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Abstract. We generalize the study of standard Lyndon loop words from [16]
to a more general class of orders on the underlying alphabet, as suggested in

[16, Remark 3.15]. The main new ingredient is the exponent-tightness of these

words, which also allows to generalize the construction of PBW bases of the
untwisted quantum loop algebra Uq(Lg) via the combinatorics of loop words.

1. Introduction

1.1. Summary.
An interesting basis of the free Lie algebra generated by a finite family {ei}i∈I

was constructed in the 1950s using the combinatorial notion of Lyndon words. A
few decades later, this was generalized to any finitely generated Lie algebra a in [11].
Explicitly, if a is generated by {ei}i∈I , then any order on the finite alphabet I gives
rise to the combinatorial basis eℓ as ℓ ranges through all standard Lyndon words.

The key application of [11] was to simple finite-dimensional g, or more precisely,
to its maximal nilpotent subalgebra n+. According to the root space decomposition:

(1.1) n+ =
⊕

α∈∆+

Q · eα , ∆+ =
{
positive roots

}
,

with elements eα called root vectors. By the PBW theorem, we thus have

(1.2) U(n+) =

k∈N⊕
γ1≥···≥γk∈∆+

Q · eγ1
. . . eγk

for any total order on ∆+. Furthermore, a triangular decomposition

(1.3) g = n+ ⊕ h⊕ n−

induces the corresponding triangular decomposition of the universal enveloping:

(1.4) U(g) = U(n+)⊗ U(h)⊗ U(n−) .

Moreover, the root vectors satisfy (R∗ shall denote nonzero elements of a ring R)

(1.5) [eα, eβ ] = eαeβ − eβeα ∈ Q∗ · eα+β

whenever α, β ∈ ∆+ satisfy α+β ∈ ∆+. Thus, formula (1.5) provides an algorithm
for constructing all the root vectors (1.1) inductively starting from ei = eαi , where
{αi}i∈I ⊂ ∆+ are the simple roots of g. Therefore, all the root vectors {eα}α∈∆+ ,
and hence the PBW basis (1.2), can be read off from the combinatorics of ∆+.

The above discussion can be naturally adapted to the quantizations. Let Uq(g) be
the Drinfeld-Jimbo quantum group of g, a q-deformation of the universal enveloping
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algebra U(g). For one thing, it admits a triangular decomposition similar to (1.4):

(1.6) Uq(g) = Uq(n
+)⊗ Uq(h)⊗ Uq(n

−) .

Here, Uq(n
+) is the positive subalgebra of Uq(g), explicitly generated by {ẽi}i∈I

subject to q-Serre relations. There exists a PBW basis analogous to (1.2):

Uq(n
+) =

k∈N⊕
γ1≥···≥γk∈∆+

Q(q) · ẽγ1
. . . ẽγk

.

The q-deformed root vectors ẽα ∈ Uq(n
+) are defined via Lusztig’s braid group

action, which requires one to choose a reduced decomposition of the longest element
in the Weyl group of g. It is well-known ([18]) that this choice precisely ensures
that the order ≥ on ∆+ is convex, in the sense of Definition 2.17. Moreover, as
follows from the Levendorsky-Soibelman property [13], the q-deformed root vectors
satisfy the following q-analogue of the relation (1.5):

(1.7) [ẽα, ẽβ ]q = ẽαẽβ − q(α,β)ẽβ ẽα ∈ Q(q)∗ · ẽα+β

whenever α, β, α+β ∈ ∆+ satisfy α < α+β < β as well as the minimality property

(1.8) ̸ ∃ α′, β′ ∈ ∆+ s.t. α < α′ < β′ < β and α+ β = α′ + β′ ,

and (·, ·) denotes the scalar product corresponding to the root system of type g.
Thus, similarly to the Lie algebra case, we conclude that the q-deformed root vectors
can be defined (up to scalar multiples) as iterated q-commutators of ẽi = ẽαi (i ∈ I),
using the combinatorics of ∆+ and the chosen convex order on it.

Following [7, 21, 24], let us recall that Uq(n
+) can be also defined as a subalgebra

of the q-shuffle algebra:

Uq(n
+)

Φ
↪−→ F =

k∈N⊕
i1,...,ik∈I

Q(q) · [i1 . . . ik] ,

where F has a basis I∗, consisting of finite length words in I, and is endowed with
the quantum shuffle product. As mentioned above, there is a natural bijection

(1.9) ℓ : ∆+ ∼−→
{
standard Lyndon words

}
,

established in [11]. This induces the lexicographical order on ∆+ via

α < β ⇐⇒ ℓ(α) < ℓ(β) lexicographically .

As shown in [12, 22] this total order is convex, and hence can be applied to obtain
quantum root vectors ẽα ∈ Uq(n

+) for any positive root α, as in (1.7). Moreover,
[12] shows that the quantum root vector ẽα is uniquely characterized (up to a scalar
multiple) by the property that Φ(eα) is an element of Im Φ whose leading order
term [i1 . . . ik] (in the lexicographic order) is precisely ℓ(α).

It is natural to ask if the above results can be generalized from simple g to affine Lie
algebras ĝ. The main complication arises from the fact that not all root subspaces of
ĝ are one-dimensional. In [1], an analogue of (1.9) was established and all standard
Lyndon words were explicitly computed for ĝ with g of A-type. On the other hand,
considering a different (new Drinfeld) “polarization” of quantum loop algebras

Uq(Lg) = Uq(Ln
+)⊗ Uq(Lh)⊗ Uq(Ln

−) ,
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the above complication disappears as Uq(Ln
+) is a q-deformation of the universal

enveloping algebra of n+[t, t−1] all of which root subspaces are one-dimensional. In
particular, many of the above results were adapted to the loop setup in [16].

In this note, we are interested in the generalization of all combinatorial aspects
of [16]1, excluding all shuffle algebra considerations, to the so-called “weighted”
version. To this end, we order the infinite alphabet I = {i(d) | i ∈ I, d ∈ Z} via

(1.10) i(d) < j(e) ⇐⇒ d/ci > e/cj or d/ci = e/cj and i < j ,

for any fixed collection of “weights” {ci}i∈I ∈ ZI
>0 (the case ci = 1 ∀ i recovers the

setup of [16]). This induces the lexicographic order on the loop words [i
(d1)
1 . . . i

(dk)
k ]

with respect to which we may define the notion of standard Lyndon loop words by
analogy with [11], which though requires some preliminary work similar to [16].
Then, there exists a one-to-one correspondence:

ℓ : ∆+ × Z ∼−→
{
standard Lyndon loop words

}
.

The lexicographic order on the right-hand side induces a convex order on the left-
hand side, with respect to which one can define elements

(1.11) eℓ(α,d) ∈ Uq(Ln
+)

for all (α, d) ∈ ∆+ × Z. We have the following analogue of the PBW theorem:

(1.12) Uq(Ln
+) =

k∈N⊕
ℓ1≥···≥ℓk standard Lyndon loop words

Q(q) · eℓ1 . . . eℓk .

There are also analogues of the constructions above with + ↔ − and e ↔ f .
By analogy with the results of [12, 22], the total order on ∆+ × Z given by

(1.13) (α, d) < (β, e) ⇐⇒ ℓ(α,−d) < ℓ(β,−e) lexicographically

is convex, cf. Proposition 3.18. As such, this order comes from a certain reduced
word in the affine Weyl group associated to g (= the Coxeter group associated to ĝ),
in accordance with Theorem 4.7. Therefore, the root vectors (1.11) exactly match
(up to constants) the classical construction of [2, 4, 15], once we pass it through
the “affine to loop” isomorphism of Theorem 5.14.

1.2. Outline.
The structure of the present paper is the following:

• In Section 2, we recall the notion of (standard) Lyndon words, their basic prop-
erties, and the application to simple Lie algebras through the bijection (1.9).

• In Section 3, we study the loop Lie algebras Lg and generalize the results of the
previous Section to the loop setup with the order given by (1.10). The key new
ingredient, in comparison to [16], is played by Theorem 3.6 and Proposition 3.8.

• In Section 4, we show that the order (1.13) on ∆+ ×Z corresponds to a certain
reduced decomposition in the extended affine Weyl group of g. We further refine
this result in Propositions 4.9–4.10.

• In Section 5, we construct PBW-type bases (1.12) of the quantum loop algebra
Uq(Lg) by adapting the arguments of [16] with the help of Proposition 4.10.

• In Section 6, we adapt most of our results to more general orders (6.1) on I.

1We shall be using the results of [16, Section 5] that are omitted in its journal version [17].
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• In Appendix A, we provide a link to the C++ code and explain how it inductively
computes standard Lyndon loop words in all types, and present some examples.
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2. Combinatorial approach to Lie algebras

In this Section, we recall the results of [11] and [12] that provide a combinatorial
construction of an important basis of finitely generated Lie algebras, with the main
application to the maximal nilpotent subalgebra of a simple Lie algebra.

2.1. Lyndon words.
Let I be a finite ordered alphabet, and let I∗ be the set of all finite length words

in the alphabet I. For u = [i1 . . . ik] ∈ I∗, we define its length by |u| = k. We
introduce the lexicographical order on I∗ in a standard way:

[i1 . . . ik] < [j1 . . . jl] if


i1 = j1, . . . , ia = ja, ia+1 < ja+1 for some a ≥ 0

or

i1 = j1, . . . , ik = jk and k < l

.

Definition 2.2. A word ℓ = [i1 . . . ik] is called Lyndon if it is smaller than all of
its cyclic permutations:

[i1 . . . ia−1ia . . . ik] < [ia . . . iki1 . . . ia−1] ∀ a ∈ {2, . . . , k} .

For a word w = [i1 . . . ik] ∈ I∗, the subwords

wa| = [i1 . . . ia] and w|a = [ik−a+1 . . . ik]

with 0 ≤ a ≤ k will be called a prefix and a suffix of w, respectively. We call
such a prefix or a suffix proper if 0 < a < k. It is straightforward to show that
Definition 2.2 is equivalent to the following one:

Definition 2.3. A word w is Lyndon if it is smaller than all of its proper suffixes:

w < w|a ∀ 0 < a < |w| .

The following simple result is well-known:

Lemma 2.4. If ℓ1 < ℓ2 are Lyndon, then ℓ1ℓ2 is also Lyndon, and so ℓ1ℓ2 < ℓ2ℓ1.

We recall the following two basic facts from the theory of Lyndon words:
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Proposition 2.5. ([14, Proposition 5.1.3]) Any Lyndon word ℓ has a factorization

(2.1) ℓ = ℓ1ℓ2

defined by the property that ℓ2 is the longest proper suffix of ℓ which is also a Lyndon
word. Under these circumstances, ℓ1 is also a Lyndon word.

The factorization (2.1) is called a costandard factorization of a Lyndon word.

Proposition 2.6. ([14, Proposition 5.1.5]) Any word w has a unique factorization

(2.2) w = ℓ1 . . . ℓk ,

where ℓ1 ≥ · · · ≥ ℓk are all Lyndon words.

The factorization (2.2) is called a canonical factorization of a word.

