1,n+m(u) = 0.

(b) f j+1,i (u) = (−1) j [ f (1)
j+1, j , f j i (u)] for i < j < i ′ − 1 and j �= n + m.

(c) fn+m+1,i (u) = (−1)n+m−1 [ f (1)
n+m, fn+m−1,i (u)] for 1 ≤ i ≤ n + m − 2.

(d) fi ′,(i+1)′(u) = −(−1)i+i ·i+1 fi
(
u + κ −∑i

k=1(−1)k
)

for 1 ≤ i ≤ n + m − 1.

(e) f j ′,(i+1)′(u) = −(−1) j+ j+1+ j · j+1 [ f (1)
j , f( j+1)′,(i+1)′(u)] for 1 ≤ j < i ≤

n + m − 1.

(f) fi ′i (u) = −(−1)i+i ·i+1 f(i+1)′,i (u) fi (u)− (−1)i+i+1+i ·i+1 [ f (1)
i , f(i+1)′,i (u)] for

1 ≤ i ≤ n + m − 1.

(g) fi ′,i+1(u) = (−1)i+i ·i+1 f(i+1)′,i+1(u) fi (u) − (−1)i+i ·i+1 f(i+1)′,i (u) −
(−1)i+i+1+i ·i+1 [ f (1)

i , f(i+1)′,i+1(u)] for 1 ≤ i ≤ n + m − 2.

(h) f j ′i (u) = −(−1) j+ j+1+ j · j+1 [ f (1)
j , f( j+1)′,i (u)] for 1 ≤ j ≤ i − 2 ≤ n + m − 2.

(i) fn+m+2,n+m(u) = −(−1)n+m−1 fn+m(u).

• N = 2n and |vn+m | = 1̄.
This case generalizes (from n = 0 case) the Cm-type formulas of [13, Lem-

mas 3.11, 3.12]:

Lemma 4.29 The following relations hold in X rtt(osp(V )):

(a) f j+1,i (u) = (−1) j [ f (1)
j+1, j , f j i (u)] for i < j < i ′ − 1 and j �= n + m.

(b) fn+m+1,i (u) = − 1
2 [ f (1)

n+m, fn+m,i (u)] for 1 ≤ i ≤ n + m − 1.

(c) fi ′,(i+1)′(u) = −(−1)i+i ·i+1 fi
(
u + κ −∑i

k=1(−1)k
)

for 1 ≤ i ≤ n + m − 1.

(d) f j ′,(i+1)′(u) = −(−1) j+ j+1+ j · j+1 [ f (1)
j , f( j+1)′,(i+1)′(u)] for 1 ≤ j < i ≤

n + m − 1.

(e) fi ′i (u) = −(−1)i+i ·i+1 f(i+1)′,i (u) fi (u)−(−1)i+i+1+i ·i+1 [ f (1)
i , f(i+1)′,i (u)] for

1 ≤ i ≤ n + m − 1.

(f) fi ′,i+1(u) = (−1)i+i ·i+1 f(i+1)′,i+1(u) fi (u) − (−1)i+i ·i+1 f(i+1)′,i (u) −
(−1)i+i+1+i ·i+1 [ f (1)

i , f(i+1)′,i+1(u)] for 1 ≤ i ≤ n + m − 1.

(g) f j ′i (u) = −(−1) j+ j+1+ j · j+1 [ f (1)
j , f( j+1)′,i (u)] for 1 ≤ j ≤ i − 2 ≤ n + m − 2.

• N = 2n + 1.
This case generalizes (from m = 0 case) the Bn-type formulas of [13, Lem-

mas 4.10, 4.11]:
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Lemma 4.30 The following relations hold in X rtt(osp(V )):

(a) f j+1,i (u) = (−1) j [ f (1)
j+1, j , f j i (u)] for i < j < i ′ − 1.

(b) fi ′,(i+1)′(u) = −(−1)i+i ·i+1 fi
(
u + κ −∑i

k=1(−1)k
)

for 1 ≤ i ≤ n + m.

(c) f j ′,(i+1)′(u) = −(−1) j+ j+1+ j · j+1 [ f (1)
j , f( j+1)′,(i+1)′(u)] for 1 ≤ j < i ≤

n + m − 1.

(d) fi ′i (u) = −(−1)i+i ·i+1 f(i+1)′,i (u) fi (u)−(−1)i+i+1+i ·i+1 [ f (1)
i , f(i+1)′,i (u)] for

1 ≤ i ≤ n + m.

(e) fi ′,i+1(u) = (−1)i+i ·i+1 f(i+1)′,i+1(u) fi (u) − (−1)i+i ·i+1 f(i+1)′,i (u) −
(−1)i+i+1+i ·i+1 [ f (1)

i , f(i+1)′,i+1(u)] for 1 ≤ i ≤ n + m − 1.

(f) f j ′i (u) = −(−1) j+ j+1+ j · j+1 [ f (1)
j , f( j+1)′,i (u)] for 1 ≤ j ≤ i − 2 ≤ n + m − 1.

4.3 Diagonal matrix and central current explicitly

In this subsection, we derive explicit formulas for all entries of the matrix H(u) in
terms of the generators h(r)

ı and the factorized formula for the central current cV (u)

of (3.16). We consider the same three cases for which the formulas resemble the
BC D-type formulas of [13, 18] and generalize [21, Proposition 5.1, Theorem 5.3] for
N ≥ 3 and the standard parity sequence (2.20), though our approach is different from
that used in [21, §5].

• N = 2n and |vn+m | = 0̄.

The following generalizes (from m = 0 case) the Dn-type formula of [18, Theo-
rem 5.8]:

Lemma 4.31 The central series cV (u) from (3.16) can be factorized as follows:

cV (u) =
n+m−1∏

i=1

hi (u −∑i−1
k=1(−1)k)

hi (u −∑i
k=1(−1)k)

·hn+m(u −n +m +1)hn+m+1(u −n +m +1) .

(4.32)

Proof Comparing the (2′, 2′) matrix coefficients of both sides of (4.4), we get:

t22(u + κ) =
(

h2′(u)−1 + e2′1′(u)h1′(u)−1 f1′2′(u)
)

cV (u + κ) . (4.33)

Evoking h1(u+κ) = h1′(u)−1cV (u+κ) of (4.5) and the fact that cV (u+κ) is central,
the relation (4.33) can be written as:

h2′(u)−1cV (u + κ) = h2(u + κ) + f21(u + κ)h1(u + κ)e12(u + κ)

−e2′1′(u)h1(u + κ) f1′2′(u) . (4.34)
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Applying Lemmas 4.1(d) and 4.28(d) to the last summand, we obtain:

h2′(u)−1cV (u + κ) = h2(u + κ) + f21(u + κ)h1(u + κ)e12(u + κ)−
(−1)1+2 e12

(
u + κ − (−1)1

)
h1(u + κ) f21

(
u + κ − (−1)1

)
. (4.35)

According to Corollaries 3.82, 3.89, we have h1(u + κ)e12(u + κ) = e12(u + κ −
(−1)1)h1(u + κ) and h1(u + κ) f21(u + κ − (−1)1) = f21(u + κ)h1(u + κ). Plug
these formulas into (4.35) to get:

h2′(u)−1cV (u+κ) = h2(u+κ)+[ f21(u+κ), e12(u+κ−(−1)1)]h1(u+κ) . (4.36)

But [ f21(v), e12(u)] = − (−1)1

u−v

(
h2(u)
h1(u)

− h2(v)
h1(v)

)
, due to (3.74) and Corollary 3.89, so

that:

[
f21(u + κ), e12(u + κ − (−1)1)

]
= h2(u + κ − (−1)1)

h1(u + κ − (−1)1)
− h2(u + κ)

h1(u + κ)
. (4.37)

Plugging (4.37) into the right-hand side of (4.36), we thus get:

h2′(u)−1cV (u + κ) = h1(u + κ)

h1(u + κ − (−1)1)
h2(u + κ − (−1)1) , (4.38)

which can be rewritten in the form

cV (u + κ) = h1(u + κ)

h1(u + κ − (−1)1)
· h2′(u)h2(u + κ − (−1)1) . (4.39)

Combining Theorem 3.47 with (4.5) and κ − (−1)1 = κ [1] of (3.42), we note that

h2′(u)h2(u + κ − (−1)1) = ψV ,1(cV [1](u + κ [1])) .

Therefore, the equality (4.39) can be expressed as follows:

c[0]
V (u) = h1(u)

h1(u − (−1)1)
· c[1]

V (u − (−1)1) , (4.40)

where we introduce c[k]
V (u) for 0 ≤ k < n + m via

c[k]
V (u) := ψV ,k(cV [k](u)) . (4.41)

Applying the formula (4.40) iteratively and using (3.50), we obtain:

cV (u) =
n+m−1∏

i=1

hi (u −∑i−1
k=1(−1)k)

hi (u −∑i
k=1(−1)k)

· c[n+m−1]
V

(
u −

n+m−1∑
k=1

(−1)k

)
. (4.42)
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According to (4.5) and the equality κ [n+m−1] = 0, we have c[n+m−1]
V (u) =

hn+m(u)hn+m+1(u). Plugging this equality into (4.42) recovers precisely the desired
formula (4.32). ��

The following result generalizes (from m = 0 case) the Dn-type formula of [13,
Lemma 2.77]:

Lemma 4.43 For 1 ≤ i < n + m, we have

hi ′(u) = 1

hi (u + κ −∑i
k=1(−1)k)

×
n+m−1∏
j=i+1

h j (u + κ −∑ j−1
k=1(−1)k)

h j (u + κ −∑ j
k=1(−1)k)

· hn+m(u)hn+m+1(u) . (4.44)

Proof For i = 1, this formula follows immediately from the equality h1′(u) =
h1(u +κ)−1cV (u +κ) of (4.5) combined with the explicit formula (4.32) for cV (u) as
κ − n + m + 1 = 0. The case 1 < i < n + m follows now by applying Theorem 3.47
and evoking the formula (3.42). ��
• N = 2n and |vn+m | = 1̄.
This case generalizes (from n = 0 case) the Cm-type formula of
[18, Theorem 5.8]:

Lemma 4.45 The central series cV (u) from (3.16) can be factorized as follows:

cV (u) =
n+m−1∏

i=1

hi (u −∑i−1
k=1(−1)k)

hi (u −∑i
k=1(−1)k)

·hn+m(u −n +m −1)hn+m+1(u −n +m +1) .

(4.46)

Proof The proof is precisely the same as that of Lemma 4.31 except that now
κ [n+m−1] = −2 and so one rather plugs c[n+m−1]

V (u) = hn+m(u)hn+m+1(u + 2)
into the formula (4.42). ��

Analogously to Lemma 4.43, we also obtain the following generalization (from
n = 0 case) of [13, Lemma 3.11(a)]:

Lemma 4.47 For 1 ≤ i < n + m, we have

hi ′(u) = 1

hi (u + κ −∑i
k=1(−1)k)

×
n+m−1∏
j=i+1

h j (u + κ −∑ j−1
k=1(−1)k)

h j (u + κ −∑ j
k=1(−1)k)

· hn+m(u − 2)hn+m+1(u) .(4.48)

• N = 2n + 1.
This case generalizes (from m = 0 case) the Bn-type formulas of [18, Theorem

5.8]:
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Lemma 4.49 The central series cV (u) from (3.16) can be factorized as follows:

cV (u) =
n+m∏
i=1

hi (u −∑i−1
k=1(−1)k)

hi (u −∑i
k=1(−1)k)

·hn+m+1
(
u − n + m + 1

2

)
hn+m+1 (u − n + m) .

(4.50)

Proof The proof is precisely the same as that of Lemma 4.31. Specifically, the for-
mula (4.42) is now replaced by

cV (u) =
n+m∏
i=1

hi (u −∑i−1
k=1(−1)k)

hi (u −∑i
k=1(−1)k)

· c[n+m]
V

(
u −

n+m∑
k=1

(−1)k

)
. (4.51)

But T [n+m]
V (u) is a 1 × 1 matrix (hn+m+1(u)), so that c[n+m]

V (u) = hn+m+1(u)

hn+m+1(u + 1
2 ). Plugging this equality into (4.51) recovers the desired formula (4.50).

��
Analogously to Lemma 4.43, we also obtain the following generalization (from

m = 0 case) of [13, Lemma 4.10(a)]:

Lemma 4.52 For 1 ≤ i ≤ n + m, we have

hi ′(u) = 1

hi (u + κ −∑i
k=1(−1)k)

×
n+m∏

j=i+1

h j (u+κ−∑ j−1
k=1(−1)k)

h j (u+κ−∑ j
k=1(−1)k)

· hn+m+1(u)hn+m+1(u − 1
2 ). (4.53)

4.4 Higher order relations for orthosymplectic super Yangians

The aim of this subsection is to detect degree 3, 4, 6, and 7 relations in X rtt(osp(V ))

that quantize the loop version of the corresponding Serre relations from Sect. 2.4. Due
to Theorem 3.47, it suffices to establish these relations at the smallest possible ranks 3,
3, 3, and 4, respectively. Here, we note that sub-diagrams (2.25) always arise through
a super A-type sub-diagram, and therefore the corresponding degree 4 Serre relations
follow from (3.81), due to Corollaries 3.89 and 3.91.

• dim(V ) = 6 and ϒV = (∗, 1̄, 0̄) with ∗ ∈ {0̄, 1̄}. Thus the Dynkin diagram is as
in (2.30).

Lemma 4.54 Under the above assumptions, the following relations hold in X rtt(osp(V )):

[
e(1)
3 , [e(1)

2 , e1(u)]]− [e(1)
2 , [e(1)

3 , e1(u)]] = 0 ,[
f (1)
3 , [ f (1)

2 , f1(u)]]− [ f (1)
2 , [ f (1)

3 , f1(u)]] = 0 .
(4.55)
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Proof Evaluating the v−1-coefficients in the defining relation

[t12(u), t23(v)] = (−1)2

u − v

(
t22(u)t13(v) − t22(v)t13(u)

)
,

we get:
t13(u) = −[t12(u), t (1)23 ] . (4.56)

On the other hand, comparing the v−1-coefficients of both sides of the defining relation

[t13(u), t24(v)] = (−1)�(t23(u)t14(v) − t23(v)t14(u))

u − v

+
∑6

p=1 t2p′(v)t1p(u)(−1)1·2+3·2+1·pθ4θp′

u − v − κ
,

where we use � whenever the exact value is irrelevant, we obtain:

t15(u) = −[t13(u), t (1)24 ] . (4.57)

Combining (4.56) and (4.57), we thus get:

t15(u) = [[t12(u), t (1)23 ], t (1)24

] = [[t12(u), e(1)
23 ], e(1)

24

]
. (4.58)

Likewise, comparing the v−1-coefficients of both sides of the defining relation (3.9)
applied to the commutators [t12(u), t24(v)] and [t14(u), t23(v)], we obtain:

t14(u) = −[t12(u), t (1)24 ] , (4.59)

t15(u) = −[t14(u), t (1)23 ] . (4.60)

Combining (4.59) and (4.60), we thus get:

t15(u) = [[t12(u), t (1)24 ], t (1)23

] = [[t12(u), e(1)
24 ], e(1)

23

]
. (4.61)

Comparing the above equalities (4.58) and (4.61), we conclude that

[[t12(u), e(1)
23 ], e(1)

24

] = [[t12(u), e(1)
24 ], e(1)

23

]
. (4.62)

As t12(u) = h1(u)e12(u) and h1(u) commutes with e(1)
23 , e(1)

24 by Corollary 3.52, we
get:

h1(u)
[[e12(u), e(1)

23 ], e(1)
24

] = h1(u)
[[e12(u), e(1)

24 ], e(1)
23

]
. (4.63)

Multiplying both sides of (4.63) by h1(u)−1 on the left, we obtain the first relation
of (4.55).

Applying the anti-automorphism τ of X rtt(osp(V )) given by (3.11) to the first
relation of (4.55) and using the formulas (3.38) establishes the second relation
of (4.55). ��
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Remark 4.64 (a) The relations (4.55) still hold when ϒV = (∗, 0̄, 0̄) with ∗ ∈ {0̄, 1̄},
due to the super Jacobi identity and Serre relations [e(1)

2 , e(1)
3 ] = 0 = [ f (1)

2 , f (1)
3 ],

cf. Remark 2.37(b).

(b) Evaluating the u−1-coefficients in (4.55), we recover precisely the cubic Serre
relations (2.31).

• dim(V ) = 7 and ϒV = (1, 2, 3) with 2 �= 3. Thus, the Dynkin diagram is as
in (2.26).

Lemma 4.65 Under the above assumptions, the following relations hold in
X rtt(osp(V )): [[e1(u), e(1)

2 ], [e(1)
2 , e(1)

3 ]] = 0 ,[[ f1(u), f (1)
2 ], [ f (1)

2 , f (1)
3 ]] = 0 .

(4.66)

Proof Evaluating the v−1-coefficients in the defining relation

[t12(u), t23(v)] = (−1)2

u − v

(
t22(u)t13(v) − t22(v)t13(u)

)
,

we get:

t13(u) = (−1)2[t12(u), e(1)
23 ] . (4.67)

Likewise, evaluating the v−1-coefficients in the defining relation

[t23(u), t34(v)] = (−1)3

u − v

(
t33(u)t24(v) − t33(v)t24(u)

)
,

we obtain t24(u) = (−1)3[t23(u), e(1)
34 ], so that

e(1)
24 = (−1)3[e(1)

23 , e(1)
34 ] . (4.68)

Finally, comparing the v−1-coefficients of both sides of the defining relation

[t13(u), t24(v)] = (−1)�

u − v

(
t23(u)t14(v) − t23(v)t14(u)

)
,

we get
[t13(u), e(1)

24 ] = 0 . (4.69)

Combining the equalities (4.67, 4.68, 4.69), we obtain:

[[t12(u), e(1)
23 ], [e(1)

23 , e(1)
34 ]] = 0 ,

which implies the first relation of (4.66) as h1(u) commutes with both e(1)
2 = e(1)

23 and

e(1)
3 = e(1)

34 .
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Applying the anti-automorphism τ of X rtt(osp(V )) given by (3.11) to the first
relation of (4.66) and using the formulas (3.38) establishes the second relation
of (4.66). ��
Remark 4.70 (a) The relations (4.66) still hold for an arbitrary ϒV = (∗, ∗, ∗) with
∗ ∈ {0̄, 1̄}.
(b) Evaluating the u−1-coefficients in (4.66), we recover the Serre relations (2.27).

• dim(V ) = 8 and ϒV = (∗, 0̄, 0̄, 1̄) with ∗ ∈ {0̄, 1̄}. Thus the Dynkin diagram is as
in (2.34).

Lemma 4.71 Under the above assumptions, the following relations hold in X rtt(osp(V )):

[[
e1(u), [e(1)

2 , e(1)
3 ]], [[e(1)

2 , e(1)
3 ], [e(1)

3 , e(1)
4 ]]] = 0 ,[[

f1(u), [ f (1)
2 , f (1)

3 ]], [[ f (1)
2 , f (1)

3 ], [ f (1)
3 , f (1)

4 ]]] = 0 .
(4.72)

Proof Evaluating the v−1-coefficients in the defining relation

[t23(u), t34(v)] = (−1)3

u − v

(
t33(u)t24(v) − t33(v)t24(u)

)
,

we obtain:
t24(u) = [t23(u), t (1)34 ] = [t23(u), e(1)

34 ] . (4.73)

Likewise, evaluating the v−1-coefficients in the defining relation

[t12(u), t24(v)] = (−1)2

u − v

(
t22(u)t14(v) − t22(v)t14(u)

)
,

we obtain:
t14(u) = [t12(u), t (1)24 ] = [t12(u), e(1)

24 ] . (4.74)

Combining the above formulas, we thus get:

t14(u) = [t12(u), [e(1)
23 , e(1)

34 ]] . (4.75)

Comparing the v−1-coefficients of both sides of the defining relation

[t34(u), t45(v)] = (−1)4(t44(u)t35(v) − t44(v)t35(u))

u − v

+
∑8

p=1 t4p′(v)t3p(u)(−1)3·4+4+3·pθ5θp′

u − v − κ
,

we obtain:
− 2t35(u) = [t34(u), t (1)45 ] = [t34(u), e(1)

45 ] . (4.76)
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Likewise, comparing the v−1-coefficients of both sides of the defining relation

[t24(u), t35(v)] = (−1)�(t34(u)t25(v) − t34(v)t25(u))

u − v

+
∑8

p=1 t3p′(v)t2p(u)(−1)2·3+3·4+2·pθ5θp′

u − v − κ
,

we obtain:
t26(u) = [t24(u), t (1)35 ] = [t24(u), e(1)

35 ] . (4.77)

Combining (4.76) and (4.77), we thus get:

t26(u) = − 1
2

[
t24(u), [e(1)

34 , e(1)
45 ]] . (4.78)

Finally, evaluating the v−1-coefficients in the defining relation

[t14(u), t26(v)] = (−1)�

u − v

(
t24(u)t16(v) − t24(v)t16(u)

)
,

we obtain:
[t14(u), t (1)26 ] = 0 . (4.79)

Combining all the formulas above, we get the following equality:

[[
t12(u), [e(1)

23 , e(1)
34 ]], [[e(1)

23 , e(1)
34 ], [e(1)

34 , e(1)
45 ]]] = 0 . (4.80)

As t12(u) = h1(u)e12(u) and h1(u) commutes with e(1)
23 , e(1)

34 , e(1)
45 by Corollary 3.52,

we get:

h1(u)
[[

e12(u), [e(1)
23 , e(1)

34 ]], [[e(1)
23 , e(1)

34 ], [e(1)
34 , e(1)

45 ]]] = 0 . (4.81)

Multiplying both sides of (4.81) by h1(u)−1 on the left, we obtain the first relation
of (4.72).