2.7. Standard Lyndon words.
Let a be a Lie algebra generated by a finite set {ei}i∈I labelled by the alphabet I.

Definition 2.8. The standard bracketing of a Lyndon word ℓ is given inductively by:

• e[i] = ei ∈ a for i ∈ I,
• eℓ = [eℓ1 , eℓ2 ] ∈ a, where ℓ = ℓ1ℓ2 is the costandard factorization (2.1).

The major importance of this definition is due to the following result of Lyndon:

Theorem 2.9. ([14, Theorem 5.3.1]) If a is a free Lie algebra in the generators
{ei}i∈I , then the set

{
eℓ | ℓ−Lyndon word

}
provides a basis of a.

It is natural to ask if Theorem 2.9 admits a generalization to Lie algebras a
generated by {ei}i∈I but with some defining relations. The answer was provided a
few decades later in [11]. To state the result, define we, ew ∈ U(a) for any w ∈ I∗:

• For a word w = [i1 . . . ik] ∈ I∗, we set

(2.3) we = ei1 . . . eik ∈ U(a) .

• For a word w ∈ I∗ with a canonical factorization w = ℓ1 . . . ℓk of (2.2), we set

(2.4) ew = eℓ1 . . . eℓk ∈ U(a) .

It is well-known that the elements (2.3) and (2.4) are connected by the following
triangularity property:

(2.5) ew =
∑
v≥w

cvw · ve with cvw ∈ Z and cww = 1 .

The following definition is due to [11]:

Definition 2.10. (a) A word w is called standard if we cannot be expressed as a
linear combination of ve for various v > w.

(b) A Lyndon word ℓ is called standard Lyndon if eℓ cannot be expressed as a linear
combination of em for various Lyndon words m > ℓ.

The following result is nontrivial and justifies the above terminology:

Proposition 2.11. ([11]) A Lyndon word is standard iff it is standard Lyndon.

The major importance of this definition is due to the following result:

Theorem 2.12. ([11]) For any Lie algebra a generated by a finite collection {ei}i∈I ,
the set

{
eℓ | ℓ−standard Lyndon word

}
provides a basis of a.
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We also have the following simple properties of standard words:

Proposition 2.13. ([11]) (a) Any subword of a standard word is standard.

(b) A word w is standard iff it can be written (uniquely) as w = ℓ1 . . . ℓk, where
ℓ1 ≥ · · · ≥ ℓk are standard Lyndon words.

Thus, combining the classical Poincaré–Birkhoff–Witt theorem for U(a) with
Theorem 2.12, Proposition 2.13, and the triangularity property (2.5), we obtain
the following PBW-type theorem:

(2.6) U(a) =

k∈N⊕
ℓ1≥···≥ℓk standard Lyndon words

Q · eℓ1 . . . eℓk =

⊕
w–standard words

Q · ew =
⊕

w–standard words

Q · we .

2.14. Application to simple Lie algebras.
Let g be a simple Lie algebra with the root system ∆ = ∆+⊔∆−. Let {αi}i∈I ⊂

∆+ be the simple roots, and Q =
⊕

i∈I Zαi be the root lattice. We endow Q with
the symmetric pairing (·, ·) : Q ⊗ Q → Z so that the Cartan matrix (aij)i,j∈I and
the symmetrized Cartan matrix (dij)i,j∈I of g are given by

aij =
2(αi, αj)

(αi, αi)
and dij = (αi, αj) .

Explicitly, g is generated by {ei, fi, hi}i∈I subject to the following defining relations:

(2.7) [ei, [ei, · · · , [ei, ej ] · · · ]]︸ ︷︷ ︸
1−aij Lie brackets

= 0 if i ̸= j ,

(2.8) [hi, ej ] = dijej , [hi, hj ] = 0 ,

as well as the opposite relations with e’s replaced by f ’s, and finally the relation:

(2.9) [ei, fj ] = δijhi .

We will consider the triangular decomposition (1.3), where n+, h, n− are the Lie
subalgebras of g generated by the ei, hi, fi, respectively. We write Q+ ⊂ Q for the
monoid generated by {αi}i∈I . The Lie algebra g is naturally Q-graded via

deg ei = αi , deg hi = 0 , deg fi = −αi .

The Lie algebra g admits the standard root space decomposition:

(2.10) g = h⊕
⊕
α∈∆

gα

with dim gα = 1 for all α ∈ ∆. We pick root vectors eα ∈ gα so that gα = Q · eα.
Thus, the Lie subalgebra n+ decomposes into n+ =

⊕
α∈∆+ gα and is Q+-graded.

Explicitly, n+ is generated by {ei}i∈I subject to the classical Serre relations (2.7).
Fix any order on the set I. According to Theorem 2.12, n+ has a basis consisting

of the eℓ’s, as ℓ ranges over all standard Lyndon words. Evoking the above Q+-
grading of the Lie algebra n+, it is natural to define the grading of words via

(2.11) deg [i1 . . . ik] = αi1 + · · ·+ αik ∈ Q+ .
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Due to the decomposition (2.10) and the fact that the root vectors {eα}α∈∆+ ⊂ n+

all live in distinct degrees α ∈ Q+, we conclude that there exists a bijection (1.9):

ℓ : ∆+ ∼−→
{
standard Lyndon words

}
such that deg ℓ(α) = α for all α ∈ ∆+, which we call the Lalonde-Ram’s bijection.

2.15. Results of Leclerc.
The Lalonde-Ram’s bijection (1.9) was described explicitly in [12]. To state the

result, we recall that for a root α =
∑

i∈I kiαi ∈ ∆+, its height is ht(α) =
∑

i ki.

Proposition 2.16. ([12, Proposition 25]) The bijection ℓ is inductively given by:

• for simple roots, we have ℓ(αi) = [i],
• for other positive roots, we have the following Leclerc’s algorithm:

(2.12) ℓ(α) = max
{
ℓ(γ1)ℓ(γ2)

∣∣∣α = γ1 + γ2 , γ1, γ2 ∈ ∆+ , ℓ(γ1) < ℓ(γ2)
}
.

The formula (2.12) recovers ℓ(α) once we know ℓ(γ) for all {γ ∈ ∆+ |ht(γ) < ht(α)}.
We shall also need one more important property of ℓ. To the end, let us recall:

Definition 2.17. A total order on the set of positive roots ∆+ is convex if:

(2.13) α < α+ β < β

for all α < β ∈ ∆+ such that α+ β is also a root.

Remark 2.18. It is well-known ([18]) that convex orders on ∆+ are in bijection with
the reduced decompositions of the longest element w0 ∈ W in the Weyl group of g.

The following result is [12, Proposition 26], where it was attributed to the
preprint of Rosso [22] (a detailed proof can be found in [16, Proposition 2.34]):

Proposition 2.19. Consider the order on ∆+ induced from the lexicographical
order on standard Lyndon words:

(2.14) α < β ⇐⇒ ℓ(α) < ℓ(β) lexicographically .

This order is convex.

3. Loop standard Lyndon words

We will now extend the description above to the Lie algebra of loops into g:

Lg = g[t, t−1] = g⊗Q Q[t, t−1]

with the Lie bracket given simply by

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n for any x, y ∈ g , m, n ∈ Z .

The triangular decomposition (1.3) extends to a similar decomposition at the loop
level Lg = Ln+ ⊕ Lh⊕ Ln−, and our goal is to describe Ln+ along the lines of the

previous Section. To this end, we think of Ln+ as being generated by e
(d)
i = ei⊗ td

for all i ∈ I, d ∈ Z. Associate to e
(d)
i the letter i(d), and call d the exponent of i(d).

We thus obtain the infinite alphabet I = {i(d) | i ∈ I, d ∈ Z} and any word in
these letters will be called a loop word :

(3.1)
[
i
(d1)
1 . . . i

(dk)
k

]
.
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We shall now introduce a family of total orders on I, which will thus induce lex-
icographical orderings on loop words (3.1). To this end, we fix a total order on I
and choose a tuple of positive integers {ci}i∈I ∈ ZI

>0 (we call ci the weight of i).
Following [16, Remark 3.15], we shall compare the loop letters of I via (1.10):

i(d) < j(e) ⇐⇒ d

ci
>

e

cj
or

d

ci
=

e

cj
and i < j .

Due to its importance, we shall call the ratio d/ci the relative exponent of i(d) ∈ I.
We also define the weighted height of roots via:

(3.2) f(α) =
∑
i∈I

ki · ci for any α =
∑
i∈I

kiαi ∈ ∆+ .

All the results of Subsection 2.1 continue to hold in the present setup, so we have

a notion of Lyndon loop words. Since Ln+ is Q+ ×Z-graded via deg e
(d)
i = (αi, d),

it makes sense to extend this grading to loop words via

deg
[
i
(d1)
1 . . . i

(dk)
k

]
= (αi1 + · · ·+ αik , d1 + · · ·+ dk) .

The obvious generalization of (1.1) is:

Ln+ =
⊕

α∈∆+

⊕
d∈Z

Q · e(d)α

with e
(d)
α = eα⊗td for all α ∈ ∆+, d ∈ Z. We note that Ln+ still has one-dimensional

Q+ ×Z-graded pieces, which is essential for the treatment of [11] to carry through.
On the other hand, the definition of standard (Lyndon) loop words in the present

setup is a non-trivial task since the alphabet I is infinite. Motivated by the treat-
ment of [16] in the case when all ci = 1, we shall likewise consider a filtration by
finitely generated Lie algebras L(s)n+ of (3.4), corresponding to the finite alphabets

(3.3) I(s) =
{
i(d)

∣∣∣ i ∈ I,−s · ci ≤ d ≤ s · ci
}

∀ s ∈ Z≥0 .

We will establish some basic properties of the corresponding standard Lyndon loop
words for L(s)n+ which ultimately imply that the notion of a “standard Lyndon
loop word” does not actually depend on the particular L(s)n+ with respect to which
it is defined. We shall thus obtain the loop analogue (3.13) of the bijection (1.9).

3.1. Filtration and basic properties.
We now wish to extend Definition 2.10 in order to obtain a notion of standard

(Lyndon) loop words, but here we must be careful as the alphabet I is infinite. In
particular, the key assumption “for any word v, there are only finitely many words
u of the same length and > v in the lexicographical order” of [11, §2] clearly fails.
To deal with this issue, we consider the increasing filtration:

Ln+ =

∞⋃
s=0

L(s)n+

defined with respect to the finite-dimensional Lie subalgebras (see notation (3.2)):

(3.4) Ln+ ⊃ L(s)n+ =
⊕

α∈∆+

s·f(α)⊕
d=−s·f(α)

Q · e(d)α ∀ s ∈ Z≥0 .
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As a Lie algebra, L(s)n+ is generated by {e(d)i | i ∈ I, |d| ≤ s·ci}. We may thus apply
Definition 2.10 to yield a notion of standard (Lyndon) loop words with respect to the
finite-dimensional Lie algebras L(s)n+, with the words made up only of i(d) ∈ I(s).

The following result is proved completely analogously to [16, Proposition 2.23]
(which in turn is an adaptation of the analogous results from [12], cf. (2.12)):

Proposition 3.2. There exists a bijection:

(3.5) ℓ :
{
(α, d) ∈ ∆+ × Z

∣∣∣ |d| ≤ s · f(α)
}

∼−→{
standard Lyndon loop words for L(s)n+

}
,

determined by ℓ(αi, d) =
[
i(d)

]
and the following (generalized) Leclerc’s algorithm:

(3.6) ℓ(α, d) = max
(γ1,d1)+(γ2,d2)=(α,d)

γk∈∆+, |dk|≤s·f(γk)

ℓ(γ1,d1)<ℓ(γ2,d2)

{
concatenation ℓ(γ1, d1)ℓ(γ2, d2)

}
.

Since standard Lyndon loop words give rise to bases of the finite-dimensional
Lie algebras L(s)n+, then the analogue of property (2.6) gives us:

(3.7) U(L(s)n+) =

k∈N⊕
ℓ1≥···≥ℓk standard Lyndon loop words

with all relative exponents in [−s,s]

Q · eℓ1 . . . eℓk =

⊕
w–standard loop words with

all relative exponents in [−s,s]

Q · ew =
⊕

w–standard loop words with

all relative exponents in [−s,s]

Q · we .

We shall next establish some properties of the bijection (3.5). We start with the
following monotonicity property:

Proposition 3.3. Fix s ∈ Z>0. Then for any positive root α ∈ ∆+ and any integer
d ∈ [−s · f(α) + 1, s · f(α)], the bijection (3.5) satisfies the following inequality:

(3.8) ℓ(α, d) < ℓ(α, d− 1) .

Proof. The proof if completely analogous to that of [16, Proposition 2.25]. □

3.4. Exponent tightness.
While many properties of the bijection (3.5) can be established very similarly

to the special case (when ci = 1 for all i) of [16], the naive generalization of [16,
Proposition 2.26] shall not suffice. We discuss the key upgrades in this Subsection.

We start with the following definition:

Definition 3.5. A loop word w =
[
i
(d1)
1 . . . i

(dn)
n

]
is called exponent-tight if

(3.9) i
(dk)
k ≥ i(dr+1)

r for all 1 ≤ k, r ≤ n .

When w is a Lyndon loop word, it clearly suffices to verify (3.9) only for k = 1.
The following is the main result of this Subsection:

Theorem 3.6. For any root α ∈ ∆+ and any integer d ∈ {−s · f(α), . . . , s · f(α)},
the standard Lyndon loop word ℓ(α, d) is exponent-tight.
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The proof of this result relies on Lemma 3.7 and Proposition 3.8 proved below.
In what follows, we write i(d) ∈ w to denote that w contains the letter i(d) ∈ I. If
a loop word w has a Q× Z-degree degw = (α, d), then we will use the notation

(3.10) hdeg w = α and vdeg w = d ,

and call these two notions the horizontal and the vertical degree, respectively.

Lemma 3.7. Any two exponent-tight loop words v and w of the same Q×Z-degree
contain the same multisets of letters.

Proof. First, let us show that if i(k) ∈ w then also i(k) ∈ v. Assuming the con-
tradiction, we must have i(k

′) ∈ v for some k′ ̸= k, as hdeg v = hdeg w. Without
loss of generality, we may assume that k′ ≥ k + 1, so that i(k

′) ≤ i(k+1). As
vdeg v = vdeg w, there are two letters j(t) ∈ w and j(t

′) ∈ v, such that t′ ≤ t− 1,
so that j(t) ≤ j(t

′+1). Since both words v and w are exponent-tight, we also have

i(k+1) ≤ j(t) and j(t
′+1) ≤ i(k

′) .

Combining the above inequalities, we obtain:

j(t) ≤ j(t
′+1) ≤ i(k

′) ≤ i(k+1) ≤ j(t) ,

so that j(t) = j(t
′+1) = i(k

′) = i(k+1). Hence i(k) = j(t
′) ∈ v, a contradiction.

Thus any letter of w is contained in v and vice-versa. It remains to show that
multiplicities of all letters in w and v are the same. Since hdeg v = hdeg w, the sum
of all multiplicities of i(•) ∈ w is the same as that of i(•) ∈ v for any i ∈ I. Thus, the
claim is obvious if both w and v contain i(k) and no other i(k

′) for k′ ̸= k. Assume
now that w (and hence also v) contains i(k), i(k

′) for k′ > k. Then k′ = k+1, due to

i(k
′) ≥ i(k+1). In this case, we may not have j(t), j(t+1) ∈ w for any j ̸= i and t ∈ Z.

Otherwise we would have i(k+1) ≥ j(t+1) ≥ i(k+1), due to exponent-tightness, and
so j(t) = i(k), a contradiction with j ̸= i. Thus, for any j ̸= i, there is only one value
of exponent such that j(•) is contained in w (and hence in v). As deg v = degw,
we thus also conclude that multiplicities of i(k), i(k+1) in w and v are the same. □

Proposition 3.8. Let v = [i
(k1)
1 . . . i

(km)
m ] and w = [j

(t1)
1 . . . j

(tm)
m ] be two exponent-

tight loop words such that hdeg w = hdeg v and vdeg w = vdeg v + 1. Then:

(a) The first letter j
(t1)
1 of the loop word w equals max1≤a≤m {i(da+1)

a }.

(b) The multisets of the other letters coincide: {i(ka)
a }ma=1 − {j(t1−1)

1 } = {j(ta)a }ma=2.

Proof. Let i
(dr+1)
r = max1≤a≤m {i(da+1)

a }. Since v is exponent-tight, so is any loop

word u formed by the letters {i(da)
a }a̸=r ∪ {i(dr+1)

r } (a loop word is exponent-tight
iff any loop word formed by the same multiset of letters is exponent-tight). But
then w and u must have the same multisets of letters, according to Lemma 3.7.
Since the loop word u satisfies both properties (a) and (b), so does w. □

Remark 3.9. Following the setup of Proposition 3.8, one may vice-versa express the

multiset of letters of v through the one for w: {i(ka)
a }ma=1 = {j(t1−1)

1 } ∪ {j(ta)a }ma=2.

Now we are ready to present the proof of Theorem 3.6.
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Proof of Theorem 3.6. The proof proceeds by induction on the height n = ht(α).

The base case of the induction is n = 2. Let ℓ(α, d) = [i
(k1)
1 i

(k2)
2 ], where

i
(k1)
1 < i

(k2)
2 and i1 ̸= i2. We claim that i

(k1−1)
1 > i

(k2+1)
2 , as otherwise we

would get ℓ(α, d) = [i
(k1)
1 i

(k2)
2 ] < [i

(k1−1)
1 i

(k2+1)
2 ], a contradiction with Leclerc’s

algorithm (3.6). But then, invoking (3.6), we obtain ℓ(α, d) ≥ i
(k2+1)
2 i

(k1−1)
1 . This

implies the desired inequality i
(k1)
1 ≥ i

(k2+1)
2 , establishing the base of the induction.

Let us now prove the step of the induction, assuming the assertion holds for all
roots of height < n. If not, then for some root α ∈ ∆+ of height n and some d ∈ Z,
we have ℓ(α, d) = [i

(d1)
1 . . . i

(dn)
n ] with i

(dr+1)
r > i

(d1)
1 for some 1 < r ≤ n. Let us

consider the costandard factorization of ℓ(α, d):

ℓ(α, d) = ℓ(γ1, k1)ℓ(γ2, k2) ,

where α = γ1+γ2, d = k1+k2, ℓ(γ1, k1) < ℓ(γ2, k2), and roots γ1, γ2 have height< n.

By the induction hypothesis, i
(dr)
r /∈ ℓ(γ1, k1), so that i

(dr)
r ∈ ℓ(γ2, k2). Arguing as

above, we claim that ℓ(γ1, k1 − 1) > ℓ(γ2, k2 + 1), as otherwise according to (3.8)
we would get ℓ(α, d) = ℓ(γ1, k1)ℓ(γ2, k2) < ℓ(γ1, k1−1)ℓ(γ2, k2+1), a contradiction
with (3.6). The inequality ℓ(γ1, k1 − 1) > ℓ(γ2, k2 + 1) implies

ℓ(α, d) ≥ ℓ(γ2, k2 + 1)ℓ(γ1, k1 − 1) ,(3.11)

due to (3.6). Since ht(γ2) < n, both words ℓ(γ2, k2) and ℓ(γ2, k2 +1) are exponent-
tight by the induction hypothesis. Therefore, the first letter of ℓ(γ2, k2 + 1) is

i
(dt+1)
t = maxht(γ1)<a≤n{i

(da+1)
a }, due to Proposition 3.8. Note that i

(dt+1)
t ≤ i

(d1)
1 ,

according to (3.11). Therefore, we get i
(dr+1)
r ≤ i

(dt+1)
t ≤ i

(d1)
1 , a contradiction. □

Remark 3.10. Let us emphasize that applying directly the argument from the proof
of [16, Proposition 2.26], one rather gets a weaker statement:

(3.12) ℓ(α, d) =
[
i
(k1)
1 . . . i(kn)

n

]
with

⌊
d

f(α)

⌋
≤ ki

ci
≤

⌈
d

f(α)

⌉
∀ 1 ≤ i ≤ n

with f(α) defined in (3.2). In particular, if ci = N > 1 for all i ∈ I (thus the order
on I is the same as for ci = 1 and so ℓ(α, d) are the same as in [16]), then (3.12) only
implies |ki − kj | ≤ N , while Theorem 3.6 implies a much finer bound |ki − kj | ≤ 1.

The following is a simple corollary of Theorem 3.6:

Corollary 3.11. (a) For α ∈ ∆+, d > 0, the first letter of ℓ(α, d) has exponent > 0.

(b) For α ∈ ∆+, d ≤ 0, the first letter of ℓ(α, d) has exponent ≤ 0.

Proof. Let ℓ(α, d) = [i
(k1)
1 . . . i

(kn)
n ]. Then i

(k1)
1 ≤ i

(kr)
r and so k1

c1
≥ kr

cr
for any r.

Thus if k1 ≤ 0, then kr ≤ 0 for any r, and so d =
∑n

r=1 kr ≤ 0, implying part (a).

To prove (b), we note that i
(k1)
1 ≥ i

(kr+1)
r for any r by Theorem 3.6, hence k1

c1
≤

kr+1
cr

. If k1 > 0, then kr ≥ 0 for all r, and so d =
∑n

r=1 kr > 0, a contradiction. □

3.12. Stabilization.
As an important consequence of Theorem 3.6, we obtain:

Proposition 3.13. Any loop word w with relative exponents in [−s, s] is standard
(Lyndon) with respect to L(s)n+ iff it is standard (Lyndon) with respect to L(s+1)n+.
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Proof. While the proof of [16, Proposition 2.28] can be directly generalized with
the help of Theorem 3.6, let us present a shorter argument. Consider loop words

ℓ = ℓ(α, d) of (3.5) with respect to L(s)n+ ,

ℓ′ = ℓ(α, d) of (3.5) with respect to L(s+1)n+ .

Combining (3.12) with Theorem 3.6 and Proposition 3.8, we see that both words
ℓ and ℓ′ contain the same multisets of letters (all thus being elements of I(s)).