Applying the anti-automorphism τ of X rtt(osp(V )) given by (3.11) to the first
relation of (4.72) and using the formulas (3.38) establishes the second relation
of (4.72). ��
Remark 4.82 (a) The relations (4.72) hold for all parity sequences ϒV : for even v4

we actually have
[[e(1)

2 , e(1)
3 ], [e(1)

3 , e(1)
4 ]] = 0 = [[ f (1)

2 , f (1)
3 ], [ f (1)

3 , f (1)
4 ]], while for

odd v4 one can apply the same argument as above, cf. Remark 2.37(a).

(b) Evaluating the u−1-coefficients in (4.72), we recover precisely the Serre rela-
tions (2.35).

• dim(V ) = 6 and ϒV = (1̄, 0̄, 1̄). Thus the Dynkin diagram is as in (2.32).
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Lemma 4.83 Under the above assumptions, the following relations hold in
X rtt(osp(V )):[

[e1(u), e(1)
2 ], [[e(1)

1 , e(1)
2 ], [e(1)

2 , e(1)
3 ]]] = [[e1(u), e(1)

2 ], [e(1)
2 , e(1)

3 ]] · [e1(u), e(1)
2 ] ,[

[ f1(u), f (1)
2 ], [[ f (1)

1 , f (1)
2 ], [ f (1)

2 , f (1)
3 ]]]=[ f1(u), f (1)

2 ]·[[ f1(u), f (1)
2 ], [ f (1)

2 , f (1)
3 ]] .
(4.84)

Remark 4.85 Evaluating the u−1-coefficients in (4.84), we recover the Serre rela-
tions (2.33).

Proof Evaluating the v−1-coefficients in the defining relation (3.9) for [t12(u), t23(v)]
and using [h1(u), e(1)

23 ] = 0 from Corollary 3.52, we obtain:

t13(u) = [t12(u), e(1)
23 ] , e13(u) = [e12(u), e(1)

23 ] , (4.86)

cf. (4.56). Comparing the v−1-coefficients of both sides of the defining relation (3.9)
for [t23(u), t34(v)], we get:

− 2t24(u) = [t23(u), t (1)34 ] = [t23(u), e(1)
34 ] , (4.87)

cf. (4.76). Likewise, comparing the v−1-coefficients of both sides of the defining
relation (3.9) for [t13(u), t24(v)], we also obtain:

t15(u) = [t13(u), t (1)24 ] = [t13(u), e(1)
24 ] , (4.88)

cf. (4.57).
Let us now consider the defining relation

[t13(u), t15(v)] = (−1)1

u − v

(
t13(u)t15(v) − t13(v)t15(u)

)
. (4.89)

Evaluating the v−1-coefficients in (4.89) and using the formulas above, we obtain:

[
[h1(u)e1(u), e(1)

2 ], [[e(1)
1 , e(1)

2 ], [e(1)
2 , e(1)

3 ]]] = 0 .

However, we cannot pull h1(u) to the left of the brackets, as we did in the cases of
degree 3 and 7 relations above, due to the presence of non-commuting e(1)

1 . Instead,
let us rewrite (4.89) as

(u − v + 1)h1(u)e13(u)h1(v)e15(v)

= h1(v)e13(v)h1(u)e15(u) + (u − v)h1(v)e15(v)h1(u)e13(u) . (4.90)

We shall next pull all h1-currents to the left. To this end, multiplying both sides of the
relation

[t11(u), t13(v)] = (−1)1

u − v

(
t11(u)t13(v) − t11(v)t13(u)

)
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by h1(v)−1 on the left, we obtain:

e13(v)h1(u) = h1(u)

(
u − v + 1

u − v
e13(v) − 1

u − v
e13(u)

)
. (4.91)

Completely analogously, we also get:

e15(v)h1(u) = h1(u)

(
u − v + 1

u − v
e15(v) − 1

u − v
e15(u)

)
. (4.92)

Plugging (4.91, 4.92) into (4.90) andmultiplying both sides by (u−v)h1(u)−1h1(v)−1

on the left, we obtain:

(
(u − v)2 − 1

)
e13(u)e15(v) + (u − v + 1)e13(v)e15(v) = −(u − v)e15(u)e13(u)

+
(
(u − v)2 + (u − v)

)
e15(v)e13(u) + (u − v + 1)e13(v)e15(u) − e13(u)e15(u) .

(4.93)

Evaluating the v1-coefficients in this relation, we get:

[e13(u), e(1)
15 ] = e15(u)e13(u) . (4.94)

Here, e13(u) and e15(u) can be expressed via (4.86)–(4.88) as follows:

e13(u) = [e1(u), e(1)
2 ] , e15(u) = − 1

2

[[e1(u), e(1)
2 ], [e(1)

2 , e(1)
3 ]] . (4.95)

Plugging (4.95) into the equality (4.94) recovers precisely the first degree 6 relation
of (4.84).

Applying the anti-automorphism τ of X rtt(osp(V )) given by (3.11) to the first
relation of (4.84) and using the formulas (3.38) establishes the second relation
of (4.84). ��
Remark 4.96 As follows from the above proof, the relations (4.84) admit more general
versions. To this end, we note that (4.93) can be equivalently written as:

[e13(u), e15(v)] = 1

(u − v)2
e13(u)e15(v) + 1

u − v
e15(v)e13(u)

− 1

u − v
e15(u)e13(u) −

(
1

(u − v)2
+ 1

u − v

)
e13(v)e15(v)

+
(

1

(u − v)2
+ 1

u − v

)
e13(v)e15(u) − 1

(u − v)2
e13(u)e15(u) ,

with e13(u) and e15(u) expressed via (4.95). Applying the anti-automorphism τ of
X rtt(osp(V )) given by (3.11) to the relation above and using the formulas (3.38), we
also obtain:
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[ f31(u), f51(v)] = 1

(u − v)2
f31(u) f51(v) − 1

u − v
f51(v) f31(u)

+ 1

u − v
f51(v) f31(v) −

(
1

(u − v)2
− 1

u − v

)
f31(u) f51(u)

+
(

1

(u − v)2
− 1

u − v

)
f31(v) f51(u) − 1

(u − v)2
f31(v) f51(v) .

Remark 4.97 The analogs of degree 6 relations (4.84), with both right-hand sides been
multiplied by−(−1)1, hold for all parity sequencesϒV . Indeed, for even v3 both sides
vanish as we have

[[e1(u), e(1)
2 ], [e(1)

2 , e(1)
3 ]] = 0 = [[ f1(u), f (1)

2 ], [ f (1)
2 , f (1)

3 ]] ,
while for odd v3 one can apply the same argument as above, cf. Remark 2.37(a).

5 Rank 1 and 2 relations

In this section, we establish quadratic relations between the generating currents
ei (u), fi (u), hı (u) of X rtt(osp(V )) in rank≤ 2 cases (corresponding to N +2m ≤ 5).
The arguments are straightforward though a bit tedious. While our treatment is case
by case, we try to present them in a rather uniform way (in particular, eliminating the
smaller rank reduction of [18] for non-super types).

5.1 Rank 1 cases

In this subsection, we establish quadratic relations for rank 1 orthosymplectic Yan-
gians which do not follow from Corollary 3.89. There are four cases that we consider
separately: (N = 2, m = 0), (N = 0, m = 1), (N = 3, m = 0), and (N = 1, m = 1).
The first three were treated in [18].

5.1.1 Relations for osp(2|0) case

We note that X rtt(osp(2|0)) 
 X rtt(so2) by Remark 3.25.

Proposition 5.1 The following relations hold in X rtt(osp(2|0)):

e12(u) = 0 = f21(u) . (5.2)

Remark 5.3 This result follows from the relations (5.55) established in
[18, Lemma 5.3] using the low rank isomorphism of [3] by evoking the embed-
ding X rtt(so2) ↪→ X rtt(so4) of Theorem 3.47 which maps e12(u) �→ e23(u) and
f21(u) �→ f32(u). However, for the rest of this section, it is instructive to present a
direct self-contained proof of (5.2).

123



   43 Page 50 of 100 R. Frassek, A. Tsymbaliuk

Proof Consider the defining relation (3.9) for [t11(u), t12(v)] (note that κ = 0):

[t11(u), t12(v)] = 1

u − v
t11(u)t12(v) + 1

u − v
t12(v)t11(u) ,

where we readily canceled two terms containing t11(v)t12(u) in the right-hand side.
Multiplying both sides by (u − v)h1(v)−1 on the left, we get:

(u − v − 1)h1(u)e12(v) = (u − v + 1)e12(v)h1(u) .

Plugging u = v − 1 above, we obtain h1(v − 1)e12(v) = 0. Multiplying further by
h1(v − 1)−1 on the left, we get the desired relation e12(v) = 0. Applying the anti-
automorphism τ of X rtt(so2) given by (3.11) to e12(v) = 0, we obtain f21(v) = 0,
due to Remark 3.37. ��

5.1.2 Relations for osp(0|2) case

We note that X rtt(osp(0|2)) 
 X rtt(sp2) by Remark 3.25.

Proposition 5.4 The currents h1(−2u), h2(−2u), e1(−2u), f1(−2u) satisfy the rela-
tions of Theorem 3.70 for the parity sequence ϒV = (0̄, 0̄).

Proof This result follows from the fact that the assignment T (u) �→ T(−u/2)gives rise
to the superalgebra isomorphism X rtt(osp(0|2)) ∼−→ Y rtt(gl2). Thismap can be viewed
as a composition of the aforementioned isomorphism X rtt(osp(0|2)) ∼−→ X rtt(sp2),
given by T (u) �→ T (−u), and the isomorphism X rtt(sp2)

∼−→ Y rtt(gl2) of [3, Propo-
sition 4.1], given by T (u) �→ T(u/2). The latter follows from the observation that
P + Q = I for sp2-case, which allows to relate the corresponding R-matrices of sp2
and gl2 types via R(u) = u−1

u−2R(u/2). ��

5.1.3 Relations for osp(3|0) case

Wenote that X rtt(osp(3|0)) 
 X rtt(so3) by Remark 3.25. In this case, the only relation
directly implied by Corollary 3.89 is the obvious commutativity [h1(u), h1(v)] = 0.

Proposition 5.5 The following relations hold in X rtt(so3):

[hi (u), h j (v)] = 0 for all 1 ≤ i, j ≤ 2 , (5.6)
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[h1(u), e12(v)] = h1(u)
(
e12(v) − e12(u)

)
u − v

,

[h1(u), f21(v)] =
(

f21(u) − f21(v)
)
h1(u)

u − v
,

(5.7)

[h2(u), e12(v)] = h2(u)
(
e12(u) − e12(v)

)
2(u − v)

−
(
e12(u − 1) − e12(v)

)
h2(u)

2(u − v − 1)
, (5.8)

[h2(u), f21(v)] =
(

f21(v) − f21(u)
)
h2(u)

2(u − v)
− h2(u)

(
f21(v) − f21(u − 1)

)
2(u − v − 1)

, (5.9)

[e12(u), f21(v)] = 1

u − v

(
h1(u)−1h2(u) − h1(v)−1h2(v)

)
, (5.10)

[e12(u), e12(v)] =
(
e12(u) − e12(v)

)2
u − v

, (5.11)

[ f21(u), f21(v)] = −
(

f21(u) − f21(v)
)2

u − v
. (5.12)

Remark 5.13 (a) The relation (5.9) corrects a typo in [18, (5.4)].

(b) We note that these relations were established in [18, Proposition 5.4] using the low
rank isomorphism X rtt(so3) 
 Y rtt(gl2) of [3, Proposition 4.4], see PropositionA.5(a).
However, for the rest of this section, it is instructive to establish all these relations
directly.

Proof In view of Remark 5.13, we shall only present a direct proof of (5.9), though
it can be also derived from (5.8) by applying the anti-automorphism τ of X rtt(so3).
The relations (5.6–5.7, 5.10–5.12) can be proved similarly to analogous relations from
Proposition 5.17.

Our proof of (5.9) shall closely follow that of (5.20) presented below. First, let us
express h2(u) via the h1-current and the central current zV (u) from Remark 3.21
defined through the difference equation cV (u) = zV (u − 1/2)zV (u), see (3.22).
Evoking cV (u) = h1(u)h2(u−1/2)h2(u−1)

h1(u−1) , due to Lemma 4.49, we get zV (u − 1/2) =
h1(u−1/2)h2(u−1)

h1(u−1) , so that

h2(u) = zV (u + 1
2 )h1(u)h1(u + 1

2 )
−1 . (5.14)

Combining (5.14) with the following commutation rules between h1(u) and f21(v),
recovered from the defining relation (3.9) applied to [t11(u), t21(v)]:

h1(u) f21(v) =
(

u − v − 1

u − v
f21(v) + 1

u − v
f21(u)

)
h1(u) ,

h1(u)−1 f21(v) =
(

u − v

u − v − 1
f21(v) − 1

u − v − 1
f21(u − 1)

)
h1(u)−1 ,
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we obtain:

h2(u) f21(v) = h1(u + 1
2 )−1
(

u − v − 1

u − v
f21(v) + 1

u − v
f21(u)

)
h1(u)zV (u + 1

2 )

=
(

(u − v + 1/2)(u − v − 1)

(u − v)(u − v − 1/2)
f21(v) + 1

u − v − 1/2
f21(u − 1

2 ) − 1

u − v
f21(u)

)
h2(u) .

(5.15)

In particular, plugging v = u − 1 into (5.15), we find:

f21(u − 1
2 )h2(u) = h2(u) f21(u − 1) + f21(u)h2(u)

2
. (5.16)

Plugging the formula (5.16) into the equality (5.15), multiplying by 2u−2v−1
2u−2v−2 , and

rearranging the terms, we obtain the desired relation (5.9). ��
5.1.4 Relations for osp(1|2) case

Finally, let us treat the remaining rank 1 case of X rtt(osp(V )) = X rtt(osp(1|2))which
cannot be reduced to non-super setup unlike the previous three cases. The correspond-
ing relations also appeared very recently in [22].

Proposition 5.17 The following relations hold in X rtt(osp(1|2)):
[hi (u), h j (v)] = 0 for all 1 ≤ i, j ≤ 2 , (5.18)

[h1(u), e12(v)] = h1(u)
(
e12(u) − e12(v)

)
u − v

, [h1(u), f21(v)] =
(

f21(v) − f21(u)
)
h1(u)

u − v
, (5.19)

[h2(u), e12(v)] = h2(u)

(
e12(u) − e12(v)

u − v
+ e12(v) − e12(u − 1/2)

u − v − 1/2

)
, (5.20)

[h2(u), f21(v)] =
(

f21(v) − f21(u)

u − v
+ f21(u − 1/2) − f21(v)

u − v − 1/2

)
h2(u) , (5.21)

[e12(u), f21(v)] = 1

u − v

(
h1(u)−1h2(u) − h1(v)−1h2(v)

)
(5.22)

as well as

[e12(u), e12(v)] = e13(u) − e13(v)

u − v
+ e12(u)2 − e12(v)2

u − v

+ e12(u)e12(v) − e12(v)e12(u)

2(u − v)
−
(
e12(u) − e12(v)

)2
2(u − v)2

, (5.23)

[ f21(v), f21(u)] = f31(v) − f31(u)

u − v
+ f21(u)2 − f21(v)2

u − v
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+ f21(v) f21(u) − f21(u) f21(v)

2(u − v)
−
(

f21(v) − f21(u)
)2

2(u − v)2
, (5.24)

(u − v − 1)(u − v + 1/2)e12(u)e13(v) + (u − v + 1/2)e12(v)e13(v)

−(u − v + 1/2)e12(v)e13(u) − (u − v)(u − v + 3/2)e13(v)e12(u)

+(2u−2v + 1/2)e13(u)e12(u)−(u − v)e12(v)e12(u)2−e12(u)3=0, (5.25)

(u − v − 1)(u − v + 1/2) f31(v) f21(u) + (u − v + 1/2) f31(v) f21(v)

−(u − v + 1/2) f31(u) f21(v) − (u − v)(u − v + 3/2) f21(u) f31(v)

+(2u−2v+1/2) f21(u) f31(u)+(u−v) f21(u)2 f21(v)+ f21(u)3 = 0,(5.26)

where e13(u) and f31(u) can be further expressed via

e13(u) = −e12(u)2 − [e12(u), e(1)
12 ] , f31(u) = f21(u)2 + [ f21(u), f (1)

21 ] . (5.27)

Furthermore, the remaining entries of the matrices E(u), F(u), H(u) are given by:

e23(u) = −e12(u− 1
2 ) , f32(u) = f21(u− 1

2 ) , h3(u) = h1(u− 1
2 )

−1h2(u− 1
2 )h2(u) .

(5.28)

Proof The defining relation (3.9) applied to [t11(u), t11(v)] implies
(u − v+1)h1(u)h1(v)=(u − v + 1)h1(v)h1(u), hence, [h1(u), h1(v)] = 0. Like-
wise, both relations of (5.19) follow directly by applying the defining relation (3.9) to
the commutators [t11(u), t12(v)] and [t11(u), t21(v)].

We note that the relations (5.19) allow one to pull h1(u) past e12(v) and f21(v)

either to the left or to the right. To this end, let us first rewrite (5.19) as follows:

(u − v)e12(v)h1(u) = h1(u)
(
(u − v + 1)e12(v) − e12(u)

)
,

(u − v)h1(u) f21(v) = ((u − v + 1) f21(v) − f21(u)
)
h1(u) .

(5.29)

Plugging v = u + 1 into these relations, we obtain, cf. (3.83, 3.85):

h1(u)e12(u) = e12(u + 1)h1(u) , f21(u)h1(u) = h1(u) f21(u + 1) . (5.30)

Finally, plugging (5.30) back into the equalities (5.29), we also obtain:

(u − v + 1)h1(u)e12(v) = ((u − v)e12(v) + e12(u + 1)
)
h1(u) ,

(u − v + 1) f21(v)h1(u) = h1(u)
(
(u − v) f21(v) + f21(u + 1)

)
.

(5.31)

The commutativity [h1(u), h2(v)] = 0 is a direct consequence of Corollary 3.52.
For an alternative direct proof, let us apply the defining relation (3.9) to [t11(u), t22(v)]:

(u − v)[h1(u), h2(v) + f21(v)h1(v)e12(v)]
= f21(v)h1(v)h1(u)e12(u) − f21(u)h1(u)h1(v)e12(v) .
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Using the equalities (5.29) to pull h1(u) and h1(v) to the middle in the left-hand side,
we get:

(u − v)[h1(u), h2(v)] + (u − v + 1) f21(v)[h1(u), h1(v)]e12(v) = 0 ,

so that [h1(u), h2(v)] = 0 as claimed.
Finally, the commutativity [h2(u), h2(v)] = 0 of (5.18) follows from the formula

cV (u) = h1(u)
h1(u+1) h2(u + 1)h2(u + 3/2) for the central current cV (u) of (3.16), due to

Lemma 4.49.
According to Lemma 4.27(b,d), we have e13(u) = −e12(u)2 − [e12(u), e(1)

12 ],
e23(u) = −e12(u − 1/2), thus recovering the first formulas of (5.27, 5.28). The
latter implies e(1)

23 = −e(1)
12 . Likewise, due to Lemma 4.30(b,d), we have f31(u) =

f21(u)2 + [ f21(u), f (1)
21 ], f32(u) = f21(u − 1/2), thus recovering the second for-

mulas of (5.27, 5.28). The latter implies f (1)
32 = f (1)

21 . Finally, we have h3(u) =
h1(u − 1/2)−1h2(u − 1/2)h2(u) due to Lemma 4.52, recovering the last formula
of (5.28).