Additionally, their standard bracketings eℓ, eℓ′ are both nonzero multiples of e
(d)
α .

By the very definition of standard Lyndon loop words, this implies that ℓ = ℓ′. □

The above result implies that the notion of a “standard Lyndon loop word”
does not depend on the particular L(s)n+ with respect to which it is defined. We
conclude that there exists a bijection:

(3.13) ℓ : ∆+ × Z ∼−→
{
standard Lyndon loop words

}
satisfying property (3.6) with s = ∞ as well as Theorem 3.6 and Proposition 3.8.

3.14. Periodicity.
While ℓ of (3.13) is a bijection between infinite sets, it is actually determined by

the values of ℓ only on a finite “block” of ∆+ × Z:

(3.14) L =
{
(α, d)

∣∣∣α ∈ ∆+, 0 ≤ d < f(α)
}
,

cf. notation (3.2). More precisely, we have the following periodicity property:

Proposition 3.15. For any (α, d) ∈ ∆+ × Z, the standard Lyndon loop word
ℓ(α, d+ f(α)) is obtained from the standard Lyndon loop word ℓ(α, d) by increasing
all exponents of its letters i(•) by ci (that is, increasing all relative exponents by 1).

Proof. Let Υ denote the aforementioned bijective map on the set of loop words:

(3.15) Υ:
[
i
(d1)
1 . . . i

(dk)
k

]
7→

[
i
(d1+ci1 )
1 . . . i

(dk+cik )

k

]
.

Note that u < v iff Υ(u) < Υ(v) in accordance with (1.10). Thus, (3.15) preserves
the property of a loop word being Lyndon. Likewise, if ℓ = ℓ1ℓ2 is the costandard
factorization of ℓ, then Υ(ℓ) = Υ(ℓ1)Υ(ℓ2) is the costandard factorization of Υ(ℓ).

This also implies that eΥ(ℓ) = Υ̃(eℓ), where Υ̃ is the Lie algebra isomorphism:

Υ̃ : Ln+ ∼−→ Ln+ given by e(d)α 7→ e(d+f(α))
α .

Hence, (3.15) also preserves the property of a Lyndon loop word being standard. □

Similarly to [16, Proposition 2.31], we also note the following simple property:

Proposition 3.16. The restriction of (3.13) to ∆+ × {0} matches (1.9).

Proof. This is simply the s = 0 case of Proposition 3.13. □

Since U(Ln+) is the direct limit as s → ∞ of the U(L(s)n+), then (3.7) implies:

(3.16) U(Ln+) =

k∈N⊕
ℓ1≥···≥ℓk standard Lyndon loop words

Q · eℓ1 . . . eℓk =

⊕
w–standard loop words

Q · ew =
⊕

w–standard loop words

Q · we .
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3.17. Convexity and minimality.
We conclude this Section with a few fundamental properties of the total order on

∆+ × Z induced by transporting the lexicographic order on loop words via the bi-
jection (3.13). A straightforward generalization of [16, Proposition 2.34] establishes
that this order is convex, a notion that is a direct generalization of Definition 2.17:

Proposition 3.18. For all (α, d), (β, e), (α+ β, d+ e) ∈ ∆+ × Z, we have:

(3.17) ℓ(α, d) < ℓ(α+ β, d+ e) < ℓ(β, e)

if ℓ(α, d) < ℓ(β, e).

This result admits the following natural generalization:

Corollary 3.19. Consider any k, k′ ≥ 1 and any

(γ1, d1), . . . , (γk, dk), (γ
′
1, d

′
1), . . . , (γ

′
k′ , d′k′) ∈ ∆+ × Z

such that (γ1, d1) + · · ·+ (γk, dk) = (γ′
1, d

′
1) + · · ·+ (γ′

k′ , d′k′). Then we have:

min
{
ℓ(γ1, d1), . . . , ℓ(γk, dk)

}
≤ max

{
ℓ(γ′

1, d
′
1), . . . , ℓ(γ

′
k′ , d′k′)

}
.

Proof. The proof is completely analogous to that of [16, Corollary 2.37]. □

An important consequence of this Corollary is the following result, which will
play a crucial role in our proof of Theorem 5.8 below:

Proposition 3.20. If ℓ1 < ℓ2 are standard Lyndon loop words such that ℓ1ℓ2 is
also a standard Lyndon loop word, then we cannot have:

ℓ1 < ℓ′1 < ℓ′2 < ℓ2

for standard Lyndon loop words ℓ′1, ℓ
′
2 such that deg ℓ1 + deg ℓ2 = deg ℓ′1 + deg ℓ′2.

Proof. The proof is completely analogous to that of [16, Proposition 2.38]. □

4. Lyndon words and Weyl groups

In this Section, we show that the lexicographic order (1.13) on ∆+×Z induced by
(3.13) is related to the construction of [19, 20] applied to a reduced decomposition
of a translation element in the extended affine Weyl group encoding the weights ci.

4.1. Affine Lie algebras.
In this Section, we recall the next simplest class of Kac-Moody Lie algebras after

the simple ones, the affine Lie algebras. Let g be a simple finite-dimensional Lie
algebra, {αi}i∈I be the simple roots, and θ ∈ ∆+ be the highest root. The labels
of the Dynkin diagram of g are the positive integers {θi}i∈I such that

(4.1) θ =
∑
i∈I

θiαi .

We define Î = I⊔{0}. Consider the affine root lattice Q̂ with the generators {αi}i∈Î
which admits a natural identification

(4.2) Q̂ ∼−→ Q× Z with αi 7→ (αi, 0) ∀ i ∈ I, α0 7→ (−θ, 1) .

We endow Q̂ with the symmetric pairing defined by:(
(α, n), (β,m)

)
= (α, β) ∀ α, β ∈ Q , n,m ∈ Z.
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As opposed from the non-degenerate pairing on g itself, the pairing on affine type
root systems has a one-dimensional kernel, which is spanned by the minimal imag-
inary root δ = α0 + θ = (0, 1) ∈ Q× Z. This implies the fact that:

(4.3) (α0 + θ,−) = 0 ⇐⇒ d0j +
∑
i∈I

θidij = 0 ∀ j ∈ I ,

where {dij}i,j∈Î is the symmetrized affine Cartan matrix. Let (aij)i,j∈Î be the affine

Cartan matrix, giving rise to the affine Lie algebra ĝ generated by {ei, fi, hi}i∈Î

with the defining relations (2.7)–(2.9). We note that (4.3) implies that

(4.4) c = h0 +
∑
i∈I

θihi is a central element of ĝ .

The associated affine root system ∆̂ = ∆̂+ ⊔ ∆̂− has the following description:

∆̂+ =
{
∆+ × Z≥0

}
⊔
{
0× Z>0

}
⊔
{
∆− × Z>0

}
,(4.5)

∆̂− =
{
∆− × Z≤0

}
⊔
{
0× Z<0

}
⊔
{
∆+ × Z<0

}
.(4.6)

With this notation, we have the following root space decomposition, cf. (2.10):

(4.7) ĝ = ĥ⊕
⊕
α∈∆̂

ĝα where ĥ ⊂ ĝ− Cartan subalgebra .

The rich theory of affine Lie algebras is mainly based on the following key result:

Claim 4.2. There exists a Lie algebra isomorphism:

(4.8) ĝ ∼−→ Lg

determined on the generators by the following formulas:

ei 7→ ei ⊗ t0 fi 7→ fi ⊗ t0 hi 7→ hi ⊗ t0 ∀ i ∈ I ,

e0 7→ fθ ⊗ t1 f0 7→ eθ ⊗ t−1 h0 7→ −[eθ, fθ]⊗ t0 ,

where eθ and fθ are root vectors of degrees θ and −θ, respectively.

4.3. Affine Weyl groups.
We have already mentioned in Remark 2.18 that convex orders of ∆+ are in 1-to-

1 correspondence with reduced decompositions of the longest element of the finite
Weyl group W associated to g. To define the latter, consider the coroot lattice:

Q∨ =
⊕
i∈I

Z · α∨
i

where for any α ∈ ∆+ the corresponding coroot α∨ is defined via α∨ = 2α
(α,α) .

The finite Weyl group W , i.e. the abstract Coxeter group associated to the Cartan
matrix (aij)i,j∈I , acts faithfully on the coroot lattice Q∨ and the root lattice Q:

(4.9) W ↷ Q∨ and W ↷ Q

via the following assignments (∀ i ∈ I, µ ∈ Q∨, λ ∈ Q):

(4.10) si(µ) = µ− (αi, µ)α
∨
i and si(λ) = λ− (λ, α∨

i )αi .

In the present setup, we need the affine Weyl group, defined as the semidirect

product Ŵ = W ⋉Q∨ with respect to the action (4.9). It is well-known that Ŵ is



STANDARD LYNDON LOOP WORDS 15

also the Coxeter group associated to the Cartan matrix (aij)i,j∈Î . In other words,

the affine Weyl group is generated by the symbols {si}i∈Î defined by:

s0 = (sθ,−θ∨) and si = (si, 0) ∀ i ∈ I .

The affine analogue of the action W ↷ Q from (4.9) is

(4.11) Ŵ ↷ Q̂ ,

where the generators of the affine Weyl group act by the following formulas:

si(λ, d) = (λ− (λ, α∨
i )αi, d) ∀ i ∈ I ,(4.12)

s0(λ, d) = (λ− (λ, θ∨)θ, d+ (λ, θ∨))(4.13)

for all (λ, d) ∈ Q×Z ≃ Q̂, see (4.2). An important feature of the affine Weyl group

is that it contains a large commutative subalgebra 1⋉Q∨ ⊂ Ŵ which acts on the

affine root lattice Q̂ ≃ Q× Z by translations:

(4.14) µ̂(λ, d) = (λ, d− (λ, µ)) ∀µ ∈ Q∨, λ ∈ Q, d ∈ Z .

Henceforth, we write µ̂ for the element 1⋉µ ∈ Ŵ and call it a translation element.
Finally, we also need to consider the extended affine Weyl group, defined as

the semidirect product Ŵ ext = W ⋉ P∨, where P∨ is the coweight lattice. Thus
P∨ =

⊕
i∈I Z · ω∨

i with the fundamental coweights ω∨
i dual to the simple roots:

(4.15) (αj , ω
∨
i ) = δij .

In particular, Q∨ is a finite index subgroup of P∨. It is well-known that:

(4.16) Ŵ ext ≃ T ⋉ Ŵ

where the finite subgroup T of Ŵ ext is naturally identified with a subgroup of
automorphisms of the Dynkin diagram of ĝ. The semi-direct product (4.16) is such

that τsi = sτ(i)τ for any τ ∈ T and i ∈ Î. Finally, the action (4.11) extends to:

Ŵ ext ↷ Q̂

via τ(αi) = ατ(i) for τ ∈ T , i ∈ Î. We still have the following formula, akin to (4.14):

(4.17) µ̂(λ, d) = (λ, d− (λ, µ)) ∀µ ∈ P∨, λ ∈ Q, d ∈ Z .

4.4. Reduced decompositions.

Let N = Z≥0. Recall that the length of an element x ∈ Ŵ , denoted by l(x) ∈ N,
is the smallest number l ∈ N such that we can write x = si1−l

. . . si0 for various

i1−l, . . . , i0 ∈ Î. Every such factorization is called a reduced decomposition of x.
Given such a reduced decomposition, the terminal subset of the affine root system is:

(4.18) Ex =
{
si0si−1

. . . sik+1
(αik)

∣∣∣ 0 ≥ k > −l
}
⊂ ∆̂ .

It is well-known that Ex is independent of the reduced decomposition of x, and
consists of the positive affine roots (all with multiplicity one) that are mapped to
negative ones under the action of x:

(4.19) Ex =
{
λ̃ ∈ ∆̂+

∣∣∣x(λ̃) ∈ ∆̂−
}
.

In particular, we get the following description of the length of x:

l(x) = #
{
λ̃ ∈ ∆̂+

∣∣∣x(λ̃) ∈ ∆̂−
}
.
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The aforementioned length function l : Ŵ → N naturally extends to Ŵ ext via

l(τw) = l(w) for any τ ∈ T , w ∈ Ŵ .

Thus, the length l(x) of x ∈ Ŵ ext is the smallest number l such that we can write:

(4.20) x = τsi1−l
. . . si0

for various i1−l, . . . , i0 ∈ Î and (a uniquely determined) τ ∈ T . Given a reduced

decomposition of x ∈ Ŵ ext as in (4.20) with l = l(x), define Ex via (4.18). We note
that Ex is still described via (4.19) since τ acts by permuting negative affine roots.
Therefore, Ex is independent of the reduced decomposition of x and we still have:

l(x) = #
{
λ̃ ∈ ∆̂+

∣∣∣x(λ̃) ∈ ∆̂−
}
.

The following result is well-known (cf. [16, Proposition 3.9]):

Proposition 4.5. For any µ ∈ P∨ such that (αi, µ) ∈ Z>0 for all i ∈ I, we have

(4.21) Eµ̂ =
{
(α, d)

∣∣∣α ∈ ∆+, 0 ≤ d < (α, µ)
}
,

and consequently

l(µ̂) =
∑

α∈∆+

(α, µ) .

4.6. Identification of two orders.
We start by recalling the classical construction of [3]. Pick any µ ∈ P∨ such that

(αi, µ) ∈ Z>0 for all i ∈ I. Let l = l(µ̂) and consider any reduced decomposition:

(4.22) µ̂ = τsi1−l
si2−l

. . . si0 .

Extend i1−l, . . . , i0 to a τ -quasiperiodic bi-infinite sequence {ik}k∈Z via:

(4.23) ik+l = τ(ik) ∀ k ∈ Z .

To such a bi-infinite sequence (4.23), one assigns the following bi-infinite sequence
of affine roots:

(4.24) βk =

{
si1si2 . . . sik−1

(−αik) if k > 0

si0si−1 . . . sik+1
(αik) if k ≤ 0

.

According to [19, 20], the sequences:

β1 > β2 > β3 > · · ·(4.25)

β0 < β−1 < β−2 < · · ·(4.26)

give convex orders of the sets ∆+ ×Z<0 and ∆+ ×Z≥0, respectively. We note that
if βk = (α, d) and βk+l = (α′, d′), then

(4.27) βk+l = µ̂(βk) =⇒ α = α′ and d = d′ + (α, µ) ,

due to (4.17). This reveals a periodicity of the entire set ∆+ × Z.
Evoking the setup of Section 3, let us consider

(4.28) µ =
∑
i∈I

ciω
∨
i

so that f(α) = (α, µ) for any α ∈ ∆+, cf. (3.2) and (4.15). The following is the
first main result of this Section, which naturally generalizes [16, Theorem 3.14]:
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Theorem 4.7. There exists a reduced decomposition of µ̂ ∈ Ŵ ext such that:

• the order (4.25) of the roots {(α, d) |α ∈ ∆+, d < 0} matches the lexicographic
order of the standard Lyndon loop words ℓ(α,−d) via (1.13),

• the order (4.26) of the roots {(α, d) |α ∈ ∆+, d ≥ 0} matches the lexicographic
order of the standard Lyndon loop words ℓ(α,−d) via (1.13).

Proof. Recall the finite subset L = {(α, d) |α ∈ ∆+, 0 ≤ d < f(α)} ⊂ ∆̂+ from
(3.14), ordered via:

(4.29) (α, d) < (β, e) ⇐⇒ ℓ(α,−d) < ℓ(β,−e) .

If (α, d), (β, e) ∈ L with (α, d) < (β, e) and (α + β, d + e) ∈ ∆̂, then clearly
(α+β, d+e) ∈ L, as well as (α, d) < (α+β, d+e) < (β, e), due to Proposition 3.18.

Furthermore, we claim that if λ̃, µ̃ ∈ ∆̂+ with λ̃+ µ̃ ∈ L, then at least one of λ̃

or µ̃ belongs to L and is < λ̃+ µ̃. There are two cases to consider:

(1) If λ̃ = (α, d), µ̃ = (β, e) with α, β ∈ ∆+ and d, e ≥ 0, we can assume
without loss of generality that ℓ(α,−d) < ℓ(β,−e). By Proposition 3.18,
we have ℓ(α,−d) < ℓ(α + β,−d − e) < ℓ(β,−e). It remains to prove
d < f(α). If not, then e < f(β) as d+ e < f(α+ β). Hence, the first letter
of ℓ(α,−d) has a relative exponent ≤ −1 and the first letter of ℓ(β,−e)
has a relative exponent > −1, due to Corollary 3.11 and Proposition 3.15,
which contradicts ℓ(α,−d) < ℓ(β,−e).

(2) In the remaining case, we may assume λ̃ = (α+ β, d), µ̃ = (−β, e), so that
α, β, α + β ∈ ∆+ and d ≥ 0, e > 0. Then d < d + e < f(α) < f(α + β),

so that λ̃ ∈ L. It remains to verify ℓ(α + β,−d) < ℓ(α,−d − e). Since
(α+β,−d) = (β, e)+ (α,−d− e), it suffices to prove ℓ(β, e) < ℓ(α,−d− e),
due to Proposition 3.18. But applying Corollary 3.11 once again, we see
that the exponent of the first letter in ℓ(β, e) is > 0, while the exponent of
the first letter in ℓ(α,−d− e) is ≤ 0, hence, indeed ℓ(β, e) < ℓ(α,−d− e).

Invoking [18] (which also applies to finite subsets in affine root systems), we get:

(I) there is a unique element x ∈ Ŵ such that L = Ex,
(II) the order of L arises via a unique reduced decomposition of x, where the set

Ex of (4.18) is ordered via αi0 < si0(αi−1
) < · · · < si0si−1

. . . si2−l
(αi1−l

).

However, as follows from (4.21), we have

(4.30) L = Eµ̂ =
{
β0, β−1, . . . , β1−l

}
.

There is a unique τ ∈ T such that τ−1µ̂ ∈ Ŵ . Thus, we obtain L = Eµ̂ = Eτ−1µ̂.
Therefore, in view of the uniqueness statement of (I), the result of (II) implies
that there exists a reduced decomposition (4.22) of µ̂ such that the ordered finite
sequence β0 < β−1 < · · · < β1−l exactly coincides with L ordered via (4.29).

The proof of Theorem 4.7 now follows by combining (4.27), Proposition 3.15,
and Theorem 3.6, precisely as in [16]. Indeed, let us split ∆+ × Z into the blocks:

LN =
{
(α, d)

∣∣∣α ∈ ∆+, N · f(α) ≤ d < (N + 1)f(α)
}

so that⊔
N≥0

LN = ∆+ × Z≥0 = {βk}k≤0 ,
⊔
N<0

LN = ∆+ × Z<0 = {βk}k>0 .
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According to (4.27) and L0 = L = {β0, . . . , β1−l}, we have:

LN =
{
β−Nl, β−Nl−1, . . . , β1−(N+1)l

}
∀N ∈ Z .

For any (α, d) ∈ LN , the relative exponent of the first letter in ℓ(α,−d) lies in
(−N−1;N ], due to Corollary 3.11 and Proposition 3.15. Thus, for any (α, d) ∈ LM ,
(β, e) ∈ LN with M > N , we have ℓ(α,−d) > ℓ(β,−e). As for the affine roots from
the same block, consider βr−Nl, βs−Nl ∈ LN with 1− l ≤ s < r ≤ 0. If βr = (α, d)
and βs = (β, e), then βr−Nl = (α, d+N · f(α)) and βs−Nl = (β, e+N · f(β)), due
to (4.27). On the other hand, the words ℓ(α,−d−N ·f(α)) and ℓ(β,−e−N ·f(β))
are obtained from ℓ(α,−d) and ℓ(β,−e), respectively, by decreasing each relative
exponent by N , due to Proposition 3.15. Since the latter operation obviously
preserves the lexicographic order, and ℓ(α,−d) < ℓ(β,−e) as a consequence of r > s,
we obtain the required inequality ℓ(α,−d−N · f(α)) < ℓ(β,−e−N · f(β)). □

Remark 4.8. Since ℓ(α,−d) < ℓ(β,−e) if d < 0 ≤ e, a consequence of Corollary 3.11,
we actually have the stronger result that the order of ∆+ × Z given by:

(4.31) · · · < β3 < β2 < β1 < β0 < β−1 < β−2 < · · ·

matches the lexicographic order of the standard Lyndon loop words ℓ(α,−d).

In the next Section, we shall need a certain generalization of (4.30). To this end,
for any i ∈ I and d ≥ 0, we define the subset L<(i,d) of ∆

+ × Z via

(4.32) L<(i,d) =
{
(α, p)

∣∣∣α ∈ ∆+, p ∈ Z≥0, ℓ(α,−p) < ℓ(αi,−d)
}
.

We also define a collection of nonnegative integers {pj}j∈I via:

(4.33) pj =


d if j = i⌈
d·cj
ci

⌉
if

d·cj
ci

/∈ Z
d·cj
ci

if
d·cj
ci

∈ Z and j > i
d·cj
ci

+ 1 if
d·cj
ci

∈ Z and j < i

.

Finally, for any positive root α =
∑

i∈I kiαi ∈ ∆+, we define p(α) ∈ N via

p(α) =
∑
i∈I

kipi .

Proposition 4.9. For any i ∈ I and d ≥ 0, we have

L<(i,d) =
{
(α, p)

∣∣∣α ∈ ∆+, 0 ≤ p < p(α)
}
.

Proof. First, let us prove that ℓ(α,−p) < ℓ(αi,−d) = i(−d) implies p < p(α). Let
j(−e) be the first letter of ℓ(α,−p), so that j(−e) < i(−d). Hence, e/cj ≤ d/ci and the
inequality is strict if j ≥ i. This is equivalent to e < pj , due to the definition (4.33).

Then for any letter ı(−s) ∈ ℓ(α,−p), we have ı(−s+1) ≤ j(−e) ≤ i(−d) with the first
inequality due to Theorem 3.6. As above, this implies s − 1 < pı, so that s ≤ pı.
Summing all these inequalities, we obtain the desired inequality p < p(α).