Let us prove (5.22). Applying the defining relation (3.9) to [t21(u), t12(v)], we get:

(u − v) f21(u)h1(u)h1(v)e12(v) + (u − v)h1(v)e12(v) f21(u)h1(u)

= h1(v)h2(u) − h1(u)h2(v) + h1(v) f21(u)h1(u)e12(u)

−h1(u) f21(v)h1(v)e12(v) . (5.32)

Using the equalities (5.29)–(5.31), we can pull both h1(u), h1(v) to the leftmost part
in all summands of (5.32), and multiplying further both sides by h1(u)−1h1(v)−1 on
the left, we obtain:

(u − v + 1)[e12(v), f21(u + 1)] − [e12(u), f21(u + 1)]
= h1(u)−1h2(u) − h1(v)−1h2(v) .

(5.33)

Plugging v = u + 1 into (5.33), we get:

− [e12(u), f21(u + 1)] = h1(u)−1h2(u) − h1(u + 1)−1h2(u + 1) . (5.34)

Subtracting (5.34) from (5.33) and renaming v � u, u + 1 � v, we obtain the
relation (5.22).

Let us prove (5.20). One way to establish it is to consider the defining relation

[t12(u), t22(v)] = t22(u)t12(v) − t22(v)t12(u)

u − v

+ t23(v)t11(u) + t22(v)t12(u) − t21(v)t13(u)

u − v + 3/2
. (5.35)
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Here, the left-hand side may be written as follows:

[t12(u), t22(v)] = h1(u)[e12(u), h2(v)]
+[t12(u), t21(v)]e12(v) − t21(v)[t12(u), e12(v)]

= h1(u)[e12(u), h2(v)] + t22(u)t11(v) − t22(v)t11(u)

u − v
e12(v)

−t21(v)[t12(u), e12(v)] . (5.36)

Plugging (5.36) into the left-hand side of (5.35), rearranging the terms, and using the
defining relation (3.9) for [t12(u), t12(v)] and [t12(u), t11(v)], we eventually obtain:

h1(u)[e12(u), h2(v)] = h1(u)h2(v)
(
e12(v) − e12(u)

)
u − v

+h2(v)
(
e23(v)h1(u) + h1(u)e12(u)

)
u − v + 3/2

. (5.37)

Evoking the first equalities of (5.28) and (5.29), we get:

e23(v)h1(u) = −e12(v − 1
2 )h1(u)

= −h1(u)

(
u − v + 3/2

u − v + 1/2
e12(v − 1

2 ) − 1

u − v + 1/2
e12(u)

)
,

so that

h2(v)
(
e23(v)h1(u) + h1(u)e12(u)

)
u − v + 3/2

= h1(u)h2(v)
(
e12(u) − e12(v − 1/2)

)
u − v + 1/2

.

Plugging this into (5.37), multiplying by h1(u)−1 on the left, and renaming u � v,
we get (5.20).

Another proof of (5.20) is based on the expression of h2(u) via the h1-current and
a central current z̃V (u) defined via the following difference equation (cf. (3.22)):

cV (u) = z̃V (u + 1
2 )̃zV (u) .

Evoking cV (u) = h1(u)h2(u+1)h2(u+3/2)
h1(u+1) , we get6 z̃V (u) = h1(u)h2(u+1)

h1(u+1/2) , so that

h2(u) = z̃V (u − 1)h1(u − 1
2 )h1(u − 1)−1 . (5.38)

Combining (5.38) with the relation e12(v)h1(u)−1 = h1(u)−1
(

u−v
u−v+1e12(v)

+ 1
u−v+1e12(u + 1)

)
which follows from (5.31), and evoking (5.29), we obtain:

e12(v)h2(u) = z̃V (u − 1)h1(u − 1
2 )

6 In fact, the difference equation defining z̃V (u) is specifically engineered to allow for such an expression.
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×
(

u − v + 1/2

u − v − 1/2
e12(v) − 1

u − v − 1/2
e12(u − 1

2 )

)
h1(u − 1)−1

= h2(u)

(
(u − v + 1/2)(u − v − 1)

(u − v)(u − v − 1/2)
e12(v) + 1

u − v − 1/2
e12(u − 1

2 )

− 1

u − v
e12(u)

)
. (5.39)

Subtracting h2(u)e12(v) from both sides of (5.39), we obtain the desired rela-
tion (5.20), due to the equality (u−v+1/2)(u−v−1)

(u−v)(u−v−1/2) − 1 = 1
u−v

− 1
u−v−1/2 .

Let us prove (5.23). Applying the defining relation (3.9) to [t12(u), t12(v)], we get:

t12(u)t12(v) + t12(v)t12(u) + 1

u − v

(
t12(u)t12(v) − t12(v)t12(u)

)
− 1

u − v + 3/2

(
t11(v)t13(u) − t12(v)t12(u) − t13(v)t11(u)

)
= 0 . (5.40)

Using (5.29) let us pull both h1(u) and h1(v) to the leftmost part in all terms but
t13(v)t11(u):

t12(u)t12(v) = h1(u)h1(v)

(
u − v − 1

u − v
e12(u)e12(v) + 1

u − v
e12(v)2

)
,

t12(v)t12(u) = h1(u)h1(v)

(
u − v + 1

u − v
e12(v)e12(u) − 1

u − v
e12(u)2

)
,

t11(v)t13(u) = h1(u)h1(v)e13(u) , t11(u)t13(v) = h1(u)h1(v)e13(v) .

To treat the remaining summand t13(v)t11(u) in (5.40), we recall the defining relation

[t11(u), t13(v)] = −1

u − v

(
t11(u)t13(v) − t11(v)t13(u)

)
(5.41)

+ 1

u − v + 3/2

(
t11(v)t13(u) − t12(v)t12(u) − t13(v)t11(u)

)
.

Rearranging the terms in (5.41), we obtain:

1

u − v + 3/2
t13(v)t11(u) = − 2u − 2v + 3/2

(u − v)(u − v + 1/2)(u − v + 3/2)
t11(v)t13(u)

+ u − v + 1

(u − v)(u − v + 1/2)
t11(u)t13(v)+ 1

(u − v + 1/2)(u − v + 3/2)
t12(v)t12(u) .

(5.42)

Thus, using the equality (5.42) for the last term in the right-hand side of (5.40),
then pulling both h1(u) and h1(v) to the leftmost part as outlined above, and finally
multiplying further by h1(u)−1h1(v)−1 on the left, we get:
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u − v + 1

u − v

(
u − v − 1

u − v
e12(u)e12(v) + 1

u − v
e12(v)2

)

+
(

u − v + 3/2

u − v + 1/2
− 1

u − v

)(
u − v + 1

u − v
e12(v)e12(u) − 1

u − v
e12(u)2

)

+ u − v + 1

(u − v)(u − v + 1/2)
e13(v) − u − v + 1

(u − v)(u − v + 1/2)
e13(u) = 0 . (5.43)

Note that u−v+3/2
u−v+1/2 − 1

u−v
= (u−v+1)(u−v−1/2)

(u−v)(u−v+1/2) . Therefore, multiplying (5.43) by
(u−v)2(u−v+1/2)

u−v+1 , we obtain an equivalent relation:

(u − v + 1/2)(u − v − 1)e12(u)e12(v) + (u − v + 1/2)e12(v)2

+(u − v + 1)(u − v − 1/2)e12(v)e12(u)

−(u − v − 1/2)e12(u)2 + (u − v)e13(v) − (u − v)e13(u) = 0. (5.44)

Rearranging the terms in (5.44) and multiplying by 1
(u−v)2

, we recover the desired
relation (5.23).

Let us finally prove (5.25). Applying the defining relation (3.9) to [t12(u), t13(v)],
we get:

(u − v + 1)h1(u)e12(u)h1(v)e13(v) − h1(v)e12(v)h1(u)e13(u)

−(u − v)h1(v)e13(v)h1(u)e12(u) = 0 . (5.45)

Using (5.29), let us pull both h1(u) and h1(v) to the leftmost part in the first two terms:

e12(u)h1(v) = h1(v)

(
u − v − 1

u − v
e12(u) + 1

u − v
e12(v)

)
,

e12(v)h1(u) = h1(u)

(
u − v + 1

u − v
e12(v) − 1

u − v
e12(u)

)
.

On the other hand, h1(v)e13(v)h1(u) = t13(v)t11(u) has been already evaluated
in (5.42) above. Thus, first using the equality (5.42) for the last term in (5.45), then
pulling both h1(u), h1(v) to the leftmost part as outlined above, and finallymultiplying
by h1(u)−1h1(v)−1 on the left, we get:

(u − v + 1)(u − v − 1)

u − v
e12(u)e13(v) + u − v + 1

u − v
e12(v)e13(v)

−u − v + 1

u − v
e12(v)e13(u) + 1

u − v
e12(u)e13(u)

− (u − v + 1)(u − v + 3/2)

u − v + 1/2
e13(v)e12(u) + 2u − 2v + 3/2

u − v + 1/2
e13(u)e12(u)

− u − v + 1

u − v + 1/2
e12(v)e12(u)2 + 1

u − v + 1/2
e12(u)3 = 0 . (5.46)
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Plugging v = u + 1 into (5.46), we obtain:

e12(u)e13(u) = e13(u)e12(u) − 2e12(u)3 . (5.47)

Therefore, replacing e12(u)e13(u) in (5.46) with the right-hand side of (5.47) and
multiplying further by (u−v)(u−v+1/2)

u−v+1 , we get the desired relation (5.25).
We note that relations (5.21, 5.24, 5.26) follow directly by applying the anti-

automorphism τ of X rtt(osp(1|2)) given by (3.11) to the relations (5.20, 5.23, 5.25)
and using the formulas (3.38).

This completes our proof of Proposition 5.17. ��
Remark 5.48 Evaluating the u1-coefficients in the relations (5.25) and (5.26), we
obtain:

[e13(v), e(1)
12 ] − e12(v)e13(v) = 0 , [ f31(v), f (1)

21 ] + f31(v) f21(v) = 0 .

Plugging above the formulas for e13(v) and f31(v) from (5.27),we obtain the following
cubic relations for the currents e12(v) and f21(v), cf. [2, (3.7, 3.8)]:

e12(v)3 = [e12(v), (e(1)
12 )2] − [e12(v), e(1)

12 ]e12(v) ,

f21(v)3 = −[ f21(v), ( f (1)
21 )2] − f21(v)[ f21(v), f (1)

21 ] .
(5.49)

Remark 5.50 We note that the cubic relations (5.25, 5.26) differ slightly from [22,
(4.9, 4.10)], which is not surprising as one can add linear multiples of the quadratic
relations (5.23, 5.24). However, the key feature of both choices is that at the associated
graded algebra level they yield:

[̃e(r)
12 , ẽ(s)

13 ] = 0 , [ f̃ (r)
21 , f̃ (s)

31 ] = 0 for any r , s ≥ 1 . (5.51)

Indeed, evaluatingu−kv−�-coefficients in (5.25) andpassing to their associatedgraded,
we get:

[̃e(k+2)
12 , ẽ(�)

13 ] − 2[̃e(k+1)
12 , ẽ(�+1)

13 ] + [̃e(k)
12 , ẽ(�+2)

13 ] = 0 for any k, � ∈ Z , (5.52)

with ẽ(≤0)•• = 0. In particular, we get [̃e(k)
12 , ẽ(1)

13 ] = 0 (by plugging � = −1 into (5.52)),

[̃e(k)
12 , ẽ(2)

13 ] = 0 (by plugging � = 0 into (5.52)), and then we get the first equality
of (5.51) by induction on s.

Remark 5.53 We note that the Z2-grading of V in [2] is |v1| = 0̄, |v2| = 1̄, |v3| = 0̄,
which is opposite to ours, and as a result their R-matrix of [2, (2.4)] slightly differs from
ours (besides for the common prefactor). The main isomorphism φ : A+ ∼−→Y(R)

of [2, Theorem 3.1] between the (new) Drinfeld and RTT realizations of the super
Yangian of osp(1|2) is best restated using the opposite Gauss decomposition of the
generator matrix T (u) (denoted by L(u) in loc. cit.):

φ : e(u) �→ ê23(−u) , f (u) �→ f̂32(−u) , h(u) �→ ĥ2(−u − 1)̂h3(−u − 1)−1 .
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Here, the opposite Gauss decomposition of T (u) refers to the unique factorization

T (u) = Ê(u) · Ĥ(u) · F̂(u) (5.54)

with

– an upper-triangular matrix Ê(u) = (̂ei j (u)) with êi i (u) = 1,
– a diagonal matrix Ĥ(u) = diag(̂h1(u), . . . , ĥ1′(u)),
– a lower-triangular matrix F̂(u) = ( f̂ j i (u)) with f̂i i (u) = 1.

One may wonder how the two Gauss decompositions are related, and if the defining
relations for our conventions (3.35) imply those for the generating series in the opposite
Gauss decomposition (5.54). In fact, the composition of the anti-automorphism τ

from Remark 3.10 and the antipode anti-automorphism S give by S(T (u)) = T (u)−1

gives rise to an algebra automorphism of X rtt(osp(V )) that intertwines our Gauss
decomposition and the opposite one. Therefore, it is just a matter of preference which
one to use, and we follow the previous literature [5, 18, 21] on the subject.

5.2 Rank 2 cases

In this subsection,we establish quadratic relations for rank 2 orthosymplecticYangians
which do not follow from Corollaries 3.89, 3.91 and from rank 1 cases treated in
Sect. 5.1 above. There are eight cases that we consider separately: (N = 4, m = 0),
(N = 0, m = 2), (N = 2, m = 1) with the parity sequence ϒV = (1̄, 0̄) or ϒV =
(0̄, 1̄), (N = 5, m = 0), (N = 1, m = 2), (N = 3, m = 1) with the parity sequence
ϒV = (1̄, 0̄) or ϒV = (0̄, 1̄). We note that the first, second, and fifth cases were
already treated in [18], while the sixth case was treated very recently in [22].

5.2.1 Relations for osp(4|0) case

In this case, we have X rtt(osp(V )) 
 X rtt(so4) by Remark 3.25. Some of the relations
among the generating currents e12(u), e13(u), f21(u), f31(u), h1(u), h2(u), h3(u)

already follow from those for Y rtt(gl2), as specified in Corollaries 3.89 and 3.91.
On the other hand, we also have

e23(u) = 0 = f32(u) , (5.55)

due to Theorem 3.47 and Proposition 5.1.

Proposition 5.56 The following relations hold in X rtt(osp(4|0)):

[h3(u), e12(v)] = h3(u)
(
e12(v) − e12(u)

)
u − v

, [h3(u), f21(v)] =
(

f21(u) − f21(v)
)
h3(u)

u − v
,

(5.57)

[h2(u), e13(v)] = h2(u)
(
e13(v) − e13(u)

)
u − v

, [h2(u), f31(v)] =
(

f31(u) − f31(v)
)
h2(u)

u − v
,

(5.58)
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[e12(u), f31(v)] = 0 , [e13(u), f21(v)] = 0 , (5.59)

[e12(u), e13(v)] = 0 , [ f21(u), f31(v)] = 0 . (5.60)

This result was established in [18] using the embedding X rtt(so4) ↪→ Y rtt(gl2) ⊗
Y rtt(gl2) of [3]. However, it is instructive to prove these relations directly, which can
be done completely analogously to our proof of Proposition 5.69 (we leave details to
the interested reader).

5.2.2 Relations for osp(0|4) case

In this case, we have X rtt(osp(V )) 
 X rtt(sp4) by Remark 3.25, with the isomorphism
given by T (u) �→ T (−u). The relations on the generating currents e12(u), f21(u),

h1(u), h2(u) already follow from those for Y rtt(gl(0|2)) 
 Y rtt(gl2) as speci-
fied in Corollary 3.89. On the other hand, the relations on the generating cur-
rents e23(u), f32(u), h2(u), h3(u) readily follow from those for X rtt(osp(V [1])) 

X rtt(osp(0|2)) 
 X rtt(sp2) as specified in Proposition 5.4.

Proposition 5.61 The following relations hold in X rtt(osp(0|4)):
[h1(u), h3(v)] = 0 , (5.62)

[h3(u), e12(v)] = h3(u)(e12(u − 2) − e12(v))

u − v − 2
,

[h3(u), f21(v)] = ( f21(v) − f21(u − 2))h3(u)

u − v − 2
,

(5.63)

[h1(u), e23(v)] = 0 , [h1(u), f32(v)] = 0 , (5.64)

[e12(u), f32(v)] = 0 , [e23(u), f21(v)] = 0 , (5.65)

[e12(u), e23(v)] = 2

u − v

(
e13(u)−e13(v)−e12(u)e23(v)+e12(v)e23(v)

)
, (5.66)

[ f21(u), f32(v)] = 2

u−v

(
f31(v)− f31(u)+ f32(v) f21(u)− f32(v) f21(v)

)
. (5.67)

This result goes back to [18]. We note however that (5.67) corrects a typo
in [18, (5.34)].

5.2.3 Relations for osp(2|2) case with the parity sequence (1̄, 0̄)

In this case, we have the generating currents e12(u), e13(u), f21(u), f31(u), h1(u),

h2(u), h3(u). Some of the relations among them already follow from those for
Y rtt(gl(1|1)) with the parity sequence ϒV = ϒV = (1̄, 0̄), as specified in Corol-
laries 3.89, 3.91. On the other hand, we also have

e23(u) = 0 = f32(u) , (5.68)

due to Theorem 3.47 and Proposition 5.1.
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Proposition 5.69 The following relations hold in the corresponding X rtt(osp(V )):

[h3(u), e12(v)] = h3(u)(e12(v) − e12(u))

u − v
, [h3(u), f21(v)] = ( f21(u) − f21(v))h3(u)

u − v
,

(5.70)

[h2(u), e13(v)] = h2(u)(e13(v) − e13(u))

u − v
, [h2(u), f31(v)] = ( f31(u) − f31(v))h2(u)

u − v
,

(5.71)

[e12(u), f31(v)] = 0 , [e13(u), f21(v)] = 0 (5.72)

as well as

[e12(u), e13(v)] = 1

u − v

(
e12(u)e13(v) − e13(v)e12(u)

)
(5.73)

+ 1

u − v

(
− e12(u)e13(u) + e13(u)e12(u) + [e13(v), e(1)

12 ] − [e13(u), e(1)
12 ]
)

,

[ f21(u), f31(v)] = 1

u − v

(
f31(v) f21(u) − f21(u) f31(v)

)
(5.74)

+ 1

u − v

(
− f31(u) f21(u) + f21(u) f31(u) + [ f (1)

21 , f31(v)] − [ f (1)
21 , f31(u)]

)
.

Remark 5.75 As a direct consequence of the relations (5.73, 5.74), we obtain more
familiar relations, cf. (3.77, 3.78):

u[e◦
12(u), e13(v)] − v[e12(u), e◦

13(v)] = e12(u)e13(v) − e13(v)e12(u) , (5.76)

u[ f ◦
21(u), f31(v)] − v[ f21(u), f ◦

31(v)] = f31(v) f21(u) − f21(u) f31(v) , (5.77)

with the currents e◦
1k(u) =∑r≥2 e(r)

1k u−r and f ◦
k1(u) =∑r≥2 f (r)

k1 u−r .