Let us prove the opposite implication by contradiction: assume that ℓ(α,−p) >
ℓ(αi,−d) for some α ∈ ∆+ and p < p(α). Let j(−e) be the first letter of ℓ(α,−p),
so that j(−e) ≥ i(−d). We consider two cases:
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• Case 1 : j(−e) = i(−d).
As ℓ(α,−p) is Lyndon, any letter ı(−s) ∈ ℓ(α,−p) satisfies j(−e) ≤ ı(−s).

Therefore, s/cı ≥ e/cj = d/ci and the inequality is strict for ı < i. Thus,
s ≥ pı. Summing all these inequalities, we obtain p ≥ p(α), a contradiction.

• Case 2 : j(−e) > i(−d).
As in Case 1, any letter ı(−s) ∈ ℓ(α,−p) satisfies ı(−s) ≥ j(−e) > i(−d).

Hence, s/cı ≥ d/ci and the inequality is strict for ı < i. Thus, s ≥ pı.
Summing all these inequalities, we again obtain p ≥ p(α), a contradiction.

This completes our proof of ℓ(α,−p) < ℓ(αi,−d) for any 0 ≤ p < p(α). □

In view of Proposition 4.5, the above result can be recast as follows:

Proposition 4.10. For any i ∈ I and d ≥ 0, we have L<(i,d) = Eω̂i,d
, where

(4.34) ωi,d =
∑
j∈I

pjω
∨
j ∈ P∨

with pj’s defined in (4.33).

5. Quantum groups and PBW bases

In this Section, we combine the results of Subsection 4.6 with the PBW-type
bases [2, 3] of quantum affine algebras (in the Drinfeld-Jimbo realization) to produce
a family of PBW-type combinatorial bases of quantum loop algebras (in the new
Drinfeld realization), thus generalizing the construction of [12] for the finite type.

5.1. Quantum groups.
We shall follow the notation of Subsection 2.14, corresponding to a simple finite-

dimensional g. Consider the q-numbers, q-factorials, and q-binomial coefficients:

[k]i =
qki − q−k

i

qi − q−1
i

, [k]!i = [1]i . . . [k]i ,

(
n

k

)
i

=
[n]!i

[k]!i[n− k]!i

for any i ∈ I, where qi = q
dii
2 .

Definition 5.2. The Drinfeld-Jimbo quantum group of g, denoted by Uq(g), is

an associative Q(q)-algebra generated by {ei, fi, φ±1
i }i∈I subject to the following

defining relations (for all i, j ∈ I):

(5.1)

1−aij∑
k=0

(−1)k
(
1− aij

k

)
i

eki eje
1−aij−k
i = 0 if i ̸= j ,

(5.2) φiej = qdijejφi , φiφj = φjφi ,

as well as the opposite relations with e’s replaced by f ’s, and finally the relation:

(5.3) [ei, fj ] = δij ·
φi − φ−1

i

qi − q−1
i

.

The algebra Uq(g) is naturally Q-graded via

deg ei = αi , degφi = 0 , deg fi = −αi .

Furthermore, it admits the triangular decomposition (1.6):

Uq(g) = Uq(n
+)⊗ Uq(h)⊗ Uq(n

−) ,
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where Uq(n
+), Uq(h), and Uq(n

−) are the subalgebras of Uq(g) generated by the ei’s,

φ±1
i ’s, and fi’s, respectively. In fact, the associative algebra Uq(n

+) is generated
by ei’s with the defining relations (5.1), cf. e.g. [9, §4.21].

If we write φi = qhi
i and take the limit q → 1, then Uq(g) degenerates to U(g). It

is thus natural that many features of the latter also admit q-deformations. For ex-
ample, let us recall the notion of standard Lyndon words from Subsections 2.1–2.7,
and consider the following q-version of the construction of (2.4) and Definition 2.8.

Definition 5.3. ([12]) For any word w, define ew ∈ Uq(n
+) by:

e[i] = ei

for all i ∈ I, and then recursively by:

(5.4) eℓ = [eℓ1 , eℓ2 ]q = eℓ1eℓ2 − q(deg ℓ1,deg ℓ2)eℓ2eℓ1

if ℓ is a Lyndon word with the costandard factorization (2.1), and:

(5.5) ew = eℓ1 . . . eℓk

if w is an arbitrary word with the canonical factorization ℓ1 . . . ℓk, as in (2.2).

We also define fw ∈ Uq(n
−) by replacing e’s by f ’s in the above Definition. Then

we have the following natural q-deformation of the PBW theorem (2.6):

Theorem 5.4. We have:

(5.6) Uq(n
+) =

k∈N⊕
ℓ1≥···≥ℓk standard Lyndon words

Q(q) · eℓ1 . . . eℓk =

⊕
w–standard words

Q(q) · ew .

The analogous result also holds with n+ ↔ n− and e ↔ f .

This result is a consequence of the usual PBW theorem for Uq(n
±), since eℓ’s

are simply renormalizations of the standard root vectors constructed in [15] using
the braid group action, according to [12, Theorem 28] (cf. also [16, Section 6.5]).

5.5. Quantum loop algebras.
To introduce a loop version of the above algebras, consider the generating series

ei(z) =
∑
k∈Z

ei,k
zk

, fi(z) =
∑
k∈Z

fi,k
zk

, φ±
i (z) =

∞∑
l=0

φ±
i,l

z±l

as well as the formal delta function δ(z) =
∑

k∈Z z
k. For any i, j ∈ I, we set:

ζij

( z

w

)
=

z − wq−dij

z − w
.

Definition 5.6. The quantum loop group (in the new Drinfeld realization) of g, de-

noted by Uq(Lg), is an associative Q(q)-algebra generated by {ei,k, fi,k, φ±
i,l}

k∈Z,l∈N
i∈I

subject to the following defining relations (for all i, j ∈ I):

(5.7) ei(z)ej(w)ζji

(w
z

)
= ej(w)ei(z)ζij

( z

w

)
,
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(5.8)
∑

σ∈S(1−aij)

1−aij∑
k=0

(−1)k
(
1− aij

k

)
i

·

ei(zσ(1)) . . . ei(zσ(k))ej(w)ei(zσ(k+1)) . . . ei(zσ(1−aij)) = 0 if i ̸= j ,

(5.9) φ±
i (z)ej(w)ζji

(w
z

)
= ej(w)φ

±
i (z)ζij

( z

w

)
,

(5.10) φ±
i (z)φ

±′

j (w) = φ±′

j (w)φ±
i (z) , φ+

i,0φ
−
i,0 = 1 ,

as well as the opposite relations with e’s replaced by f ’s, and finally the relation:

(5.11) [ei(z), fj(w)] =
δij

qi − q−1
i

δ
( z

w

)
·
(
φ+
i (z)− φ−

i (w)
)
.

The algebra Uq(Lg) is naturally Q× Z-graded via

deg ei,k = (αi, k) , degφ±
i,l = (0,±l) , deg fi,k = (−αi, k)

for i ∈ I, k ∈ Z, l ∈ N. If x ∈ Uq(Lg) has a Q×Z-degree deg x = (α, d), then we set

(5.12) hdeg x = α and vdeg x = d ,

and call these the horizontal and the vertical degrees of x, respectively, cf. (3.10).
Finally, the algebra Uq(Lg) also admits the triangular decomposition (cf. [8, §3.3]):

(5.13) Uq(Lg) = Uq(Ln
+)⊗ Uq(Lh)⊗ Uq(Ln

−) ,

where Uq(Ln
+), Uq(Lh), and Uq(Ln

−) are the subalgebras of Uq(Lg) generated by
the ei,k’s, φ

±
i,l’s, and fi,k’s, respectively. In fact, the associative algebra Uq(Ln

+) is

generated by ei,k’s with the defining relations (5.7, 5.8).
Let us now present a loop version of Definition 5.3:

Definition 5.7. For any loop word w, define ew ∈ Uq(Ln
+) and fw ∈ Uq(Ln

−) by:

e[i(d)] = ei,d and f[i(d)] = fi,−d

for all i ∈ I, d ∈ Z, and then recursively by:

eℓ = [eℓ1 , eℓ2 ]q = eℓ1eℓ2 − q(hdeg ℓ1,hdeg ℓ2)eℓ2eℓ1 ,(5.14)

fℓ = [fℓ1 , fℓ2 ]q = fℓ1fℓ2 − q(hdeg ℓ1,hdeg ℓ2)fℓ2fℓ1(5.15)

if ℓ is a Lyndon loop word with the costandard factorization (2.1), and:

(5.16) ew = eℓ1 . . . eℓk and fw = fℓ1 . . . fℓk

if w is an arbitrary loop word with the canonical factorization ℓ1 . . . ℓk, as in (2.2).

Note that deg ew = −deg fw = degw for all loop words w. The following is the
main result of this Section, which generalizes (3.16) as well as Theorem 5.4:

Theorem 5.8. We have:

Uq(Ln
+) =

k∈N⊕
ℓ1≥···≥ℓk standard Lyndon loop words

Q(q) · eℓ1 . . . eℓk =

⊕
w–standard loop words

Q(q) · ew .

The analogous result also holds with Ln+ ↔ Ln− and e ↔ f .
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The proof of this result occupies the rest of this Section. While it looks similar
to the proof of [16, Theorem 4.24], we shall crucially utilize Proposition 4.10.

5.9. Quantum affine algebras.
Let us recall the notion of Drinfeld-Jimbo quantum affine algebras and their

relation to quantum loop algebras Uq(Lg). We use the notations of Subsection 4.1.

Definition 5.10. The Drinfeld-Jimbo quantum affine algebra of ĝ, denoted by

Uq(ĝ), is defined exactly as Uq(g) in Definition 5.2, but using Î instead of I.

Let Uq(n̂
+), Uq(ĥ), Uq(n̂

−) be the subalgebras generated by the ei’s, φ
±1
i ’s, fi’s,

respectively (with i ∈ Î). We have a triangular decomposition analogous to (1.6):

(5.17) Uq(ĝ) = Uq(n̂
+)⊗ Uq(ĥ)⊗ Uq(n̂

−) .

The algebra Uq(ĝ) is naturally Q̂ ≃ Q× Z-graded via

deg e0 = α0 = (−θ, 1) , deg f0 = −α0 = (θ,−1) , degφ0 = 0 = (0, 0) ,

deg ei = αi = (αi, 0) , deg fi = −αi = (−αi, 0) , degφi = 0 = (0, 0)

for i ∈ I, where θ is the highest root of ∆+. Invoking the positive integers {θi}i∈I

introduced in (4.1), we note that the following element is central in Uq(ĝ):

(5.18) C = φ0

∏
i∈I

φθi
i .