Proof First, as follows from (3.72) and Corollaries 3.82, 3.89, we have the following
relations:

e12(v)h1(u) = h1(u)

(
u − v + 1

u − v
e12(v) − 1

u − v
e12(u)

)
,

e12(v)h2(u) = h2(u)

(
u − v + 1

u − v
e12(v) − 1

u − v
e12(u)

)
,

h1(u)e12(v) =
(

u − v

u − v + 1
e12(v) + 1

u − v + 1
e12(u + 1)

)
h1(u) ,

h2(u)e12(v) =
(

u − v

u − v + 1
e12(v) + 1

u − v + 1
e12(u + 1)

)
h2(u) ,

(5.78)

which allow one to pull h1(u)±1 and h2(u)±1 past e12(v) either to the left
or to the right. According to Corollary 3.91, we get analogous relations with
h1(u) � h1(u), h2(u) � h3(u), e12(v) � e13(v).
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Let us prove the first relations of (5.70, 5.71). As h3(u) = cV (u − 1)h1(u)h2(u)−1

h1(u − 1)−1 by Lemma 4.31, we have:

e12(v)h3(u) = cV (u − 1)h1(u)

(
u − v + 1

u − v
e12(v) − 1

u − v
e12(u)

)
h2(u)−1h1(u − 1)−1

= cV (u − 1)h1(u)h2(u)−1e12(v)h1(u − 1)−1

= h3(u)

(
u − v − 1

u − v
e12(v) + 1

u − v
e12(u)

)
, (5.79)

where we pull all the h•-currents to the left of e12(v) using (5.78). Subtracting
h3(u)e12(v) from both sides, we get the first relation of (5.70). The proof of the
first relation of (5.71) is analogous with the indices 2 ↔ 3 swapped, in particular, we
use h2(u) = cV (u − 1)h1(u)h3(u)−1h1(u − 1)−1.

We note that the second relations of (5.70) and (5.71) follow directly by applying
the anti-automorphism τ given by (3.11) to the corresponding first relations and using
the formulas (3.38).

Let us prove (5.72). Applying the defining relation (3.9) to [t13(u), t21(v)], we get:
[t13(u), t21(v)] = 1

u − v

(
t23(u)t11(v) − t23(v)t11(u)

)
. (5.80)

As e23(u) = 0 by (5.68) and h1(u)e13(u) = e13(u + 1)h1(u) by (3.83) and Corol-
lary 3.91, we actually have t23(u) = f21(u)e13(u +1)h1(u). Hence, the relation (5.80)
can be written as:

e13(u + 1)h1(u) f21(v)h1(v) + f21(v)h1(v)e13(u + 1)h1(u)

= 1

u − v
f21(u)e13(u + 1)h1(u)h1(v) − 1

u − v
f21(v)e13(v + 1)h1(u)h1(v) . (5.81)

Pulling both h1(u) and h1(v) to the right in the left-hand side of (5.81) by using

h1(u) f21(v) =
(

u − v + 1

u − v
f21(v) − 1

u − v
f21(u)

)
h1(u) ,

h1(v)e13(u + 1) =
(

u − v + 1

u − v
e13(u + 1) − 1

u − v
e13(v + 1)

)
h1(v) ,

and multiplying further by (u − v)h1(u)−1h1(v)−1 on the right, we obtain

e13(u+1)
(
(u−v+1) f21(v)− f21(u)

)+ f21(v)
(
(u − v + 1)e13(u+1) − e13(v+1)

)
= f21(u)e13(u + 1) − f21(v)e13(v + 1) ,

which can be further simplified to:

(u − v + 1)[e13(u + 1), f21(v)] = [e13(u + 1), f21(u)] . (5.82)

Plugging v = u + 1 into (5.82), we get [e13(u + 1), f21(u)] = 0 and so
(u −v+1)[e13(u +1), f21(v)] = 0. This implies the second relation of (5.72). Mean-
while, the first relation of (5.72) follows directly by applying the anti-automorphism
τ given by (3.11) to the second relation and using (3.38).
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Let us prove (5.73). Applying the defining relation (3.9) to [t12(u), t13(v)], we get:

[t12(u), t13(v)] = −1

u − v

(
t12(u)t13(v) − t12(v)t13(u)

)
+ 1

u − v + 1

(
t11(v)t14(u) − t12(v)t13(u) − t13(v)t12(u) − t14(v)t11(u)

)
.

The relation above can be rearranged as:

u − v + 1

u − v
h1(u)e12(u)h1(v)e13(v) − 1

(u − v)(u − v + 1)
h1(v)e12(v)h1(u)e13(u)

+u − v + 2

u − v + 1
h1(v)e13(v)h1(u)e12(u) − 1

u − v + 1
h1(v)h1(u)e14(u)

+ 1

u − v + 1
h1(v)e14(v)h1(u) = 0.

Let us first evaluate the last summand above. To this end, evoking the defining rela-
tion (3.9) applied to [t11(u), t14(v)], we obtain:

1

u − v + 1
e14(v)h1(u) = u − v + 1

(u − v)2
h1(u)e14(v)

− 1

u − v

(
1

u − v
+ 1

u − v + 1

)
h1(u)e14(u) + 1

(u − v)(u − v + 1)
e13(v)h1(u)e12(u)

+ 1

(u − v)(u − v + 1)
e12(v)h1(u)e13(u) . (5.83)

Plugging (5.83) into the formula above, let us now pull both h1(u) and h1(v) to the
leftmost part using the following equalities, cf. (5.78):

e13(v)h1(u) = h1(u)
(u − v + 1)e13(v) − e13(u)

u − v
,

e12(v)h1(u) = h1(u)
(u − v + 1)e12(v) − e12(u)

u − v
.

Multiplying further by h1(u)−1h1(v)−1 on the left and rearranging terms, we obtain:

(u − v)2 − 1

(u − v)2
e12(u)e13(v) + (u − v + 1)2

(u − v)2
e13(v)e12(u) + u − v + 1

(u − v)2
e12(v)e13(v)

− u − v + 1

(u − v)2
e13(u)e12(u) + u − v + 1

(u − v)2
e14(v) − u − v + 1

(u − v)2
e14(u) = 0 . (5.84)

Plugging the formula e14(u) = −e12(u)e13(u) − [e13(u), e(1)
12 ] from Lemma 4.1(f)

into the last two summands of (5.84), and multiplying both sides by (u−v)2

u−v+1 , we obtain
precisely the relation (5.73).
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We note that the relation (5.74) follows directly by applying the anti-automorphism
τ given by (3.11) to the relation (5.73) and using the formulas (3.38).

This completes our proof of Proposition 5.69. ��

5.2.4 Relations for osp(2|2) case with the parity sequence (0̄, 1̄)

The relations on the generating currents e12(u), f21(u), h1(u), h2(u) already follow
from those of Theorem 3.70 for Y rtt(gl(1|1)) with the parity sequence ϒV = ϒV =
(0̄, 1̄), due to Corollary 3.89. On the other hand, the relations on the generating cur-
rents e23(u), f32(u), h2(u), h3(u) readily follow from those for X rtt(osp(V [1])) 

X rtt(osp(0|2)) 
 X rtt(sp2) as specified in Proposition 5.4.

Proposition 5.85 The following relations hold in the corresponding X rtt(osp(V )):

[h1(u), h3(v)] = 0 , (5.86)

[h3(u), e12(v)] = h3(u)(e12(u − 2) − e12(v))

u − v − 2
,

[h3(u), f21(v)] = ( f21(v) − f21(u − 2))h3(u)

u − v − 2
,

(5.87)

[h1(u), e23(v)] = 0 , [h1(u), f32(v)] = 0 , (5.88)

[e12(u), f32(v)] = 0 , [e23(u), f21(v)] = 0 , (5.89)

[e12(u), e23(v)] = 2

u − v

(
e13(u) − e13(v) − e12(u)e23(v) + e12(v)e23(v)

)
, (5.90)

[ f21(u), f32(v)] = 2

u − v

(
f31(v)− f31(u)+ f32(v) f21(u)− f32(v) f21(v)

)
. (5.91)

Proof The relation (5.86) followsdirectly fromCorollary 3.52.Alternatively, it follows
from the commutativity [h1(u), h1(v)] = [h1(u), h2(v)] = [h2(u), h2(v)] = 0 and
the equality of Lemma 4.45:

h3(u) = cV (u − 1)h1(u − 2)h2(u − 2)−1h1(u − 1)−1 . (5.92)

According to (3.72) and Corollaries 3.82, 3.89, we have the following relations:

e12(v)h1(u) = h1(u)

(
u − v − 1

u − v
e12(v) + 1

u − v
e12(u)

)
,

e12(v)h2(u) = h2(u)

(
u − v − 1

u − v
e12(v) + 1

u − v
e12(u)

)
,

h1(u)e12(v) =
(

u − v

u − v − 1
e12(v) − 1

u − v − 1
e12(u − 1)

)
h1(u) ,

h2(u)e12(v) =
(

u − v

u − v − 1
e12(v) − 1

u − v − 1
e12(u − 1)

)
h2(u) ,

(5.93)
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which allow one to pull currents h1(u)±1 and h2(u)±1 past e12(v) either to the left or
to the right. In particular, evoking (5.92), we obtain:

e12(v)h3(u) = cV (u − 1)e12(v)h1(u − 2)h2(u − 2)−1h1(u − 1)−1

= cV (u − 1)h1(u − 2)

(
u − v − 3

u − v − 2
e12(v) + 1

u − v − 2
e12(u − 2)

)
×h2(u − 2)−1h1(u − 1)−1

= cV (u − 1)h1(u − 2)h2(u − 2)−1e12(v)h1(u − 1)−1

= h3(u)

(
u − v − 1

u − v − 2
e12(v) − 1

u − v − 2
e12(u − 2)

)
,

where we pull all the h•-currents to the left of e12(v) using (5.93). Subtracting
h3(u)e12(v) from both sides of the equality above, we get the first relation of (5.87).

We note that the second relation of (5.87) follows directly by applying the anti-
automorphism τ of X rtt(osp(V )) given by (3.11) to the first relation of (5.87) and
using the formulas (3.38).

The relations (5.88) follow immediately fromCorollary 3.52.Alternatively, to prove
the first relation of (5.88), one can rewrite the defining relation (3.9) for [t11(u), t23(v)]
in the form

h2(v)[h1(u), e23(v)] = f21(v)h1(v)e13(v)h1(u) − h1(u) f21(v)h1(v)e13(v)

+ 1

u − v

(
f21(u)h1(u)h1(v)e13(v) − f21(v)h1(v)h1(u)e13(u)

)
,

and then pull all the h•-currents in the right-hand side to the right to deduce
[h1(u), e23(v)] = 0.

The shortest proof of (5.89) is based on Lemma 3.55. To this end, let us consider
the corresponding relation (3.56) for � = 1 and k = 2, i = 3, j = 2:

[e12(u), t [1]32 (v)] = −1

u − v
t [1]32 (v)

(
e12(v) − e12(u)

)
. (5.94)

As t [1]32 (v) = f32(v)h2(v), we have [e12(u), t [1]32 (v)] = [e12(u), f32(v)]h2(v) +
f32(v)[e12(u), h2(v)]. Combining this with [e12(u), h2(v)] = 1

u−v
h2(v)(e12(u) −

e12(v)), due to (3.72) and Corollary 3.89, we immediately obtain the commutativ-
ity [e12(u), f32(v)] = 0. Applying further the anti-automorphism τ of X rtt(osp(V ))

given by (3.11), we also obtain [e23(v), f21(u)] = 0, due to the formulas (3.38).

Let us finally prove (5.90). Applying the defining relation (3.9) to [t12(u), t23(v)],
we get:

[t12(u), t23(v)] = −1

u − v

(
t22(u)t13(v) − t22(v)t13(u)

)
(5.95)

+ 1

u − v + 1

(
t24(v)t11(u) − t23(v)t12(u) + t22(v)t13(u) + t21(v)t14(u)

)
.
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As [h1(u), h2(v)] = 0 = [h1(u), e23(v)], the left-hand side of (5.95) can be expressed
as follows:

[t12(u), t23(v)] = h1(u)[e12(u), h2(v)e23(v)] (5.96)

+[h1(u)e12(u), f21(v)h1(v)]e13(v) − f21(v)h1(v)[h1(u)e12(u), e13(v)] .

The second summand in the right-hand side of (5.96) can be simplified using (3.9):

[h1(u)e12(u), f21(v)h1(v)] (5.97)

= [t12(u), t21(v)] = −1

u − v

(
t22(u)t11(v) − t22(v)t11(u)

)
= −h2(u)h1(v) + f21(u)h1(u)e12(u)h1(v) − h2(v)h1(u) − f21(v)h1(v)e12(v)h1(u)

u − v
.

Likewise, the third summand in the right-hand side of (5.96) can also be simplified
using (3.9):

[h1(u)e12(u), e13(v)] = [t12(u), t11(v)−1t13(v)]
= −t11(v)−1[t12(u), t11(v)]t11(v)−1t13(v) + t11(v)−1[t12(u), t13(v)]
= − 1

u − v
h1(v)−1

(
t12(u)t11(v) − t12(v)t11(u)

)
e13(v)

+ 1

u − v
h1(v)−1

(
t12(u)t13(v) − t12(v)t13(u)

)
(5.98)

− 1

u − v + 1
h1(v)−1

(
t14(v)t11(u) − t13(v)t12(u) + t12(v)t13(u) + t11(v)t14(u)

)
.

Expressing all the t••-currents in terms of the Gauss coordinates in the right-hand
side of (5.98) and plugging the resulting formula together with (5.97) into (5.96), we
obtain:

[t12(u), t23(v)]
= h1(u)h2(v)[e12(u), e23(v)] + 1

u − v
h1(u)h2(v)

(
e12(u)e23(v) − e12(v)e23(v)

)
+
(
h2(v)h1(u) − h2(u)h1(v) − f21(u)h1(u)e12(u)h1(v)

)
e13(v) + f21(v)h1(v)e12(v)h1(u)e13(u)

u − v

+ f21(v)h1(v)
(
e14(v)h1(u) − e13(v)h1(u)e12(u) + e12(v)h1(u)e13(u) + h1(u)e14(u)

)
u − v + 1

. (5.99)

Next, expressing all the t••-currents in the right-hand side of (5.95) via the Gauss
coordinates, and canceling common terms with those that appear in (5.99), we obtain:

h1(u)h2(v)[e12(u), e23(v)]
= 1

u − v
h1(u)h2(v)

(
e13(u) − e13(v) + e12(v)e23(v) − e12(u)e23(v)

)
+ 1

u − v + 1
h2(v)
(

e24(v)h1(u) − e23(v)h1(u)e12(u) + h1(u)e13(u)
)

.

(5.100)
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Multiplying (5.100) by h1(u)−1h2(v)−1 on the left and evoking [h1(u), e23(v)] = 0,
we get:

[e12(u), e23(v)] = 1

u − v

(
e13(u) − e13(v) + e12(v)e23(v) − e12(u)e23(v)

)
+ 1

u − v + 1

(
h1(u)−1e24(v)h1(u) − e23(v)e12(u) + e13(u)

)
. (5.101)

It thus remains to evaluate the summand h1(u)−1e24(v)h1(u) from the right-hand side
of (5.101). To this end, let us consider the defining relation (3.9) for [t11(u), t24(v)]:

[t11(u), t24(v)] = 1

u − v

(
t21(u)t14(v) − t21(v)t14(u)

)
+ 1

u − v + 1

(
t24(v)t11(u) − t23(v)t12(u) + t22(v)t13(u) + t21(v)t14(u)

)
. (5.102)

The left-hand side of (5.102) can be expanded as follows:

[t11(u), t24(v)] = h2(v)[h1(u), e24(v)] + [h1(u), f21(v)]h1(v)e14(v)

+ f21(v)[h1(u), h1(v)e14(v)]. (5.103)

Evoking the equality [h1(u), f21(v)] = 1
u−v

(
f21(u)− f21(v)

)
h1(u), due to (3.73) and

Corollary 3.89, applying further the defining relation (3.9) to

[h1(u), h1(v)e14(v)] = [t11(u), t14(v)] = 1

u − v

(
t11(u)t14(v) − t11(v)t14(u)

)
+ 1

u − v + 1

(
t14(v)t11(u) − t13(v)t12(u) + t12(v)t13(u) + t11(v)t14(u)

)
,

and rearranging the terms, we obtain:

[t11(u), t24(v)]
= h2(v)[h1(u), e24(v)] + f21(u)h1(u)h1(v)e14(v) − f21(v)h1(v)h1(u)e14(u)

u − v

+ f21(v)h1(v)
(
e14(v)h1(u) − e13(v)h1(u)e12(u) + e12(v)h1(u)e13(u) + h1(u)e14(u)

)
u − v + 1

.

Comparing this with the right-hand side of (5.102), where all the t••-currents are
expanded via the Gauss coordinates, and canceling common terms, we get:

[h1(u), e24(v)] = 1

u − v + 1

(
e24(v)h1(u) − e23(v)h1(u)e12(u) + h1(u)e13(u)

)
.

(5.104)
The equality (5.104) is equivalent to:

h1(u)−1e24(v)h1(u) = u − v + 1

u − v + 2
e24(v)+ 1

u − v + 2
e23(v)e12(u)− 1

u − v + 2
e13(u) .

(5.105)
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Plugging this formula back into (5.101), we obtain:

[e12(u), e23(v)] = 1

u − v

(
e13(u) − e13(v) − e12(u)e23(v) + e12(v)e23(v)

)
+ 1

u − v + 2

(
e24(v) − e23(v)e12(u) + e13(u)

)
. (5.106)

Multiplying both sides of (5.106) by u−v+2
u−v+1 and rearranging terms, we get:

[e12(u), e23(v)] = 2

u − v

(
e13(u) − e13(v) − e12(u)e23(v) + e12(v)e23(v)

)
+ 1

u − v + 1

(
e13(v) − e12(v)e23(v) + e24(v)

)
. (5.107)

Multiplying both sides of (5.107) by u − v + 1 and setting u = v − 1 afterward, we
find

e13(v) − e12(v)e23(v) + e24(v) = 0 . (5.108)

Thus, plugging (5.108) into the equality (5.107), we obtain precisely the desired rela-
tion (5.90).

We note that the relation (5.91) follows directly by applying the anti-automorphism
τ of X rtt(osp(V )) given by (3.11) to (5.90) and using the formulas (3.38).

This completes our proof of Proposition 5.85. ��

5.2.5 Relations for osp(5|0) case

In this case, we have X rtt(osp(V )) 
 X rtt(so5) by Remark 3.25. The relations on
the generating currents e12(u), f21(u), h1(u), h2(u) already follow from those for
Y rtt(gl2) from Theorem 3.70, due to Corollary 3.89. On the other hand, the relations
on the currents e23(u), f32(u), h2(u), h3(u) follow from those for X rtt(osp(V [1])) 

X rtt(osp(3|0)) 
 X rtt(so3) as specified in Proposition 5.5.

Proposition 5.109 The following relations hold in X rtt(osp(5|0)):

[h1(u), h3(v)] = 0 , (5.110)

[h3(u), e12(v)] = 0 , [h3(u), f21(v)] = 0 , (5.111)

[h1(u), e23(v)] = 0 , [h1(u), f32(v)] = 0 , (5.112)

[e12(u), f32(v)] = 0 , [e23(u), f21(v)] = 0 , (5.113)

[e12(u), e23(v)] = 1

u − v

(
e13(v)−e13(u)+e12(u)e23(v)−e12(v)e23(v)

)
, (5.114)

[ f21(u), f32(v)] = 1

u − v

(
f31(u) − f31(v) − f32(v) f21(u) + f32(v) f21(v)

)
.

(5.115)
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This result goes back to [18]. We note however that (5.115) corrects a typo
in [18, (5.29)].

5.2.6 Relations for osp(3|2) case with the parity sequence (1̄, 0̄)

In this case, the relations on the generating currents e12(u), f21(u), h1(u), h2(u)

already follow from those of Theorem 3.70 for Y rtt(gl(1|1)) with the parity sequence
ϒV = ϒV = (1̄, 0̄), due to Corollary 3.89. On the other hand, the relations on the
currents e23(u), f32(u), h2(u), h3(u) readily follow from those for X rtt(osp(V [1])) 

X rtt(osp(3|0)) 
 X rtt(so3) as specified in Proposition 5.5.

Proposition 5.116 The relations (5.110)–(5.115) hold in X rtt(osp(V )).

Proof The relations (5.110)–(5.112) follow directly from Corollary 3.52. The rela-
tions (5.113) can be proved alike (5.89) by using Lemma 3.55. To do so, we consider
the corresponding relation

[e12(u), t [1]32 (v)] = 1

u − v
t [1]32 (v)

(
e12(v) − e12(u)

)
. (5.117)

As t [1]32 (v) = f32(v)h2(v), we have [e12(u), t [1]32 (v)] = [e12(u), f32(v)]h2(v) +
f32(v)[e12(u), h2(v)]. Combining this with [e12(u), h2(v)] = 1

u−v
h2(v)(e12(v) −

e12(u)), due to (3.72) and Corollary 3.89, we immediately obtain the commutativ-
ity [e12(u), f32(v)] = 0. Applying further the anti-automorphism τ of X rtt(osp(V ))

given by (3.11), we also obtain [e23(v), f21(u)] = 0, due to the formulas (3.38).