Let us now recall the construction of the root vectors of Uq(ĝ), presented in [2, 15].
Following Subsection 4.6, pick the coweight µ =

∑
i∈I ciω

∨
i ∈ P∨ as in (4.28), and

set µ̂ = 1⋉ µ ∈ Ŵ ext. We consider the reduced decomposition:

µ̂ = τsi1−l
si2−l

. . . si0

from Theorem 4.7 with τ ∈ T . Following (4.23), let us extend {ik| − l < k ≤ 0} to
a τ -quasiperiodic bi-infinite sequence {ik}k∈Z via ik+l = τ(ik) for any k ∈ Z. We
construct the following set of positive affine roots:

(5.19) β̃k =

{
si1si2 . . . sik−1

(αik) if k > 0

si0si−1 . . . sik+1
(αik) if k ≤ 0

=

{
−βk if k > 0

βk if k ≤ 0
,

with βk defined in (4.24). Following [2], we shall order those roots as follows:

(5.20) β̃0 < β̃−1 < β̃−2 < β̃−3 < · · · < β̃4 < β̃3 < β̃2 < β̃1 .

Remark 5.11. Formula (5.19) provides all real positive roots of ∆̂+:

(5.21) ∆̂re,+ =
{
∆+ × Z≥0

}
⊔
{
∆− × Z>0

}
⊂ ∆̂+ .

Furthermore, (5.20) induces convex orders on the corresponding halves:

(5.22) ∆+×Z≥0 =
{
β̃0 < β̃−1 < β̃−2 < · · ·

}
,∆−×Z>0 =

{
· · · < β̃3 < β̃2 < β̃1

}
.

To have a complete theory, in particular for the PBW theorem of [2],one also needs
to deal with the imaginary roots, but they will not feature in the present paper.
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We may define the root vectors:

E±β̃ ∈ Uq(n̂
±)

for all β̃ ∈ ∆̂re,+ of (5.21) via

(5.23) Eβ̃k
=

{
Ti1 . . . Tik−1

(eik) if k > 0

T−1
i0

. . . T−1
ik+1

(eik) if k ≤ 0

and

(5.24) E−β̃k
=

{
Ti1 . . . Tik−1

(fik) if k > 0

T−1
i0

. . . T−1
ik+1

(fik) if k ≤ 0

where {Ti}i∈Î determine Lusztig’s affine braid group action [15] on Uq(ĝ).

Remark 5.12. We note that E−β̃ ∈ Uq(n̂
−) for β̃ ∈ ∆̂re,+ in [2] are defined via

(5.25) E−β̃ := Ω(Eβ̃) ,

where the Q-algebra anti-involution Ω of Uq(ĝ) is determined by:

(5.26) Ω: ei 7→ fi, fi 7→ ei, φ±1
i 7→ φ∓1

i , q 7→ q−1 ∀ i ∈ Î .

Formulas (5.24) and (5.25) agree, as Ω commutes with the affine braid group action:

(5.27) Ω ◦ Ti = Ti ◦ Ω ∀ i ∈ Î .

According to [16, (5.28)] (based on [2, Proposition 7]), we have

(5.28) [E±β̃ , E±α̃]q = E±β̃E±α̃ − q(α̃,β̃)E±α̃E±β̃ ∈ Q(q)∗ · E±(α̃+β̃)

for any real positive affine roots α̃ < β̃ which both belong to either ∆+ × Z≥0 or

∆−×Z>0 and which also have the additional property that α̃+ β̃ is a positive affine
root whose decomposition as the sum of α̃ and β̃ is minimal in the sense that:

(5.29) ̸ ∃ α̃′, β̃′ ∈ ∆̂re,+ s.t. α̃ < α̃′ < β̃′ < β̃ and α̃+ β̃ = α̃′ + β̃′ .

Let U±
q (+∞) and U±

q (−∞) denote the “quarter” subalgebras of Uq(ĝ) generated
by {E±β̃k

| k ≥ 1} and {E±β̃k
| k ≤ 0}, respectively. According to [16, (5.35, 5.36)]

(based on [2]), each of them admits a pair of opposite PBW decompositions:

U±
q (+∞) =⊕

n1,n2,···∈N
n1+n2+···<∞

Q(q) · En1

±β̃1
En2

±β̃2
. . . =

⊕
n1,n2,···∈N

n1+n2+···<∞

Q(q) · . . . En2

±β̃2
En1

±β̃1
,(5.30)

U±
q (−∞) =⊕
n0,n−1,···∈N

n0+n−1+···<∞

Q(q) · En0

±β̃0
E

n−1

±β̃−1
. . . =

⊕
n0,n−1,···∈N

n0+n−1+···<∞

Q(q) · . . . En−1

±β̃−1
En0

±β̃0
.(5.31)
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5.13. Interplay of two algebras.
The relation between Uq(Lg) of Definition 5.6 and Uq(ĝ) of Definition 5.10 goes

back to [2, 3, 5] and plays a crucial role in the theory of quantum affine algebras.
In the present setup, it amounts to the following result, cf. [16, Theorem 5.19]:

Theorem 5.14. There exists an algebra isomorphism:

(5.32) Uq(Lg)
∼−→ Uq(ĝ)/(C − 1)

with C of (5.18), determined by the following assignment for all i ∈ I and d ∈ Z:

ei,d 7→

{
o(i)dE(αi,d) if d ≥ 0

−o(i)dE(αi,d)φ
−1
i if d < 0

,

fi,d 7→

{
−o(i)dφiE(−αi,d) if d > 0

o(i)dE(−αi,d) if d ≤ 0
,

(5.33)

where o : I → {±1} is a map satisfying o(i)o(j) = −1 whenever aij < 0.

The proof of this result is similar to that of [16, Theorem 5.19], but it does
essentially utilize Proposition 4.10 as well as simplifies some arguments from [16].

Proof of Theorem 5.14. The isomorphism (5.32) was proved in [3, Theorem 4.7]
with respect to the following seemingly different formula:

(5.34) ei,d 7→ o(i)dT−d

ω̂∨
i

(ei) , fi,d 7→ o(i)dT d

ω̂∨
i

(fi) ∀ i ∈ I, d ∈ Z .

Here, the aforementioned action of the affine braid group on Uq(ĝ) has been ex-
tended to the extended affine braid group by adding automorphisms {Tτ}τ∈T :

Tτ : ei 7→ eτ(i), fi 7→ fτ(i), φ±1
i 7→ φ±1

τ(i) ∀ τ ∈ T , i ∈ Î ,

which satisfy the relations TτTi = Tτ(i)Tτ for any τ ∈ T and i ∈ Î.
Therefore, it remains for us to show that (5.33) is equivalent to (5.34) by proving:

(5.35) T−d

ω̂∨
i

(ei) =

{
E(αi,d) if d ≥ 0

−E(αi,d)φ
−1
i if d < 0

,

(5.36) T d

ω̂∨
i

(fi) =

{
−φiE(−αi,d) if d > 0

E(−αi,d) if d ≤ 0
.

It suffices to prove only (5.35) since (5.36) would then follow as Ω commutes with
the extended affine braid group action (due to (5.27) and Ω◦Tτ = Tτ ◦Ω for τ ∈ T ).

Fix i ∈ I, d ≥ 0. According to (5.22), there is a unique k ≤ 0 such that

(5.37) (αi, d) = β̃k = βk = si0si−1
. . . sik+1

(αik) .

Invoking (4.34), we claim that ω̂i,d ∈ Ŵ ext has a reduced decomposition of the form

(5.38) ω̂i,d = τsik+1
. . . si−1

si0 with τ ∈ T .

This follows from the equality of terminal sets Esik+1
...si−1

si0
= Eω̂i,d

(due to

Proposition 4.10 and Theorem 4.7) and the fact that Ex = Ey iff x−1y ∈ T (already
used in the proof of Theorem 4.7). Combining (5.37) and (5.38), we thus obtain

(αi, d) = s−1
i0

s−1
i−1

. . . s−1
ik+1

(αik) = ω̂i,d
−1

τ(αik) = ω̂i,d
−1

(ατ(ik)) .
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In view of (4.17), this implies τ(ik) = i. Hence, we get:

Eβ̃k
= T−1

i0
T−1
i−1

. . . T−1
ik+1

(eik) = T−1
ω̂i,d

τ(eik) = T−1
ω̂i,d

(ei) .

According to Proposition 4.5, we have l(ω̂i,d) =
∑

j∈I pj l(ω̂
∨
j ), cf. (4.33), so that

Tω̂i,d
= T pi

ω̂∨
i

·
∏
j ̸=i

T
pj

ω̂∨
j

= T d

ω̂∨
i

·
∏
j ̸=i

T
pj

ω̂∨
j

.

As T±1

ω̂∨
j

(ei) = ei for j ̸= i by [3, Corollary 3.2], we get the desired equality:

E(αi,d) = Eβ̃k
= T−1

ω̂i,d
(ei) = T−d

ω̂∨
i

(ei) .

For d < 0, the proof is similar and follows the same arguments as in [16]. □

5.15. PBW-type bases via quarter subalgebras.
The isomorphism (5.32) does not intertwine the triangular decompositions (5.13)

and (5.17). In fact, if we think of Uq(Lg) and Uq(ĝ)/(C − 1) as one and the same
algebra, then these two decompositions are “orthogonal” as explained in [16], cf. [6].
To this end, consider the following “quarter” subalgebras following [2, Lemmas 5–6]:

U+
q (Ln−) := Uq(Ln

−) ∩ Uq(b̂
+) =

{
subalgebra generated by eβ̃k

, k > 0
}
,(5.39)

U+
q (Ln+) := Uq(Ln

+) ∩ Uq(b̂
+) =

{
subalgebra generated by eβ̃k

, k ≤ 0
}
,(5.40)

where we define eβ̃k
in accordance with (5.33) via:

(5.41) eβ̃k
=

{
φ−hdeg (β̃k)

Eβ̃k
if k > 0

Eβ̃k
if k ≤ 0

.

Henceforth, given a homogeneous element z of degree
(∑

i∈I kiαi, d
)
∈ Q× Z, set

φ±hdeg (z) := φ±
∑

i∈I kiαi
=

∏
i∈I

φ±ki
i ∈ Uq(Lh) .

Formulas (5.28) still hold when the Eβ̃k
are replaced with the eβ̃k

, since commuting

φ’s simply produces powers of q. Likewise, the PBW decompositions (5.30, 5.31)
imply that the subalgebras above have the following PBW bases:

U+
q (Ln−) =

⊕
n1,n2,···∈N

n1+n2+···<∞

Q(q) · . . . en2

β̃2
en1

β̃1
,(5.42)

U+
q (Ln+) =

⊕
n0,n−1,···∈N

n0+n−1+···<∞

Q(q) · . . . en−1

β̃−1
en0

β̃0
.(5.43)

Likewise, we have PBW bases for analogous “quarter” subalgebras of Uq(b̂
−):

U−
q (Ln−) := Uq(Ln

−) ∩ Uq(b̂
−) =

⊕
n0,n−1,···∈N

n0+n−1+···<∞

Q(q) · en0

−β̃0
e
n−1

−β̃−1
. . . ,(5.44)

U−
q (Ln+) := Uq(Ln

+) ∩ Uq(b̂
−) =

⊕
n1,n2,···∈N

n1+n2+···<∞

Q(q) · en1

−β̃1
en2

−β̃2
. . . ,(5.45)
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where we define:

(5.46) e−β̃k
= Ω(eβ̃k

) =

{
E−β̃k

φhdeg (β̃k)
if k > 0

E−β̃k
if k ≤ 0

.