The relations (5.114, 5.115) can be established similarly to (5.113). To this end, let
us consider the corresponding relation (3.56) for � = 1 and k = 2, i = 2, j = 3:

[e12(u), t [1]23 (v)] = 1

u − v
t [1]22 (v)

(
e13(v) − e13(u)

)
. (5.118)

As t [1]23 (v) = h2(v)e23(v), we have [e12(u), t [1]23 (v)] = [e12(u), h2(v)]e23(v) +
h2(v)[e12(u), e23(v)]. Combining this with t [1]22 (v) = h2(v) and [e12(u), h2(v)] =
1

u−v
h2(v)(e12(v)−e12(u)) from above, we obtain the desired relation (5.114). Apply-

ing the anti-automorphism τ of X rtt(osp(V )) given by (3.11) to (5.114), we also
obtain (5.115), due to the formulas (3.38).

This completes our proof of Proposition 5.116. ��

5.2.7 Relations for osp(1|4) and for osp(3|2)with the parity sequence (0̄, 1̄)

In these cases, the relations on the generating currents e12(u), f21(u), h1(u), h2(u)

already follow from those of Theorem 3.70 for Y rtt(gl(V)) with the parity sequence
ϒV = ϒV being (0̄, 1̄) or (1̄, 1̄), due to Corollary 3.89. On the other hand, the
relations on the currents e23(u), f32(u), h2(u), h3(u) readily follow from those for
X rtt(osp(V [1])) 
 X rtt(osp(1|2)) as specified in Proposition 5.17.
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Proposition 5.119 The following relations hold in X rtt(osp(V )):

[h1(u), h3(v)] = 0 , (5.120)

[h3(u), e12(v)] = 0 , [h3(u), f21(v)] = 0 , (5.121)

[h1(u), e23(v)] = 0 , [h1(u), f32(v)] = 0 , (5.122)

[e12(u), f32(v)] = 0 , [e23(u), f21(v)] = 0 , (5.123)

[e12(u), e23(v)] = 1

u − v

(
e13(u)−e13(v)−e12(u)e23(v)+e12(v)e23(v)

)
, (5.124)

[ f21(u), f32(v)] = 1

u − v

(
f31(v) − f31(u) + f32(v) f21(u) − f32(v) f21(v)

)
.

(5.125)
Additionally, we also have the following relations:

[e(1)
12 , e24(v)] = −e14(v) − e14(v − 3

2 ) + e12(v)e24(v)

+e24(v)e12(v − 3
2 ) − (−1)1e23(v)e13(v − 3

2 ) , (5.126)

[ f (1)
21 , f42(v)] = f41(v) + f41(v − 3

2 ) − f42(v) f21(v)

− f21(v − 3
2 ) f42(v) − f31(v − 3

2 ) f32(v) . (5.127)

Proof The proof of (5.120)–(5.125) is completely analogous to that of Proposi-
tion 5.116; we leave details to the interested reader.

Let us now prove (5.126, 5.127). To this end, we start with the equality from
Lemma 4.27(e):

e25(v) = (−1)1
(

e14(v) − e12(v)e24(v) − [e24(v), e(1)
12 ]
)

.

We can rewrite it in the form:

[e(1)
12 , e24(v)] = −e14(v) + e12(v)e24(v) + (−1)1e25(v) . (5.128)

Thus, it remains to re-express e25(v). To do so, we recall the equality T t (v + κ) =
T (v)−1cV (v + κ) of (4.4). In particular, comparing the (4, 5) matrix coefficients, we
obtained Lemma 4.27(b):

e12(v − 3
2 ) = (−1)1e45(v) ,

cf. our proof of Lemma 4.1(d). Here, we used the equality h1(v+κ)=h5(v)−1cV (v+κ)

of (4.5), the equality (3.83), and finally the identity

κ − (−1)1 = − 3
2 .
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Likewise, comparing the (3, 5) matrix coefficients, we obtain:

e13(v − 3
2 ) = (E(v)−1)35 = e34(v)e45(v) − e35(v) ,

cf. our proof of Lemma 4.1(i). Finally, comparing the (2, 5) matrix coefficients, we
obtain:

(−1)1e14(v − 3
2 ) = (E(v)−1)25

= −(e25(v) − e24(v)e45(v) − e23(v)e35(v) + e23(v)e34(v)e45(v)
)
.

Combining the above formulas for e14(v − 3
2 ), e13(v − 3

2 ), and e12(v − 3
2 ), we obtain:

(−1)1e25(v) = −e14(v − 3
2 )+ e24(v)e12(v − 3

2 )− (−1)1e23(v)e13(v − 3
2 ) . (5.129)

Plugging the right-hand side of (5.129) instead of (−1)1e25(v) in (5.128), we obtain
precisely (5.126).

Applying the anti-automorphism τ of X rtt(osp(V )) given by (3.11) to (5.126), we
also obtain (5.127), due to the formulas (3.38). ��

6 Drinfeld orthosymplectic Yangians

In this section, we introduce the Drinfeld (extended) orthosymplectic Yangians of
osp(V ) and identify them with their RTT counterparts from Sect. 3.

6.1 Drinfeld extended orthosymplectic super Yangian

We fix N , m, and V as in Sect. 2.1. Let n = �N/2	, so that N = 2n or N =
2n + 1, and recall the notation i of (2.3). We define the Drinfeld extended Yangian
of osp(V ), denoted by X(osp(V )), to be the associative C-superalgebra generated by
{ei,r , fi,r }r≥1

1≤i≤n+m ∪ {hı,r }r≥1
1≤ı≤n+m+1 with the Z2-grading given by

|ei,r | = | fi,r | = i + i + 1 , |hı,r | = 0̄ ∀ i < n + m , ı ≤ n + m + 1 , r ≥ 1 ,

|en+m,r | = | fn+m,r | =
{

n + m − 1 + n + m if N = 2n , n + m = 0̄

n + m + n + m + 1 otherwise
,

and subject to the defining relations (6.1)–(6.32). To state the relations, form the
generating series:

ei (u) =
∑
r≥1

ei,r u−r , fi (u) =
∑
r≥1

fi,r u−r , hı (u) = 1 +
∑
r≥1

hı,r u−r
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for all 1 ≤ i ≤ n + m and 1 ≤ ı ≤ n + m + 1, as well as

e◦
i (u) =

∑
r≥2

ei,r u−r , f ◦
i (u) =

∑
r≥2

fi,r u−r ,

ki (u) =
{

hn+m−1(u)−1hn+m+1(u) if N = 2n, n + m = 0̄, i = n + m

hi (u)−1hi+1(u) otherwise, with 1 ≤ i ≤ n + m
.

Recall the basis e∗
i of h∗ (dual to the basis {Fii }n+m

i=1 of the Cartan subalgebra h of
osp(V )) from Sect. 2.2, the bilinear form (·, ·) on h∗ determined by (2.12), the specific
simple roots {α1, . . . , αn+m} as specified in Sect. 2.3, and the resulting Cartan matrix
A = (ai j ) of (2.17).

Commutator of hi (u) and h j (v)

[hi (u), h j (v)] = 0 ∀ 1 ≤ i, j ≤ n + m + 1 . (6.1)

Commutator of ei (u) and f j (v)

[ei (u), f j (v)] = δi j (−1)i+12� ki (u) − ki (v)

u − v
∀ 1 ≤ i, j ≤ n + m , (6.2)

where � =
{
1 if N = 2n , n + m = 1̄ , i = n + m

0 otherwise
.

Commutator of hi (u) and e j (v)

[hi (u), e j (v)] = −(e∗
i , α j )hi (u)

e j (u) − e j (v)

u − v
∀ 1 ≤ i, j ≤ n + m , (6.3)

[hn+m+1(u), e j (v)] = 0 ∀ 1 ≤ j < n + m − 1 , (6.4)

[hn+m+1(u), en+m−1(v)]

=

⎧⎪⎨
⎪⎩

−hn+m+1(u)
en+m−1(u)−en+m−1(v)

u−v
if N = 2n , n + m = 0̄

hn+m+1(u)
en+m−1(u−2)−en+m−1(v)

u−v−2 if N = 2n , n + m = 1̄

0 if N = 2n + 1

, (6.5)

[hn+m+1(u), en+m(v)]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hn+m+1(u)
en+m(u)−en+m (v)

u−v
if N = 2n , n + m = 0̄

−2hn+m+1(u)
en+m (u)−en+m (v)

u−v
if N = 2n , n + m = 1̄

hn+m+1(u)
en+m(u)−en+m (v)

2(u−v)
− en+m (u−1)−en+m(v)

2(u−v−1) hn+m+1(u)

if N = 2n + 1 , n + m = 0̄

hn+m+1(u)
(

en+m (u)−en+m(v)
u−v

− en+m (u−1/2)−en+m (v)
u−v−1/2

)
if N = 2n + 1 , n + m = 1̄

. (6.6)
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Commutator of hi (u) and f j (v)

[hi (u), f j (v)] = (e∗
i , α j )

f j (u) − f j (v)

u − v
hi (u) ∀ 1 ≤ i, j ≤ n + m , (6.7)

[hn+m+1(u), f j (v)] = 0 ∀ 1 ≤ j < n + m − 1 , (6.8)

[hn+m+1(u), fn+m−1(v)]

=

⎧⎪⎨
⎪⎩

fn+m−1(u)− fn+m−1(v)
u−v

hn+m+1(u) if N = 2n , n + m = 0̄

− fn+m−1(u−2)− fn+m−1(v)
u−v−2 hn+m+1(u) if N = 2n , n + m = 1̄

0 if N = 2n + 1

, (6.9)

[hn+m+1(u), fn+m(v)]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− fn+m (u)− fn+m (v)
u−v

hn+m+1(u) if N = 2n , n + m = 0̄

2 fn+m (u)− fn+m (v)
u−v

hn+m+1(u) if N = 2n , n + m = 1̄

− fn+m (u)− fn+m (v)
2(u−v)

hn+m+1(u) + hn+m+1(u)
fn+m (u−1)− fn+m (v)

2(u−v−1)

if N = 2n + 1 , n + m = 0̄(
− fn+m (u)− fn+m (v)

u−v
+ fn+m (u−1/2)− fn+m (v)

u−v−1/2

)
hn+m+1(u)

if N = 2n + 1 , n + m = 1̄

. (6.10)

Commutator of ei (u) and ei (v)

Unless N = 2n + 1, n + m = 1̄, and i = n + m, we impose:

[ei (u), ei (v)] = (αi , αi )

2

(ei (u) − ei (v))2

u − v
. (6.11)

For the remaining case N = 2n+1, n + m = 1̄, and i = n+m, following (5.23, 5.27),
we impose:

[en+m(u), en+m(v)] = e′
n+m(u) − e′

n+m(v)

u − v
+ en+m(u)2 − en+m(v)2

u − v

+en+m(u)en+m(v) − en+m(v)en+m(u)

2(u − v)
− (en+m(u) − en+m(v))2

2(u − v)2
, (6.12)

where we define e′
n+m(u) = −en+m(u)2 − [en+m(u), en+m,1].

Commutator of fi (u) and fi (v)

Unless N = 2n + 1, n + m = 1̄, and i = n + m, we impose:

[ fi (u), fi (v)] = − (αi , αi )

2

( fi (u) − fi (v))2

u − v
. (6.13)
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For the remaining case N = 2n+1, n + m = 1̄, and i = n+m, following (5.24, 5.27),
we impose:

[ fn+m(u), fn+m(v)] = f ′
n+m(v) − f ′

n+m(u)

u − v
+ fn+m(u)2 − fn+m(v)2

u − v

+ fn+m(v) fn+m(u) − fn+m(u) fn+m(v)

2(u − v)
− ( fn+m(v) − fn+m(u))2

2(u − v)2
, (6.14)

where we define f ′
n+m(u) = fn+m(u)2 + [ fn+m(u), fn+m,1].

Commutator of ei (u) and e j (v) for i < j

Unless N = 2n, n + m = 0̄, n + m − 1 = 1̄, and j = i + 1 = n + m, we impose:

u[e◦
i (u), e j (v)] − v[ei (u), e◦

j (v)] = −(αi , α j )ei (u)e j (v) . (6.15)

For N = 2n, n + m = 0̄, n + m − 1 = 1̄, and j = i + 1 = n + m, following (5.76)
we impose:

u[e◦
n+m−1(u), en+m(v)] − v[en+m−1(u), e◦

n+m(v)]
= en+m−1(u)en+m(v) − en+m(v)en+m−1(u) . (6.16)

Commutator of fi (u) and f j (v) for i < j

Unless N = 2n, n + m = 0̄, n + m − 1 = 1̄, and j = i + 1 = n + m, we impose:

u[ f ◦
i (u), f j (v)] − v[ fi (u), f ◦

j (v)] = (αi , α j ) f j (v) fi (u) . (6.17)

For N = 2n, n + m = 0̄, n + m − 1 = 1̄, and j = i + 1 = n + m, following (5.77)
we impose:

u[ f ◦
n+m−1(u), fn+m(v)] − v[ fn+m−1(u), f ◦

n+m(v)]
= − fn+m−1(u) fn+m(v) + fn+m(v) fn+m−1(u) . (6.18)

“Additional” relations for N = 2n + 1 and n + m = 1̄
For N = 2n + 1 and n + m = 1̄, following (5.126, 5.127), we impose:

[en+m−1,1, e′
n+m(v)] = −e′′′

n+m(v) − e′′′
n+m(v − 3

2 )+
en+m−1(v)e′

n+m(v)+ e′
n+m(v)en+m−1(v − 3

2 )− (−1)n+m−1en+m(v)e′′
n+m(v − 3

2 ) ,

(6.19)

[ fn+m−1,1, f ′
n+m(v)] = f ′′′

n+m(v) + f ′′′
n+m(v − 3

2 )−
f ′
n+m(v) fn+m−1(v) − fn+m−1(v − 3

2 ) f ′
n+m(v) − f ′′

n+m(v − 3
2 ) fn+m(v) , (6.20)
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where e′
n+m(u), f ′

n+m(u) are as above, and following Lemmas 4.27(a,b), 4.30(a,b) we
also define:

e′′
n+m(v) = −[en+m−1(v), en+m,1] , e′′′

n+m(v) = [[en+m−1(v), en+m,1], en+m,1
]
,

f ′′
n+m(v) = −[ fn+m,1, fn+m−1(v)] , f ′′′

n+m(v) = −[ fn+m,1, [ fn+m,1, fn+m−1(v)]] .

Standard Serre relations
For 1 ≤ i �= j ≤ n + m such that aii �= 0 or ai j = 0, we impose:

(adei,1)
1−ai j (e j,1) = 0 , (6.21)

(ad fi,1)
1−ai j ( f j,1) = 0 . (6.22)

For 1 ≤ i ≤ n + m such that aii = 0, we impose:

[ei,1, ei,1] = 0 , (6.23)

[ fi,1, fi,1] = 0 . (6.24)

Higher order Serre relations of degree 4
For any of the sub-diagrams (2.25)–(2.26), we impose:

[[e j,1, et,1], [et,1, ek,1]
] = 0 , (6.25)

[[ f j,1, ft,1], [ ft,1, fk,1]
] = 0 , (6.26)

cf. (2.27).

Higher order Serre relations of degree 3
For the sub-diagram (2.30) (corresponding to N = 2n, n + m ≥ 3, and ϒV ending
1̄0̄), we impose:
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[
et,1, [es,1, ei,1]

]− [es,1, [et,1, ei,1]
] = 0 , (6.27)[

ft,1, [ fs,1, fi,1]
]− [ fs,1, [ ft,1, fi,1]

] = 0 , (6.28)

cf. (2.31).

Higher order Serre relations of degree 6
For the sub-diagram (2.32) (corresponding to N = 2n, n + m ≥ 3, and ϒV ending
1̄0̄1̄), we impose:

[
[e j,1, et,1],

[[e j,1, et,1], [et,1, ek,1]
]] = 0 , (6.29)

[
[ f j,1, ft,1],

[[ f j,1, ft,1], [ ft,1, fk,1]
]] = 0 , (6.30)

cf. (2.33).

Higher order Serre relations of degree 7
For the sub-diagram (2.34) (corresponding to N = 2n, n + m ≥ 4, and ϒV ending
0̄0̄1̄), we impose:

[[
ei,1, [e j,1, et,1]

]
,
[[e j,1, et,1], [et,1, ek,1]

]] = 0 , (6.31)

[[
fi,1, [ f j,1, ft,1]

]
,
[[ f j,1, ft,1], [ ft,1, fk,1]

]] = 0 , (6.32)

cf. (2.35).

Recall the generators {e(r)
i , f (r)

i }r≥1
1≤i≤n+m ∪ {h(r)

ı }r≥1
1≤ı≤n+m+1 of X rtt(osp(V )),

see (3.39). The following relation between X(osp(V )) and X rtt(osp(V )) is the main
result of the present subsection.

Theorem 6.33 The assignment

ei,r �→ e(r)
i , fi,r �→ f (r)

i , hı,r �→ h(r)
ı ∀ i , ı , r (6.34)

gives rise to a superalgebra isomorphism

ϒ : X(osp(V )) ∼−→ X rtt(osp(V )).

Proof First, we verify that the series ei (u), fi (u), hı (u) satisfy the defining rela-
tions (6.1)–(6.32), so that the assignment (6.34) gives rise to a superalgebra
homomorphism

ϒ : X(osp(V )) −→ X rtt(osp(V )) . (6.35)

For 1 ≤ i, j < n+m and 1 ≤ ı ≤ n+m, all these relations follow fromCorollary 3.89
combined with the corresponding super A-type relations of Theorem 3.70. In the
remaining cases, the relations follow from the commutativity of Corollary 3.52 and
the rank≤ 2 relations of Sect. 5. The surjectivity of the homomorphismϒ from (6.35)
follows from the results of Sects. 4.1–4.3.
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To prove the injectivity of (6.35), we follow the classical argument of [5]. First, we
note that Corollary 3.34 implies in the standard way,see e.g. [21, §6] that the set of
ordered monomials in{

h(r)
ı , e(r)

i j , f (r)
j i

∣∣ 1 ≤ ı ≤ n + m + 1 , i < j ≤ i ′ − δi,0̄ , r ≥ 1
}
, (6.36)

with the powers of odd generators not exceeding 1, form a basis of X rtt(osp(V )).
We define the elements {e(r)

i j , f (r)
j i } with i < j ≤ i ′ − δi,0̄ and r ≥ 1 in the algebra

X(osp(V )), so that the series ei j (u) =∑r≥1 e(r)
i j u−r and f j i (u) =∑r≥1 f (r)

j i u−r are
expressed through ei (u), fi (u) as in Sects. 4.1–4.2. These notations are compatible
with those in X rtt(osp(V )) as we clearly have ϒ(ei j (u)) = ei j (u) and ϒ( f j i (u)) =
f j i (u). Thus, to prove the injectivity of (6.35) it suffices to show that X(osp(V )) is
spanned by the ordered monomials in (6.36), with the powers of odd generators not
exceeding 1.

Let X>(osp(V )) denote the positive subalgebra of X(osp(V )) generated by all
{ei,r }. We consider a filtration on X>(osp(V )) defined via deg ei,r = r −1, cf. (3.27).
Likewise, let X≥(osp(V )) denote the non-negative subalgebra of X(osp(V )) gener-
ated by all {ei,r , hı,r }, and consider a filtration on X≥(osp(V )) defined via deg ei,r =
deg hı,r = r −1. Let gr X>(osp(V )), gr X≥(osp(V )) denote the corresponding asso-

ciated graded algebras. Similarly to Sect. 3.3, let ê(r)
i j := (−1)i e(r)

i j . We shall denote

the images of ê(r)
i j in grr−1X>(osp(V )) or grr−1X≥(osp(V )) simply by ē(r)

i j .
7 Let

also h̄(r)
ı denote the image of hı,r in grr−1X≥(osp(V )). Finally, we extend ē(r)

i j to all
1 ≤ i < j ≤ 1′ via

ē(r)
i j = −(−1)i · j+iθiθ j ē(r)

j ′i ′ , (6.37)

similarly to the relation satisfied by Fi j ∈ osp(V ). To establish the aforementioned

spanning property of X>(osp(V )), it suffices to show that ē(r)
i j satisfy the commutation

relations alike (2.10):

[ē(r)
i j , ē(s)

k� ] = δk j ē
(r+s−1)
i� − δ�i (−1)(i+ j)(k+�) ē(r+s−1)

k j

− δki ′(−1)i · j+iθiθ j ē(r+s−1)
j ′� + δ� j ′(−1)i ·k+�·kθi ′θ j ′ ē(r+s−1)

ki ′ . (6.38)

We prove (6.38) by induction on r + s. The base of induction r = s = 1 is trivial as
our relations (6.1)–(6.32) are compatible with the defining relations of osp(V )⊕C ·c,
cf. Theorem 2.21. The proof of the induction step relies on Lemmas 6.41 and 6.47.
First, we define {αi j }1≤i< j≤1′ ⊂ h∗:

αi j = α j ′i ′ = e∗
i − e∗

j , αi j ′ = α j i ′ = e∗
i + e∗

j ∀ 1 ≤ i < j ≤ n + m ,

αi,n+m+1 = αn+m+1,i ′ = e∗
i ∀ 1 ≤ i ≤ n + m if N = 2n + 1 ,

αi i ′ =
{
2e∗

i if i = 1̄

0 otherwise
.

(6.39)

7 Instead of a more confusing notation˜̂e(r)
i j as if using notations from Sect. 3.3.
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According to (6.3), we have [hı,2, e j,r ] = (e∗
ı , α j ) (e j,r+1 + hı,1e j,r ), so that

[h̄(2)
ı , ē(r)

j ] = (e∗
ı , α j )ē

(r+1)
j ∀ 1 ≤ ı, j ≤ n + m . (6.40)

This result can be generalized as follows:

Lemma 6.41 For any 1 ≤ i < j ≤ 1′, 1 ≤ ı ≤ n + m, and r ≥ 1, we have

[h̄(2)
ı , ē(r)

i j ] = (e∗
ı , αi j )ē

(r+1)
i j . (6.42)

Applying ad
h̄(2)

ı
to (6.38), we thus obtain:

(e∗
ı , αi j )[ē(r+1)

i j , ē(s)
k� ] + (e∗

ı , αk�)[ē(r)
i j , ē(s+1)

k� ]
= δk j (e

∗
ı , αi j + αk�)ē

(r+s)
i� − δ�i (e

∗
ı , αi j + αk�)(−1)(i+ j)(k+�) ē(r+s)

k j

− δki ′(e
∗
ı , αi j + αk�)(−1)i · j+iθiθ j ē(r+s)

j ′�

+ δ� j ′(e
∗
ı , αi j + αk�)(−1)i ·k+�·kθi ′θ j ′ ē(r+s)

ki ′ ,

(6.43)

where we used the equalities

δk j (e
∗
ı , αi�) = δk j (e

∗
ı , αi j + αk�) , δ�i (e

∗
ı , αk j ) = δ�i (e

∗
ı , αi j + αk�) ,

δki ′(e
∗
ı , α j ′�) = δki ′(e

∗
ı , αi j + αk�) , δ� j ′(e

∗
ı , αki ′) = δ� j ′(e

∗
ı , αi j + αk�) ,

which follow by comparing h-eigenvalues of all summands in (2.10). Note that if

αi j �= αk�, thenwe canfind 1 ≤ ı �= j ≤ n+m such that thematrix
(

(e∗
ı ,αi j ) (e∗

ı ,αk�)

(e∗
j ,αi j ) (e∗

j ,αk�)

)
is

non-degenerate. Then, combining (6.43) for ı, j , we obtain the desired formulas (6.38)
for both commutators [ē(r+1)

i j , ē(s)
k� ] and [ē(r)

i j , ē(s+1)
k� ], completing the induction step.

It thus remains to prove (6.38) for (i, j) = (k, �).
The proof of the latter result aswell as the proof of Lemma6.41 rely onLemma6.47.

To state this result, let us first summarize the inductive definition of ē(r)
i j :

ē(r)
i, j+1 = [ē(r)

i j , ē(1)
j, j+1] (6.44)

for 1 ≤ i < j ≤ n + m if N = 2n + 1 or 1 ≤ i < j < n + m if N = 2n,

ē(r)
i,n+m+1 =

{
[ē(r)

i,n+m−1, ē(1)
n+m−1,n+m+1] if N = 2n and n + m = 0̄

1
2 [ē(r)

i,n+m, ē(1)
n+m,n+m+1] if N = 2n and n + m = 1̄

, (6.45)

as well as
ē(r)

i j ′ = (−1)1+ j+ j · j+1 [ē(r)

i( j+1)′, ē(1)
j, j+1] (6.46)

for 1 ≤ i < j ≤ n + m if N = 2n + 1 or 1 ≤ i < j < n + m if N = 2n, as well as
i = j if i = 1̄.
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Lemma 6.47 (a) For 1 ≤ i < j ≤ � N−1
2 	 + m and r , s ≥ 1, we have:

ē(r+s−1)
i, j+1 = [ē(r)

i j , ē(s)
j, j+1] . (6.48)

(b) For N = 2n and r , s ≥ 1, we have:

ē(r+s−1)
i,n+m+1 =

{
[ē(r)

i,n+m−1, ē(s)
n+m−1,n+m+1] if N = 2n and n + m = 0̄

1
2 [ē(r)

i,n+m, ē(s)
n+m,n+m+1] if N = 2n and n + m = 1̄

. (6.49)

(c) For 1 ≤ i < j ≤ � N−1
2 	 + m as well as i = j if i = 1̄, and r , s ≥ 1, we have:

ē(r+s−1)
i j ′ = (−1)1+ j+ j · j+1 [ē(r)

i( j+1)′, ē(s)
j, j+1] . (6.50)

Proofs of Lemma 6.41 and Lemma 6.47 We shall prove Lemma 6.47 by induction on
i, j , while at the same time also proving Lemma 6.41.

(a) We prove (6.48) by induction on j − i . According to the defining rela-
tions (6.15, 6.16), we have [ē(r+1)

j−1, j , ē(s)
j, j+1] = [ē(r)

j−1, j , ē(s+1)
j, j+1], establishing the base

of induction. As for the induction step:

[ē(r)
i j , ē(s)

j, j+1] = [[ē(r)
i, j−1, ē(1)

j−1, j ], ē(s)
j, j+1

] = [ē(r)
i, j−1, [ē(1)

j−1, j , ē(s)
j, j+1]
]

= [ē(r)
i, j−1, [ē(s)

j−1, j , ē(1)
j, j+1]
] = [[ē(r)

i, j−1, ē(s)
j−1, j ], ē(1)

j, j+1

]
= [ē(r+s−1)

i j , ē(1)
j, j+1]

(6.44)= ē(r+s−1)
i, j+1 . (6.51)

Here, we used the induction hypothesis in the first, third, and fifth equalities, while the

second and fourth equalities relied on the commutativity [ē(�)
i, j−1, ē(�′)

j, j+1] = 0, which
follows from (6.21).

We can now also prove (6.42) for 1 ≤ i < j ≤ � N−1
2 	 + m arguing by induction

on j − i :

[h̄(2)
ı , ē(r)

i j ] (6.44)= [h̄(2)
ı , [ē(r)

i, j−1, ē(1)
j−1, j ]
]

= [[h̄(2)
ı , ē(r)

i, j−1], ē(1)
j−1, j ]
]+ [ē(r)

i, j−1, [h̄(2)
ı , ē(1)

j−1, j ]
]

= (e∗
ı , αi, j−1)[ē(r+1)

i, j−1, ē(1)
j−1, j ] + (e∗

ı , α j−1, j )[ē(r)
j−1, j , ē(2)

j−1, j ]
(6.48)= (e∗

ı , αi j )ē
(r+1)
i j . (6.52)

(b) The proofs of part (b) and of Lemma 6.41 in that case are completely analogous
to part (a).

(c) We prove (6.50) by a decreasing induction on j (with an inner decreasing
induction on i). Let us note that once (6.50) is established for specific i, j and any
r , s, the validity of (6.42) for the same i, j and arbitrary r , ı is derived exactly as
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explained in the proof of (a) above. For the base of induction, we shall consider the
cases N = 2n and N = 2n + 1 separately.

Case 1: N = 2n and j = n + m − 1.
First, we treat the case i = n + m − 1 with n + m − 1 = 1̄. In this case, (6.50) is

equivalent to:

[ē(r)
n+m−1,n+m+1, ē(s)

n+m−1,n+m] = [ē(r+s−1)
n+m−1,n+m+1, ē(1)

n+m−1,n+m] . (6.53)

If n + m = 0̄, then (6.53) follows from (6.16). On the other hand, for n + m =
1̄, we have ē(r)

n+m−1,n+m+1 = 1
2 [ē(r)

n+m−1,n+m, ē(1)
n+m,n+m+1] by (6.45), [ē(�)

n+m−1,n+m,

ē(�′)
n+m−1,n+m] = 0 by (6.11). Therefore, we get:

[ē(r)
n+m−1,n+m+1, ē(s)

n+m−1,n+m]
= 1

2

[[ē(r)
n+m−1,n+m, ē(1)

n+m,n+m+1], ē(s)
n+m−1,n+m

]
= 1

2

[
ē(r)

n+m−1,n+m, [ē(1)
n+m,n+m+1, ē(s)

n+m−1,n+m]]
(b)= 1

2

[
ē(r)

n+m−1,n+m, [ē(s)
n+m,n+m+1, ē(1)

n+m−1,n+m]]
= 1

2

[[ē(r)
n+m−1,n+m, ē(s)

n+m,n+m+1], ē(1)
n+m−1,n+m

]
(b)= [ē(r+s−1)

n+m−1,n+m+1, ē(1)
n+m−1,n+m] .

This completes our proof of (6.53).
Next, we treat the case i = n + m − 2. There are two cases to consider: n + m = 1̄

and n + m = 0̄. If n + m = 1̄, then ē(r)
n+m−2,n+m+1 = 1

2 [ē(r)
n+m−2,n+m, ē(1)

n+m,n+m+1]
and so we have:

[ē(r)
n+m−2,n+m+1, ē(s)

n+m−1,n+m]
= 1

2

[[ē(r)
n+m−2,n+m, ē(1)

n+m,n+m+1], ē(s)
n+m−1,n+m

]
= 1

2

[
ē(r)

n+m−2,n+m, [ē(1)
n+m,n+m+1, ē(s)

n+m−1,n+m]]
(b)= 1

2

[
ē(r)

n+m−2,n+m, [ē(s)
n+m,n+m+1, ē(1)

n+m−1,n+m]]
= 1

2

[[ē(r)
n+m−2,n+m, ē(s)

n+m,n+m+1], ē(1)
n+m−1,n+m

]
(b)= [ē(r+s−1)

n+m−2,n+m+1, ē(1)
n+m−1,n+m]

(6.46)= (−1)1+n+m−1+n+m−1·n+m ē(r+s−1)
n+m−2,n+m+2 ,

where we used an already established [ē(�)
n+m−2,n+m, ē(�′)

n+m−1,n+m] = 0 in the sec-

ond and fourth equalities. If n + m = 0̄, then instead we have ē(r)
n+m−2,n+m+1 =

[ē(r)
n+m−2,n+m−1, ē(1)

n+m−1,n+m+1] as well as [ē(�)
n+m−1,n+m+1, ē(�′)

n+m−1,n+m] = 0, due
to (6.21), cf. (6.57). Therefore, we obtain:
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[ē(r)
n+m−2,n+m+1, ē(s)

n+m−1,n+m]
= [[ē(r)

n+m−2,n+m−1, ē(1)
n+m−1,n+m+1], ē(s)

n+m−1,n+m

]
= −(−1)n+m−1(1+n+m−2) [ē(1)

n+m−1,n+m+1, [ē(r)
n+m−2,n+m−1, ē(s)

n+m−1,n+m]]
(a)= −(−1)n+m−1(1+n+m−2) [ē(1)

n+m−1,n+m+1, [ē(r+s−1)
n+m−2,n+m−1, ē(1)

n+m−1,n+m]]
= [[ē(r+s−1)

n+m−2,n+m−1, ē(1)
n+m−1,n+m+1], ē(1)

n+m−1,n+m

]
(6.46)= (−1)1+n+m−1 ē(r+s−1)

n+m−2,n+m+2 .

The rest proceeds by a decreasing induction on i (with the base i = n + m − 2
established above). To this end, we note:

[ē(r)
i,n+m+1, ē(s)

n+m−1,n+m] = [[ē(r)
i,i+1, ē(1)

i+1,n+m+1], ē(s)
n+m−1,n+m

] =[
ē(r)

i,i+1, [ē(1)
i+1,n+m+1, ē(s)

n+m−1,n+m]] = [ē(r)
i,i+1, [ē(s)

i+1,n+m+1, ē(1)
n+m−1,n+m]] =[[ē(r)

i,i+1, ē(s)
i+1,n+m+1], ē(1)

n+m−1,n+m

] = [ē(r+s−1)
i,n+m+1, ē(1)

n+m−1,n+m]
(6.46)= (−1)1+n+m−1(1+n+m)ē(r+s−1)

i,n+m+2 ,

where in the first and fifth equalities we used already established cases of (6.38), while

the second and fourth equalities relied on the commutativity [ē(�)
i,i+1, ē(�′)

n+m−1,n+m] = 0,
due to (6.21).

Case 2: N = 2n + 1 and j = n + m.
The proof is by a decreasing induction on i . We shall only give details for the base

of induction (i = n + m or i = n + m − 1), as the step of induction is identical to the
above one for even N .

If i = n + m with n + m = 1̄, then according to (6.12) we get:

[ē(r)
n+m,n+m+1, ē(s)

n+m,n+m+1] = [ē(r+s−1)
n+m,n+m+1, ē(1)

n+m,n+m+1] = ē(r+s−1)
n+m,n+m+2 .

If i = n + m with n + m = 0̄, then [ē(r)
n+m,n+m+1, ē(s)

n+m,n+m+1] = 0 according
to (6.11).

Let us now treat the case i = n + m − 1. If n + m = 0̄, then [ē(�)
n+m,n+m+1,

ē(�′)
n+m,n+m+1] = 0 as just shown. Therefore:

[ē(r)
n+m−1,n+m+1, ē(s)

n+m,n+m+1] = [[ē(r)
n+m−1,n+m, ē(1)

n+m,n+m+1], ē(s)
n+m,n+m+1

] =
− [ē(1)

n+m,n+m+1, [ē(r)
n+m−1,n+m, ē(s)

n+m,n+m+1]
] (a)= −[ē(1)

n+m,n+m+1, ē(r+s−1)
n+m−1,n+m+1] =

[ē(r+s−1)
n+m−1,n+m+1, ē(1)

n+m,n+m+1]
(6.46)= −ē(r+s−1)

n+m−1,n+m+2 .

If n + m = 1̄, then according to (6.46) it suffices to verify:

[e(r)
n+m−1,n+m, e(s)

n+m,n+m+2] = [e(r+s−1)
n+m−1,n+m, e(1)

n+m,n+m+2] . (6.54)
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To prove the latter, we recall (6.19) which implies [ē(1)
n+m−1,n+m, ē(s)

n+m,n+m+2] =
2ē(s)

n+m−1,n+m+2 for any s ≥ 1. We also recall that

en+m−1,n+m+2(v) = e′′′
n+m(v) = [[en+m−1(v), e(1)

n+m,n+m+1], e(1)
n+m,n+m+1

]
.

Applying the super Jacobi identity to the latter, we find

en+m−1,n+m+2(v) = 1
2

[
en+m−1,n+m(v), [e(1)

n+m,n+m+1, e(1)
n+m,n+m+1]

]
,

so that ē(s)
n+m−1,n+m+2 = 1

2 [ē(s)
n+m−1,n+m, ē(1)

n+m,n+m+2]. This establishes (6.54) for

r = 1, s ≥ 1. Commuting this further with h̄(2)
n+m−1 several times, we derive the

equality (6.54) for any r , s ≥ 1.

The above completes the base of induction on j . For the step of induction, we argue
as follows:

[ē(r)

i( j+1)′, ē(s)
j, j+1] = (−1)1+ j+1+ j+1· j+2 [[ē(r)

i( j+2)′ , ē(1)
j+1, j+2], ē(s)

j, j+1

]
= (−1)1+ j+1+ j+1· j+2 [ē(r)

i( j+2)′ , [ē(1)
j+1, j+2, ē(s)

j, j+1]
]

(a)= (−1)1+ j+1+ j+1· j+2 [ē(r)

i( j+2)′ , [ē(s)
j+1, j+2, ē(1)

j, j+1]
]

= (−1)1+ j+1+ j+1· j+2 [[ē(r)

i( j+2)′ , ē(s)
j+1, j+2], ē(1)

j, j+1]
]

= [ē(r+s−1)
i( j+1)′ , ē(1)

j, j+1]
(6.46)= (−1)1+ j+ j · j+1 ē(r+s−1)

i j ′ .

Here, we used the induction hypothesis in the first and fifth equalities, while the

second and fourth equalities used the commutativity [ē(�)

i( j+2)′ , ē(�′)
j, j+1] = 0, due to

already established cases of (6.38).
This completes our proof of part (c). ��
It remains to treat the cases (i, j) = (k, �). The case j = n +m +1 for N = 2n +1

has been already treated in the proof of Lemma 6.47(c) above. Otherwise, we need to
show that [ē(r)

i j , ē(s)
i j ] = 0, assuming 1 ≤ i < j ≤ i ′ − δi,0̄. For j = i + 1 (as well

as for j = i + 2 = n + m + 1 when N = 2n and n + m = 0̄), this commutativity
follows from (6.11). Otherwise, let us use already established cases of (6.38) to write
ē(s)

i j = [ē(s)
ik , ē(1)

k j ] for any i < k < j with k �= j ′. Then, [ē(r)
i j , ē(s)

i j ] = 0 follows

from already established equalities [ē(r)
i j , ē(s)

ik ] = 0, [ē(r)
i j , ē(1)

k j ] = 0. The only case
when such k may not exist is for N = 2n with i = n + m − 1, j = n + m + 1,
and n + m = 1̄ (as the case n + m = 0̄ has been already treated above). How-
ever, ē(s)

n+m−1,n+m+1 = 1
2 [ē(s)

n+m−1,n+m, ē(1)
n+m,n+m+1] in this case, and thus the desired

commutativity [ē(r)
n+m−1,n+m+1, ē(s)

n+m−1,n+m+1] = 0 follows from already established

equalities [ē(r)
n+m−1,n+m+1, ē(1)

n+m,n+m+1] = 0, [ē(r+s−1)
n+m−1,n+m+2, ē(1)

n+m,n+m+1] = 0.

This completes our proof of the equality (6.38), hence also of Theorem 6.33. ��
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Remark 6.55 Wenote that the “additional” relations (6.19, 6.20) were used in the proof
of (6.54).

Remark 6.56 While the Serre relations (6.21)–(6.32) are literally the same as those
for osp(V ) in Theorem 2.21, the classical argument allows to deduce more general
Serre relations by commuting the above further with the Cartan series hi (u), cf. [26,
Remark 2.61(b)]. Explicitly, we have:

(a) Generalizing (6.21, 6.22), the following relations hold:

Sym
[
ei (u1),

[
ei (u2), · · · , [ei (u1−ai j ), e j (v)] · · · ]] = 0 , (6.57)

Sym
[

fi (u1),
[

fi (u2), · · · , [ fi (u1−ai j ), f j (v)] · · · ]] = 0 , (6.58)

where Sym denotes the symmetrization with respect to all permutations of
{u1, . . . , u1−ai j }.
(b) Generalizing (6.25, 6.26), the following relations hold (cf. (3.81)):

[[e j (u), et (v1)], [et (v2), ek(w)]]+ [[e j (u), et (v2)], [et (v1), ek(w)]] = 0 , (6.59)

[[ f j (u), ft (v1)], [ ft (v2), fk(w)]]+ [[ f j (u), ft (v2)], [ ft (v1), fk(w)]] = 0 . (6.60)

(c) Generalizing (6.27, 6.28), the following relations hold:

[
et (u), [es(v), ei (w)]]− [es(v), [et (u), ei (w)]] = 0 , (6.61)

[
ft (u), [ fs(v), fi (w)]]− [ fs(v), [ ft (u), fi (w)]] = 0 . (6.62)

(d) Generalizing (6.29, 6.30), the following relations hold:

Sym
[
[e j (u1), et (v1)],

[[e j (u2), et (v2)], [et (v3), ek(w)]]] = 0 , (6.63)

Sym
[
[ f j (u1), ft (v1)],

[[ f j (u2), ft (v2)], [ ft (v3), fk(w)]]] = 0 , (6.64)

where Sym denotes the symmetrization with respect to all permutations of {u1, u2},
{v1, v2, v3}.
(e) Generalizing (6.31, 6.32), the following relations hold:

Sym
[[

ei (z), [e j (u1), et (v1)]
]
,
[[e j (u2), et (v2)], [et (v3), ek(w)]]] = 0 , (6.65)

Sym
[[

fi (z), [ f j (u1), ft (v1)]
]
,
[[ f j (u2), ft (v2)], [ ft (v3), fk(w)]]] = 0 , (6.66)

where Sym denotes the symmetrization with respect to all permutations of {u1, u2},
{v1, v2, v3}.
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Remark 6.67 We note that we presently derived (6.59, 6.60) from their simplest
cases (6.25, 6.26), unlike the super A-type of [26] where we rather derived the former
from the more general relations

[[e j,r+1, et,1], [et,1, ek,s+1]
] = 0 = [[ f j,r+1, ft,1], [ ft,1, fk,s+1]

] ∀ r , s ≥ 0 .

(6.68)
In fact, the only reason we used this more general form (6.68) in [26] instead of
just (6.25, 6.26) is to treat the special case ofgl(2|2)with the parity sequence (0̄, 0̄, 1̄, 1̄)
or (1̄, 1̄, 0̄, 0̄).

6.2 Drinfeld orthosymplectic super Yangian

Following the above notations, we define the Drinfeld Yangian of osp(V ), denoted
by Y (osp(V )), to be the associative C-superalgebra generated by {x±

i,r , ki,r }r≥0
1≤i≤n+m

with the Z2-grading given by

|x±
i,r | = i + i + 1 , |kı,r | = 0̄ ∀ i < n + m , ı ≤ n + m , r ≥ 0 ,

|x±
n+m,r | =

{
n + m − 1 + n + m if N = 2n , n + m = 0̄

n + m + n + m + 1 otherwise
,

and subject to the defining relations (6.70)–(6.85). To state the relations, form the
generating series:

x±
i (u) =

∑
r≥0

x±
i,r u−r−1 , ki (u) = 1 +

∑
r≥0

ki,r u−r−1 . (6.69)

We also recall the symmetrized Cartan matrix B = (bi j ) of (2.15) with bi j = (αi , α j )

and the Cartan matrix A = (ai j ) of (2.17). The defining relations of Y (osp(V )) are
as follows:

[ki,r , k j,s] = 0 ∀ 1 ≤ i, j ≤ n + m , r , s ≥ 0 , (6.70)

[x+
i,r , x

−
j,s] = δi j ki,r+s ∀ 1 ≤ i, j ≤ n + m , r , s ≥ 0 , (6.71)

[ki,0, x
±
j,s] = ±bi j x

±
j,s ∀ 1 ≤ i, j ≤ n + m , s ≥ 0 , (6.72)

[ki,r+1, x
±
j,s] − [ki,r , x

±
j,s+1] = ±bi j

2
{ki,r , x

±
j,s} unless i = j and |αi | = 1̄ ,

(6.73)

[ki,r , x
±
i,s] = 0 for |αi | = 1̄ unlessN = 2n + 1, n + m = 1̄, i = n + m ,

(6.74)
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and in the latter case of N = 2n + 1, n + m = 1̄, i = n + m, we rather impose:

[kn+m(u), x−
n+m(v)]

= −kn+m(u)

(
1

3

x−
n+m(u − 1/2) − x−

n+m(v)

u − v − 1/2
+ 2

3

x−
n+m(u + 1) − x−

n+m(v)

u − v + 1

)
,

[kn+m(u), x+
n+m(v)]

=
(
1

3

x+
n+m(u − 1/2) − x+

n+m(v)

u − v − 1/2
+ 2

3

x+
n+m(u + 1) − x+

n+m(v)

u − v + 1

)
kn+m(u) ,

(6.75)

[x±
i,r+1, x

±
j,s ] − [x±

i,r , x
±
j,s+1] = ±bi j

2
{x±

i,r , x
±
j,s} unless N = 2n + 1, n + m = 1̄, i = j = n + m ,

(6.76)

and in the latter case of N = 2n + 1, n + m = 1̄, i = j = n + m, we rather impose:

[x+
n+m (u), x+

n+m (v)] = x
′+
n+m (v) − x

′+
n+m (u)

u − v
+ x+

n+m (u)2 − x+
n+m (v)2

u − v

+ x+
n+m (v)x+

n+m (u) − x+
n+m (u)x+

n+m (v)

2(u − v)
− (x+

n+m (v) − x+
n+m (u))2

2(u − v)2
,

[x−
n+m (u), x−

n+m (v)] = x
′−
n+m (u) − x

′−
n+m (v)

u − v
+ x−

n+m (u)2 − x−
n+m (v)2

u − v

+ x−
n+m (u)x−

n+m (v) − x−
n+m (v)x−

n+m (u)

2(u − v)
− (x−

n+m (u) − x−
n+m (v))2

2(u − v)2
,

(6.77)

where we set

x
′+
n+m(u) = x+

n+m(u)2 + [x+
n+m(u), x+

n+m,0] ,

x
′−
n+m(u) = −x−

n+m(u)2 − [x−
n+m(u), x−

n+m,0] ,

for N = 2n + 1 and n + m = 1̄, we also impose:

[x−
n+m−1,0, x

′−
n+m(v)] = −x

′′′−
n+m(v + 1

2 ) − x
′′′−
n+m(v − 1)

+x−
n+m−1(v+ 1

2 )x
′−
n+m(v)+x

′−
n+m(v)x−

n+m−1(v−1)−(−1)n+m−1x−
n+m(v)x

′′−
n+m(v−1) ,

(6.78)

[x+
n+m−1,0, x

′+
n+m(v)] = x

′′′+
n+m(v + 1

2 ) + x
′′′+
n+m(v − 1)

− x
′+
n+m(v)x+

n+m−1(v + 1
2 ) − x+

n+m−1(v − 1)x
′+
n+m(v) − x

′′+
n+m(v − 1)x+

n+m(v) ,

(6.79)
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with

x
′′−
n+m(v) = −[x−

n+m−1(v), x−
n+m,0] , x

′′′−
n+m(v) = [[x−

n+m−1(v), x−
n+m,0], x−

n+m,0

]
,

x
′′+
n+m(v) = −[x+

n+m,0, x
+
n+m−1(v)] , x

′′′+
n+m(v) = −[x+

n+m,0, [x+
n+m,0, x

+
n+m−1(v)]] ,

as well as the standard Serre relations

(adx±
i,0

)1−ai j (x±
j,0) = 0 for i �= j , with aii �= 0 or ai j = 0 , (6.80)

[x±
i,0, x

±
i,0] = 0 if aii = 0 , (6.81)

and the following higher order Serre relations:

[[x±
j,0, x

±
t,0], [x±

t,0, x
±
k,0]
] = 0 for subdiagrams (2.25) − (2.26) , (6.82)

[
x±

t,0, [x±
s,0, x

±
i,0]
]− [x±

s,0, [x±
t,0, x

±
i,0]
] = 0 for subdiagram (2.30) , (6.83)[

[x±
j,0, x

±
t,0],
[[x±

j,0, x
±
t,0], [x±

t,0, x
±
k,0]
]] = 0 for subdiagram (2.32) , (6.84)[[

x±
i,0, [x±

j,0, x
±
t,0]
]
,
[[x±

j,0, x
±
t,0], [x±

t,0, x
±
k,0]
]] = 0 for subdiagram (2.34) .

(6.85)

Remark 6.86 (a) The relation (6.70) can be equivalently written via the generating
series as:

[ki (u), k j (v)] = 0 ∀ 1 ≤ i, j ≤ n + m . (6.87)

(b) The relation (6.71) can be equivalently written via the generating series as:

[x+
i (u), x−

j (v)] = −δi j
ki (u) − ki (v)

u − v
∀ 1 ≤ i, j ≤ n + m . (6.88)

(c) The relations (6.72)–(6.74) can be equivalently and uniformly written via the
generating series:

[ki (u), x±
j (v)] = ∓bi j

2

{ki (u), x±
j (u) − x±

j (v)}
u − v

∀ 1 ≤ i, j ≤ n + m . (6.89)

(d) The relations (6.76) imply the following equality on the generating series:

[x±
i (u), x±

j (v)] − [x±
i (v), x±

j (u)] = ∓bi j

2

{x±
i (u) − x±

i (v), x±
j (u) − x±

j (v)}
u − v

.

(6.90)
The left-hand side above is usually written as [x±

i (u), x±
j (v)] + [x±

j (u), x±
i (v)] in

non-super case, but it rather becomes [x±
i (u), x±

j (v)] − [x±
j (u), x±

i (v)] if both simple
roots αi , α j are odd.
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(e) It is not clear to us if (6.90) alone imply (6.76) unless i = j or bi j = 0. In non-
super case, one can first derive the r = s = 0 case of (6.76) from (6.90), and then
establish the general case of (6.76) by utilizing (6.89), see e.g. [26, Remark 2.61(b)].
In the present setup, since (6.89) holds always except for N = 2n, n + m = 1̄, i =
j = n + m, one can thus derive (6.76) from (6.90) combined with (6.89) for all cases
but N + 2m = 5, |v2| = 1̄, i �= j .

Remark 6.91 We note that (6.75) can be equivalently written as follows, see (6.106):

[kn+m(u), x−
n+m(v)]

= −
(
1

3

x−
n+m(u + 1/2) − x−

n+m(v)

u − v + 1/2
+ 2

3

x−
n+m(u − 1) − x−

n+m(v)

u − v − 1

)
kn+m(u) ,

[kn+m(u), x+
n+m(v)]

= kn+m(u)

(
1

3

x+
n+m(u + 1/2) − x+

n+m(v)

u − v + 1/2
+ 2

3

x+
n+m(u − 1) − x+

n+m(v)

u − v − 1

)
.

(6.92)

Let us now relate the above algebra Y (osp(V )) to Y rtt(osp(V )) of Sect. 3.2. To do
so, we follow the same strategy as in A-type, see [26, §2.5]. First, we define a sequence
u1, . . . , un+m via

u1 := u and ui+1 = ui + bi,i+1

2
for 1 ≤ i < n + m . (6.93)

Thus, ui = ui−1 − (−1)i

2 for 1 ≤ i < n + m, while un+m satisfies

un+m − un+m−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if N = 2n , n + m = 0̄

1 if N = 2n , n + m = 1̄

− 1
2 if N = 2n + 1 , n + m = 0̄

1
2 if N = 2n + 1 , n + m = 1̄

. (6.94)

We also consider the following generating series with coefficients in X rtt(osp(V )):

X+
i (u) = fi+1,i (ui ) , X−

i (u) = (−1)i ei,i+1(ui ) ,

Ki (u) = hi (ui )
−1hi+1(ui ) ∀ 1 ≤ i < n + m , (6.95)

while X±
n+m(u), Kn+m(u) are defined by (6.95) for odd N , and otherwise are

given by:

X+
n+m(u) =

{
fn+m+1,n+m−1(un+m−1) if N = 2n , n + m = 0̄

fn+m+1,n+m(un+m) if N = 2n , n + m = 1̄
, (6.96)
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X−
n+m(u) =

{
(−1)n+m en+m−1,n+m+1(un+m−1) if N = 2n , n + m = 0̄
1
2 (−1)n+m en+m,n+m+1(un+m) if N = 2n , n + m = 1̄

,

(6.97)

Kn+m(u) =
{

hn+m−1(un+m−1)
−1hn+m+1(un+m−1) if N = 2n , n + m = 0̄

hn+m(un+m)−1hn+m+1(un+m) if N = 2n , n + m = 1̄
.

(6.98)
We shall denote their coefficients by {X+

i,r , X−
i,r , Ki,r }r≥0

1≤i≤n+m , respectively, so that

X±
i (u) =

∑
r≥0

X±
i,r u−r−1 , Ki (u) = 1 +

∑
r≥0

Ki,r u−r−1 . (6.99)

We note right away that all these elements actually belong to Y rtt(osp(V )) of (3.18).

The following is the main result of this subsection:

Theorem 6.100 The assignment

x±
i,r �→ X±

i,r , ki,r �→ Ki,r ∀ 1 ≤ i ≤ n + m , r ≥ 0 (6.101)

gives rise to a superalgebra isomorphism

ϒ : Y (osp(V )) ∼−→ Y rtt(osp(V )).

Proof First, we verify that the currents X±
i (u), Ki (u) satisfy the defining rela-

tions (6.70)–(6.85), so that the assignment (6.101) gives rise to a superalgebra
homomorphism

ϒ : Y (osp(V )) → Y rtt(osp(V )).

For 1 ≤ i, j < n + m (respectively, i, j ∈ {1, . . . , n + m − 2, n + m} for
N = 2n, n + m = 0̄), all these relations follow from Corollary 3.89 (respec-
tively, Corollary 3.91) combined with the corresponding super A-type relations of
[26, Theorem 2.67]. In the remaining cases with max{i, j} = n + m and |i − j | ≥ 2,
all the above relations follow from the commutativity statement of Corollary 3.52.
It thus remains to treat the cases i = j = n + m or {i, j} = {n + m − 1, n + m}.
Evoking Theorem 3.47, these actually reduce to the corresponding relations in rank 1
(four cases treated in Sect. 5.1) and rank 2 (eight cases treated in Sect. 5.2), which are
verified case by case.

A uniformway to check the commutation formulas between Ki (u) and X±
j (v)with

i, j ∈ {n +m, n +m −1} is to pull hi (u)−1 and hi+1(u) to the leftmost and rightmost
sides (in fact, only one of the two options works, as the other produces poles) in both
the left-hand and right-hand sides of (6.89). The only exception from this rule are the
cases i = j = n + m for odd N = 2n + 1. The latter essentially reduces to the rank
1 cases of osp(3|0) and osp(1|2), which we treat next:

• Verification of (6.89) for osp(3|0), see also [18].
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According to (5.7, 5.8), we have [h2(u), e12(v)] = h2(u)(e12(u)−e12(v))
2(u−v)

− (e12(u−1)−e12(v))h2(u)
2(u−v−1) and [h1(u), e12(v)] = − h1(u)(e12(u)−e12(v))

u−v
. The latter equality

implies:

h1(u)−1e12(v) =
(

u − v − 1

u − v
e12(v) + 1

u − v
e12(u)

)
h1(u)−1 . (6.102)

Therefore, we obtain:

[h1(u)−1h2(u), e12(v)]
= h1(u)−1[h2(u), e12(v)] − h1(u)−1[h1(u), e12(v)]h1(u)−1h2(u)

= 1

2(u − v)
h1(u)−1h2(u)

(
e12(u) − e12(v)

)
− 1

2(u − v − 1)
h1(u)−1(e12(u − 1) − e12(v)

)
h2(u)

+ 1

u − v

(
e12(u) − e12(v)

)
h1(u)−1h2(u) . (6.103)

Using (6.102), we see that the second summand above simplifies to:

− 1

2(u − v − 1)
h1(u)−1(e12(u − 1) − e12(v)

)
h2(u)

= − 1

2(u − v)

(
e12(u) − e12(v)

)
h1(u)−1h2(u) .

Combining the above two equalities, we obtain the desired relation (cf. (6.89)):

[h1(u)−1h2(u), e12(v)] = 1

2

{
h1(u)−1h2(u), e12(u) − e12(v)

}
u − v

.

• Verification of (6.75) for osp(1|2).
According to (5.19, 5.20), we have [h2(u), e12(v)] = h2(u)

(
e12(u)−e12(v)

u−v

+ e12(v)−e12(u−1/2)
u−v−1/2

)
and [h1(u), e12(v)] = h1(u)(e12(u)−e12(v))

u−v
. The latter equality also

implies:

e12(v)h1(u)−1 = h1(u)−1
(

u − v

u − v + 1
e12(v) + 1

u − v + 1
e12(u + 1)

)
. (6.104)

Therefore, we obtain:

[h2(u)h1(u)−1, e12(v)]
= h2(u)[h1(u)−1, e12(v)] + [h2(u), e12(v)]h1(u)−1

= h2(u)h1(u)−1 e12(v) − e12(u + 1)

u − v + 1
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+h2(u)

(
e12(u) − e12(v)

u − v
− e12(u − 1/2) − e12(v)

u − v − 1/2

)
h1(u)−1 . (6.105)

Using (6.104) to move h1(u)−1 to the leftmost part, we obtain the desired relation
(cf. (6.75)):

[h2(u)h1(u)−1, e12(v)]
= h2(u)h1(u)−1

(
−1

3

e12(u − 1/2) − e12(v)

u − v − 1/2
− 2

3

e12(u + 1) − e12(v)

u − v + 1

)
.

One could alternatively move both h1(u)−1, h2(u) to the rightmost part, thus deriving
(cf. (6.92)):

[h1(u)−1h2(u), e12(v)]
=
(

−1

3

e12(u + 1/2) − e12(v)

u − v + 1/2
− 2

3

e12(u − 1) − e12(v)

u − v − 1

)
h1(u)−1h2(u).

(6.106)

Let us also comment on the commutation formulas (6.76, 6.77) between X±
i (u)

and X±
j (v) for i, j ∈ {n + m, n + m − 1}. For i = j = n + m with N = 2n, the result

follows from the commutator formulas (3.75, 3.76) through Corollaries 3.89, 3.91,
see also Remark 6.86(e). For i = j = n + m, N = 2n + 1, n + m = 0̄, the relations
follow from the similar relations (5.11, 5.12) in the rank 1 case of osp(3|0). Likewise,
for i = j = n + m, N = 2n + 1, n + m = 1̄, the relation (6.77) follows from
the similar relations (5.23, 5.24) in the rank 1 case of osp(1|2). Finally, verification
of (6.76) for {i, j} = {n + m − 1, n + m} reduces to the rank 2 cases. Unless N = 2n
and n + m = 0̄, the corresponding relations always had the form:

[e12(u), e23(v)] = �

u − v

(
e13(u) − e13(v) − e12(u)e23(v) + e12(v)e23(v)

)
,

[ f21(u), f32(v)] = �

u − v

(
f31(v) − f31(u) + f32(v) f21(u) − f32(v) f21(v)

)
,

with � ∈ {−1, 1, 2}. These relations imply (6.76): this is explained in [5, End of §5]
for � = −1. If N = 2n, n + m = 0̄, n + m − 1 = 0̄, then (6.76) follows from (5.60).
In the remaining case N = 2n, n + m = 0̄, n + m − 1 = 1̄, the relation (6.76) follows
in turn from (5.76, 5.77).

Combining the fact that the coefficients of {ei (u), fi (u), hı (u)}1≤ı≤n+m+1
1≤i≤n+m gen-

erate X rtt(osp(V )) with the tensor product decomposition (3.19), description of the
center Z X rtt(osp(V )), and the factorization of the central generating series cV (u) from
Lemmas 4.31, 4.45, 4.49, we conclude that the homomorphism ϒ is surjective. The
injectivity of ϒ follows from the injectivity of (6.35).

Alternatively, one can use (3.19) and identify Y (osp(V )) with the preimage of
Y rtt(osp(V )) under (6.35). This amounts to checking that the subalgebra of X(osp(V ))
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generated by the same-named currents (6.95)–(6.98) is isomorphic to Y (osp(V ))

defined via generators and relations. ��
Remark 6.107 The Serre relations (6.80)–(6.85) can be generalized exactly as in
Remark 6.56.
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Appendix A. Low rank identification through 6-fold fusion

For m = 0 (respectively, N = 0), our straightforward treatment of the correspond-
ing RTT orthogonal (respectively, symplectic) Yangians is slightly different from the
one in [18]. More specifically, the arguments of [18] crucially utilized, see the proof
of [18, Proposition 5.4] the low level isomorphisms established in [3, Section 4].
The aim of this appendix is thus twofold. Starting from the 6-fold R-matrix fusion
argument of [3], used to explicitly construct isomorphisms X rtt(so3) 
 Y rtt(gl2) and
Y rtt(so3) 
 Y rtt(sl2), we construct analogous isomorphisms8 X rtt(so6) 
 Y rtt(gl4)
and Y rtt(so6) 
 Y rtt(sl4). Finally, we explain why applying this approach to
Y rtt(gl(1|2)) recovers an algebra that looks surprisingly different9 from X rtt(osp(2|2)).
• so3 vs gl2.

Consider theYangianY rtt(gl2) = Y rtt(gl(C2)) associatedwith the R-matrixR(u) =
I− P

u , where P ∈ End (C2 ⊗ C
2) is the permutation operator. Here, we choose a basis

{v1, v2} of C
2 and use T(u) to denote the corresponding 2 × 2 generator matrix of

Y rtt(gl2), see Sect. 3.6.
The symmetric square V = S2(C2) = R(−1)(C2 ⊗ C

2) has a basis

v1 = v1 ⊗ v1 , v2 = 1√
2
(v1 ⊗ v2 + v2 ⊗ v1) , v3 = −v2 ⊗ v2 .

Let X rtt(so3) be the corresponding RTT extended orthogonal Yangian of Sect. 3.1.
Here, N = 3, m = 0, κ = 1/2, θ1 = θ2 = θ3 = 1, P, Q are as in (3.1, 3.2), and R(u)

is defined in (3.4).

8 These isomorphisms are known to experts, but we did not find explicit RTT-type realizations in the
literature.
9 We thank A. Molev who noted that there is actually an algebra isomorphism X(osp(2|2)) 
 Y (gl(1|2))
between the Drinfeld realizations of these Yangians, which however does not admit any nice RTT-type
interpretation.
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Remark A.1 The above choice of V , its basis {v1, v2, v3}, and the key RTT-type con-
struction of Proposition A.5 are all crucially based on the following two simple
observations:

(a) the assignment e �→ √
2F12, f �→ √

2F21, h �→ 2F11,where {h, e, f }denotes the
standard basis of sl2 and Fi j are as in (2.8), gives rise to a Lie algebra isomorphism

ρ : sl2 ∼−→ so3;
(b) the vector space isomorphism ρ : S2(C2) ∼−→ C

3 mapping v1, v2, v3 to the stan-
dard basis of C

3 is compatible with the above Lie algebra isomorphism, that is:
ρ(x(v)) = ρ(x)(ρ(v)).

Consider the tensor product space (C2)⊗4, and we shall view V ⊗ V as a natural
subspace of (C2)⊗2 ⊗ (C2)⊗2 = (C2)⊗4. Moreover, the operator 1+P12

2 · 1+P34
2 =

1
4R12(−1)R34(−1) defines a projection of (C2)⊗2⊗(C2)⊗2 onto this subspace V ⊗V .
Let us consider the following

6-fold fusion RV (u) := 1 + P12
2

· 1 + P34
2

·R14(2u−1)R13(2u)R24(2u)R23(2u+1) ,

(A.2)
which can be equivalently written as

RV (u) = R23(2u + 1)R13(2u)R24(2u)R14(2u − 1) · 1 + P12
2

· 1 + P34
2

,

since the R-matrix R(u) satisfies the Yang–Baxter equation (3.63). The subspace
V ⊗ V is clearly stable under the operator RV (u). The following observation first
appeared in [3, Lemma 4.5]:

Lemma A.3 We have the equality of operators in V ⊗ V :

RV (u) = 2u − 1

2u + 1
·
(
I − P

u
+ Q

u − 1/2

)
= 2u − 1

2u + 1
· R(u) . (A.4)

Thus, RV (u) ∈ End V ⊗ End V coincides with the R-matrix R(u) for so3 =
so(V ), up to a scalar factor. Combining this result with the repeated application of the
defining RTT relation (3.64) and the PBW theorem for X rtt(so3), one easily obtains [3,
Proposition 4.4, Corollary 4.6]:

Proposition A.5 (a) The assignment

T (u) �→ 1 + P

2
· T1(2u)T2(2u + 1) = T2(2u + 1)T1(2u) · 1 + P

2

gives rise to an algebra isomorphism φ : X rtt(so3)
∼−→ Y rtt(gl2).

(b) The restriction of the isomorphism from (a) to the subalgebra Y rtt(so3) of X rtt(so3)

gives rise to an algebra isomorphism φ : Y rtt(so3)
∼−→ Y rtt(sl2).
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We refer the interested reader to [3] for more details and the explicit formulas for
φ(ti j (u)).

• so6 vs gl4.
Consider theYangianY rtt(gl4) = Y rtt(gl(C4)) associatedwith the R-matrixR(u) =

I − P
u of (3.62). Here, we apply the construction of Sect. 3.6 to V = C

4, and fix its
specific basis {v1, v2, v3, v4}. We shall use T(u) to denote the corresponding 4 × 4
generator matrix of Y rtt(gl4).

The second exterior power V = �2(C4) = R(1)(C4 ⊗ C
4) has a basis

v1 = v1∧v2 , v2 = v1∧v3 , v3 = v2∧v3 , v4 = v1∧v4 , v5 = v4∧v2 , v6 = v3∧v4 .

(A.6)
Let X rtt(so6) be the corresponding RTT extended orthogonal Yangian of Sect. 3.1.
Here, N = 6, m = 0, κ = 2, θ1 = · · · = θ6 = 1, P, Q are as in (3.1, 3.2), and R(u)

is defined in (3.4).

Remark A.7 The above choice of V , its basis {vk}6k=1, and the key RTT-type con-
struction of Proposition A.11 are all crucially based on the following two simple
observations:

(a) the assignment E12 �→ F23, E23 �→ F12, E34 �→ F24, E21 �→ F32, E32 �→
F21, E43 �→ F42, with Fi j ∈ gl(V ) from (2.8), gives rise to a Lie algebra isomor-

phism ρ : sl4 ∼−→ so6;
(b) the vector space isomorphism ρ : �2(C4) ∼−→ C

6 mapping v1, . . . , v6 to the stan-
dard basis of C

6 is compatible with the above Lie algebra isomorphism, that is:
ρ(x(v)) = ρ(x)(ρ(v)).

Consider the tensor product space (C4)⊗4, and we shall view V ⊗ V as a natural
subspace of (C4)⊗2 ⊗ (C4)⊗2 = (C4)⊗4. Moreover, the operator 1−P12

2 · 1−P34
2 =

1
4R12(1)R34(1) defines a projection of (C4)⊗2 ⊗ (C4)⊗2 onto this subspace V ⊗ V .
Let us consider the following

6-fold fusion RV (u) := 1 − P12
2

· 1 − P34
2

· R14(u + 1)R13(u)R24(u)R23(u − 1) ,

(A.8)
which can be equivalently written as

RV (u) = R23(u − 1)R13(u)R24(u)R14(u + 1) · 1 − P12
2

· 1 − P34
2

,

since the R-matrix R(u) satisfies the Yang–Baxter equation (3.63). The subspace
V ⊗ V is clearly stable under the operator RV (u). The following result is analogous
to Lemma A.3:

Lemma A.9 We have the equality of operators in V ⊗ V :

RV (u) = u − 2

u − 1
·
(
I − P

u
+ Q

u − 2

)
= u − 2

u − 1
· R(u) . (A.10)
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Proof Straightforward computation. ��
Thus, RV (u) ∈ End V ⊗End V coincides with the R-matrix R(u) for so6 = so(V ),

up to a scalar factor. Combining this observation with the repeated application of the
defining RTT relation (3.64) and the PBW theorem for X rtt(so6), one obtains the
following analog of Proposition A.5:

Proposition A.11 (a) The assignment

T (u) �→ 1 − P

2
· T1(u + 1)T2(u) = T2(u)T1(u + 1) · 1 − P

2

gives rise to an algebra isomorphism φ : X rtt(so6)
∼−→ Y rtt(gl4).

(b) The restriction of the isomorphism from (a) to the subalgebra Y rtt(so6) of X rtt(so6)

gives rise to an algebra isomorphism φ : Y rtt(so6)
∼−→ Y rtt(sl4).

Remark A.12 (a) As for any f (u) ∈ 1 + u−1
C[[u−1]] there exists g(u) ∈ 1 +

u−1
C[[u−1]] satisfying f (u) = g(u)g(u + 1), we have μg ◦ φ = φ ◦ μ f , so that part

(b) follows immediately from part (a).

(b) Combining φ of Proposition A.11(b) with the evaluation homomorphism
Y rtt(sl4) � U (sl4) (given by ti j (u) �→ δi j + (Ei j −δi j

E11+E22+E33+E44
4 )u−1) and the

isomorphism U (sl4) 
 U (so6) of Remark A.7(a), we obtain an algebra epimorphism
Y rtt(so6) � U (so6), cf. [3, Corollary 4.7].

(c) The images φ(tk�(u)) can be explicitly described as follows:

φ(tk�(u)) = 1

2

(
tap(u+1)tbq(u)−taq(u+1)tbp(u)−tbp(u+1)taq(u)+tbq(u+1)tap(u)

)
,

for unique indices 1 ≤ a, b, p, q ≤ 4 satisfying vk = va ∧ vb and v� = vp ∧ vq ,
see (A.6).

• osp(2|2) vs gl(1|2).
Consider a superspace V = C

1|2 with a basis {v1, v2, v3} whose parity is |v1| =
1̄, |v2| = 0̄, |v3| = 1̄. Let Y rtt(gl(C1|2)) be the corresponding RTTYangian associated
with the R-matrix R(u) = I− P

u and let T(u) denote the corresponding 3×3 generator
matrix of Y rtt(gl(V)), see Sect. 3.6.

We note that the gl(C1|2)-module10 C
1|2 ⊗ C

1|2 decomposes into the direct sum
of 4-dimensional S2(C1|2) = R(−1)(C1|2 ⊗ C

1|2) and 5-dimensional �2(C1|2) =
R(1)(C1|2 ⊗ C

1|2) submodules. The symmetric square V = S2(V) = S2(C1|2) has a
basis

v1 = v1⊗v2+v1⊗v2 , v2 = v2⊗v2 , v3 = v1⊗v3−v3⊗v1 , v4 = v2⊗v3+v3⊗v2 ,

10 Recall that in the super case the action on the tensor product is given by x(v ⊗ w) = x(v) ⊗ w +
(−1)|x |·|v|v ⊗ x(w).
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with a parity |v1| = |v4| = 1̄, |v2| = |v3| = 0̄. Let X rtt(osp(V )) be the corresponding
RTT extended orthosymplectic Yangian of Sect. 3.1. Here, N = 2, m = 1, κ = −1
according to (3.3), θ1 = θ2 = θ3 = 1, θ4 = −1 according to (2.4), P, Q are as
in (3.1, 3.2), and R(u) is as in (3.4).

Remark A.13 (a) The Dynkin diagram of sl(C1|2) = A(C1|2) is
which coincides with the Dynkin diagram of osp(V ) for the parity sequence ϒV =
(1̄, 0̄), see Sect. 2.3. Therefore, one has an abstract isomorphism of Lie superalgebras
sl(V) 
 osp(V ).

(b) The assignment

E12 �→ 1√
2

F12 , E23 �→ 1√
2

F13 , E13 �→ 1
2 F14 ,

E21 �→ 1√
2

F21 , E32 �→ − 1√
2

F31 , E31 �→ 1
2 F41 ,

E11 + E22 �→ 1
2 (F11 + F22) , E22 + E33 �→ − 1

2 (F11 − F22) ,

with Fi j ∈ gl(V ) of (2.8), gives rise to a Lie superalgebra isomorphism

ρ : sl(V) ∼−→ osp(V ), cf. (a).

(c) However, in contrast to Remarks A.1(b), A.7(b), there is no isomorphism between

sl(V)-module S2(V) and the natural osp(V )-module V , intertwined by the isomor-
phism ρ from part (b).

(d) According to [20], the Lie superalgebra sl(C1|2) admits a 1-parameter fam-
ily of non-isomorphic 4-dimensional modules, denoted by [b, 1/2]. The generators
S±, V±, V ± of [20, §2.1] may be related to ours via:

V+ ↔ 1√
2

E12 , V + ↔ 1√
2

E23 , V− ↔ 1√
2

E32 ,

V − ↔ − 1√
2

E21 , S+ ↔ E13 , S− ↔ E31 . (A.14)

The explicit action of sl(C1|2) on [b, 1/2] is provided in [20, §4.1]. In particular, com-
bining [20, (21, 22)] with (A.14), the lower-triangular generators can be represented
by the following matrices:

E21 �→

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
√
2β 0 0 0

0 0 0 0

0 0 −√
2γ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, E32 �→

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

−√
2α 0 0 0

0
√
2ε 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, E31 �→

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with the constants α, β, γ, ε satisfying 4αγ = 1 + 2b, 4βε = 1 − 2b. It is now
straightforward to check that the 4-dimensional sl(V)-module S2(V) corresponds to
b = −3/2, while the pull-back of the 4-dimensional osp(V )-module V under the
isomorphism ρ of part (b) corresponds to b = 0.
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Consider the tensor product space (C1|2)⊗4. We shall view V ⊗ V as a natural
subspace of (C1|2)⊗2 ⊗ (C1|2)⊗2 = (C1|2)⊗4, while the operator 1+P12

2 · 1+P34
2 =

1
4R12(−1)R34(−1) defines a projection of (C1|2)⊗2 ⊗ (C1|2)⊗2 onto this subspace
V ⊗ V . Similarly to (A.2), we consider

6-fold fusion RV (u) := 1 + P12
2

· 1 + P34
2

· R14(u − 1)R13(u)R24(u)R23(u + 1)

= R23(u + 1)R13(u)R24(u)R14(u − 1) · 1 + P12
2

· 1 + P34
2

.

(A.15)

The subspace V ⊗ V is clearly stable under RV (u). Moreover, this operator satisfies
the Yang–Baxter equation according to our next result:

Lemma A.16 The operator RV (u) ∈ End V ⊗ End V satisfies the Yang–Baxter equa-
tion (1.2).

Proof First, let us note the following equalities of operators in (EndC
1|2)⊗4:

1 + P12
2

· 1 + P34
2

· P14P13 = 1 + P12
2

· 1 + P34
2

· P14 ,

1 + P12
2

· 1 + P34
2

· P14P24 = 1 + P12
2

· 1 + P34
2

· P14 ,

1 + P12
2

· 1 + P34
2

· P14P23 = 1 + P12
2

· 1 + P34
2

· P13P24 ,

1 + P12
2

· 1 + P34
2

· P13P23 = 1 + P12
2

· 1 + P34
2

· P13 ,

1 + P12
2

· 1 + P34
2

· P24P23 = 1 + P12
2

· 1 + P34
2

· P24 .

(A.17)

Using (A.17), we obtain the following simplified formula for RV (u) of (A.15):

RV (u) = 1 + P12
2

· 1 + P34
2

·
(
1 − P14 + P24 + P13 + P23

u + 1
+ 2P13P24

u(u + 1)

)
. (A.18)

Therefore, the restriction of RV (u) to V ⊗ V is simply given by:

RV (u) = 1 − P14 + P24 + P13 + P23

u + 1
+ 2P13P24

u(u + 1)
, (A.19)

cf. [3, (4.21)].

Using the formula (A.19), it is easy now to compute the corresponding 16 × 16
matrix for the action of RV (u) in the ordered basis {v1 ⊗ v1, v1 ⊗ v2, . . . , v4 ⊗ v3,

v4 ⊗ v4} of V ⊗ V :
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RV (u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(u) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 b(u) 0 0 c(u) 0 0 0 0 0 0 0 0 0 0 0
0 0 d(u) 0 0 0 0 0 e(u) 0 0 0 0 0 0 0
0 0 0 f (u) 0 0 −k(u) 0 0 −k(u) 0 0 g(u) 0 0 0
0 c(u) 0 0 b(u) 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 i(u) 0 0 0 0 0 0 0 0 0 0
0 0 0 h(u) 0 0 1 0 0 j(u) 0 0 −h(u) 0 0 0
0 0 0 0 0 0 0 b(u) 0 0 0 0 0 c(u) 0 0
0 0 e(u) 0 0 0 0 0 d(u) 0 0 0 0 0 0 0
0 0 0 h(u) 0 0 j(u) 0 0 1 0 0 −h(u) 0 0 0
0 0 0 0 0 0 0 0 0 0 l(u) 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d(u) 0 0 e(u) 0
0 0 0 g(u) 0 0 k(u) 0 0 k(u) 0 0 f (u) 0 0 0
0 0 0 0 0 0 0 c(u) 0 0 0 0 0 b(u) 0 0
0 0 0 0 0 0 0 0 0 0 0 e(u) 0 0 d(u) 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(u)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.20)
where

a(u) = (u − 1)(u + 2)

u(u + 1)
, c(u) = −2(u − 1)

u(u + 1)
, e(u) = u + 2

u(u + 1)
,

g(u) = u − 2

u(u + 1)
, i(u) = (u − 1)(u − 2)

u(u + 1)
, j(u) = 2

u(u + 1)
,

b(u) = u − 1

u + 1
, d(u) = u + 2

u + 1
, f (u) = u

u + 1
,

h(u) = −2

u + 1
, k(u) = 1

u + 1
, l(u) = u + 2

u
.

(A.21)

Finally, we have verified on the computer that the above matrix (A.20, A.21) indeed
satisfies the Yang–Baxter equation (1.2). ��

However, in view of Remark A.13(c,d), it is not surprising that RV (u) is not a scalar
multiple of the orthosymplectic R-matrix R(au) of osp(2|2) = osp(V ) for any a ∈ C,
in contrast to Lemma A.3.

Remark A.22 Let us match both the 6-fold fusion RV (u) and the orthosymplectic R-
matrix R(u) with the special cases of the R-matrix from [25]. We use ŘRM (u, b) to
denote the 16× 16 matrix of [25, (2)], which at u = 0 reduces to the identity and not
to the permutation operator.

(a) We have
u(u + 1)

(u − 1)(u + 2)
RV (u) = S ŘRM (u,− 3

2 ) P S−1 (A.23)

with

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.24)
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and

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 − 1

2
1
3 0 0 i

3
√
2

0 − 1
2 − i

3
√
2
0 0 1

3 0 0 0

0 0 1
2 0 0 0 0 0 − 1

2 0 1 1
2 0 0 − 1

2 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 − 1

2 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 − 1

2 0 − 1
2 − 1

2 0 −1 0 0 1 0

0 0 0 2
3 0 0 − i

3
√
2

0 0 i
3
√
2

0 0 − 1
3 0 0 0

0 0 1
2

1
3 0 0 i

3
√
2

0 1
2 − i

3
√
2
0 0 1

3 0 0 0

0 0 1
2 0 0 0 1

2 0 − 1
2

1
2 0 −1 0 0 1 0

0 0 0 0 0 0 0 − 1
2 0 0 0 0 0 1

2 0 0

0 0 0 0 0 0 0 − 1
2 0 0 0 0 0 − 1

2 0 1

0 0 − 1
2 0 0 0 0 0 1

2 0 1 − 1
2 0 0 1

2 0

0 0 0 − 1
3 0 0 − i

3
√
2

0 0 i
3
√
2

0 0 2
3 0 0 0

0 0 0 0 0 0 0 1
2 0 0 0 0 0 1

2 0 1

0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 1

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.25)

We note that it is ŘRM (u, b) P and not ŘRM (u, b) that satisfy the Yang–Baxter equa-
tion (1.2).

(b) Likewise, the orthosymplectic R-matrix R(u) of (3.4) for N = 2, m = 1 (so that
κ = −1) with the parity sequence ϒV = (1̄, 0̄) is explicitly given by the following
matrix:

R(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u+1
u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 − 1
u 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 − 1
u 0 0 0 0 0 0 0

0 0 0 u−2
u−1 0 0 − 1

u−1 0 0 1
u−1 0 0 − 1

(u−1)u 0 0 0

0 − 1
u 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 u−1
u 0 0 0 0 0 0 0 0 0 0

0 0 0 1
u−1 0 0 u

u−1 0 0 − 2u−1
(u−1)u 0 0 1

u−1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 − 1
u 0 0

0 0 − 1
u 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 − 1
u−1 0 0 − 2u−1

(u−1)u 0 0 u
u−1 0 0 − 1

u−1 0 0 0

0 0 0 0 0 0 0 0 0 0 u−1
u 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 − 1
u 0

0 0 0 − 1
(u−1)u 0 0 − 1

u−1 0 0 1
u−1 0 0 u−2

u−1 0 0 0

0 0 0 0 0 0 0 − 1
u 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 − 1
u 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u+1
u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.26)
It is related to that of [25, (2)] via the following equality:

u

u − 1
R(u) = ŘRM (− u

2 , 0) P , (A.27)

with P as in (A.24).
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