The following result allows to construct the PBW bases of Uq(Ln
±):

Proposition 5.16. [16, Proposition 5.23] The multiplication map induces a vector
space isomorphism:

(5.47) U+
q (Ln−)⊗ U−

q (Ln−) ∼−→ Uq(Ln
−) .

To make the presentation uniform, let us switch from β̃k of (5.19) to βk of (4.24),
so that U+

q (Ln−) and U−
q (Ln−) are generated by {e−βk

}k≥1 and {e−βk
}k≤0, re-

spectively (note {−βk}k∈Z = ∆−×Z). Combining Proposition 5.16 with the PBW
decompositions (5.42, 5.44), we obtain the PBW basis for Uq(Ln

−), cf. [16, (5.69)]:

Proposition 5.17. (a) The subalgebra Uq(Ln
−) admits the following PBW basis:

(5.48) Uq(Ln
−) =

⊕
··· ,n−1,n0,n1,n2,···∈N

···+n−1+n0+n1+n2+···<∞

Q(q) · . . . en2

−β2
en1

−β1
en0

−β0
e
n−1

−β−1
. . .

(b) For any s < r, the root vectors e−βs
and e−βr

satisfy

(5.49) e−βse−βr − q(βs,βr)e−βre−βs ∈
⊕

nr−1,...,ns+1∈N
Q(q) · enr−1

−βr−1
. . . e

ns+1

−βs+1

where the sum is finite as it is taken over all tuples nr−1, . . . , ns+1 ∈ Z≥0 such that:

nr−1βr−1 + · · ·+ ns+1βs+1 = βr + βs .

A similar result also holds for Uq(Ln
+) with e−βs

replaced by eβs
.

5.18. Proof of Theorem 5.8.
Similarly to [16, Subsection 5.28], we shall now see that Theorem 5.8 is equivalent

to the PBW decomposition (5.48). Recall the reduced decomposition of µ̂ produced
by Theorem 4.7, see Remark 4.8, so that the ordered set of roots

(5.50) · · · < β2 < β1 < β0 < β−1 < · · ·

coincides with ∆+ × Z ordered in accordance with the bijection (3.13) via:

· · · < ℓ(β2) < ℓ(β1) < ℓ(β0) < ℓ(β−1) < · · ·

where for any (α, d) ∈ ∆+ × Z we set (α, d) = (α,−d).
Let ϖ be the anti-involution of Uq(Lg) defined via

ϖ : ei,k 7→ fi,k , fi,k 7→ ei,k , φ±
i,l 7→ φ±

i,l

for any i ∈ I, k ∈ Z, l ∈ N. Applying ϖ to (5.48), we obtain:

(5.51) Uq(Ln
+) =

k∈N⊕
γ1≥···≥γk∈∆+×Z

Q(q) ·ϖ(e−γ1
) . . . ϖ(e−γk

)
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with the above order on ∆+ × Z being (5.50). On the other hand, due to (5.49),
we obtain:

[ϖ(e−β
′), ϖ(e−β)]q ∈

k∈N⊕
ℓ(β)>ℓ(γ1)≥···≥ℓ(γk)>ℓ(β′)

γ1+···+γk=β+β′

Q(q) ·ϖ(e−γ1
) . . . ϖ(e−γk

)

for any β, β′ ∈ ∆+×Z such that β
′
< β, or equivalently ℓ(β′) < ℓ(β). In particular,

if β + β′ ∈ ∆+ × Z and β, β′ are minimal in the sense:

(5.52) ̸ ∃ α, α′ ∈ ∆+ × Z s.t. β
′
< α′ < α < β and α+ α′ = β + β′

we have

(5.53) [ϖ(e−β
′), ϖ(e−β)]q ∈ Q(q)∗ ·ϖ(e−β−β

′) .

We claim that Theorem 5.8 follows from (5.51). To this end, it suffices to show:

(5.54) eℓ(β) ∈ Q(q)∗ ·ϖ(e−β)

for any β = (α, d) ∈ ∆+×Z. We prove (5.54) by induction on the height of α ∈ ∆+.
The base case α = αi (with i ∈ I) is immediate, due to (5.33, 5.41, 5.46):

e[i(d)] = ei,d = ϖ(fi,d) = ±ϖ(e(−αi,d)) .

For the induction step, consider the costandard factorization ℓ = ℓ1ℓ2 of ℓ = ℓ(α, d).
Since factors of standard loop words are standard, we have ℓ1 = ℓ(γ1, d1) and
ℓ2 = ℓ(γ2, d2) for some (γ1, d1), (γ2, d2) ∈ ∆+×Z such that α = γ1+γ2, d = d1+d2.
By the induction hypothesis, we have eℓk ∈ Q(q)∗ · ϖ(e(−γk,dk)) for k ∈ {1, 2}.
However, we note that (γ1, d1) < (α, d) < (γ2, d2) is a minimal decomposition in
the sense of (5.52), according to Proposition 3.20. Therefore, comparing (5.14)
with (5.53), we obtain:

eℓ = [eℓ1 , eℓ2 ]q ∈ Q(q)∗ ·ϖ([e(−γ2,d2), e(−γ1,d1)]q) = Q(q)∗ ·ϖ(e(−α,d))

as we needed to prove. This completes our proof of Theorem 5.8.

6. Generalization to other orders

In this Section, we generalize our main results to a larger family of orders on the
alphabet I = {i(d)}d∈Z

i∈I . Consider a collection of functions fi : Z → R such that

• fi(0) = 0
• all fi are strictly increasing unbounded functions
• there are infinitely many N (both in R>0 and R<0) such that there exist
{Ni}i∈I ⊂ ZI satisfying fi(Ni) = N for all i ∈ I.

We then define an order on I (hence a lexicographical order on the loop words) via:

(6.1) i(d) < j(e) ⇐⇒ fi(d) > fj(e) or fi(d) = fj(e) and i < j .

In the special case fi(d) =
d
ci

(with ci ∈ Z>0) this recovers (1.10) considered above.

• First, we need to update the filtration (3.4) of the loop algebra Ln+. To this end,
we fix an increasing sequence {N (+,s)}s∈N of non-negative numbers (respectively, a
decreasing sequence {N (−,s)}s∈N of non-positive numbers) such thatN (±,0) = 0 and
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there exist {N (±,s)
i }i∈I ⊂ (±N)I satisfying fi(N

(±,s)
i ) = N (±,s) for all i ∈ I. Then,

we define L(s)n+ as the finite-dimensional Lie subalgebra of Ln+ generated by{
e
(d)
i

∣∣∣ i ∈ I, N
(−,s)
i ≤ d ≤ N

(+,s)
i

}
.

We also amend our former definition of I(s) in (3.3) by rather redefining

I(s) =
{
i(d)

∣∣∣ i ∈ I, N
(−,s)
i ≤ d ≤ N

(+,s)
i

}
∀ s ∈ Z≥0 .

We may thus apply Definition 2.10 to yield a notion of standard (Lyndon) loop
words with respect to L(s)n+, with the words made up only of i(d) ∈ I(s).

• For N as above, so that there exist {Ni}i∈I satisfying N = fi(Ni) ∀ i, we define

fN : ∆+ → Z via fN (α) =
∑
i∈I

ki ·Ni for any α =
∑
i∈I

kiαi ∈ ∆+ .

With this definition at hand, the subalgebra L(s)n+ can be explicitly written as

L(s)n+ =
⊕

α∈∆+

f
N(+,s) (α)⊕

d=f
N(−,s) (α)

Q · e(d)α .

Then, the results of Proposition 3.2 and Proposition 3.3 still hold true with the
only change that −sf(α) ≤ d ≤ sf(α) is replaced with fN(−,s)(α) ≤ d ≤ fN(+,s)(α).

• As before, we call a loop word w =
[
i
(d1)
1 . . . i

(dn)
n

]
exponent-tight if (3.9) holds.

Then, the results of Theorem 3.6, Lemma 3.7, Proposition 3.8, and Proposition 3.13
still hold true (the proofs are the same). Therefore, we still have a bijection (3.13)

ℓ : ∆+ × Z ∼−→
{
standard Lyndon loop words

}
satisfying property (3.6) with s = ∞ as well as Theorem 3.6 and Proposition 3.8.

• On the other hand, the periodicity of Proposition 3.15 no longer holds in this
generality. Instead, we can only express ℓ(α, fN (α)) via ℓ(α, 0):

Lemma 6.1. If ℓ(α, 0) = [i
(0)
1 . . . i

(0)
n ], then ℓ(α, fN (α)) = [i

(Ni1
)

1 . . . i
(Nin )
n ].

Proof. First, we note that Theorem 3.6 together with Proposition 3.8 for N > 0 (re-
spectively, Remark 3.9 for N < 0) guarantee that the multiset of letters constituting

ℓ(α, fN (α)) is exactly {i(Ni1
)

1 , . . . , i
(Nin )
n }. Indeed, assuming the contradiction for

some N > 0 (the case N < 0 is treated analogously), there exists 0 ≤ d < fN (α)

such that ℓ(α, d+1) starts with i
(Nik

+1)

k for some k. As the sum of exponents equals

d+1 ≤ fN (α), the word ℓ(α, d+1) and hence ℓ(α, d) also contains a letter i
(e)
l with

e < Nil . This provides a contradiction with Proposition 3.8, since i
(e+1)
l > i

(Nik
+1)

k .

On the other hand, we note that i(Ni) < j(Nj) iff i < j, which guarantees that the

loop word [j
(Nj1

)
1 . . . j

(Njn )
n ] is (standard) Lyndon iff the loop word [j

(0)
1 . . . j

(0)
n ] is

(standard) Lyndon, cf. the proof of Proposition 3.15. This completes the proof. □

We can now prove the following slight generalization of Corollary 3.11:

Lemma 6.2. Fix N , {Ni}i∈I , α ∈ ∆+, fN (α) ∈ Z as above.

(a) For d > fN (α), the loop word ℓ(α, d) starts with some j(e) such that e > Nj.

(b) For d ≤ fN (α), the loop word ℓ(α, d) starts with some j(e) such that e ≤ Nj.
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Proof. Let ℓ(α, d) = [i
(k1)
1 . . . i

(kn)
n ]. Then i

(k1)
1 ≤ i

(kr)
r and so fi1(k1) ≥ fir (kr) for

any r. If k1 ≤ Ni1 , then we would have fir (Nir ) = fi1(Ni1) ≥ fi1(k1) ≥ fir (kr) and
so kr ≤ Nir for any r. That would imply d =

∑n
r=1 kr ≤ fN (α), a contradiction.

To prove (b), we note that i
(k1)
1 ≥ i

(kr+1)
r for any r by Theorem 3.6. If k1 > Ni1 ,

then we would have fir (Nir ) = fi1(Ni1) < fi1(k1) ≤ fir (kr + 1) so that kr ≥ Nir for
all r. That would imply d =

∑n
r=1 kr > fN (α), a contradiction. □

• The major difference will take place in the generalization of Theorem 4.7 to the
present setup. As the periodicity of Proposition 3.15 no longer holds, the bi-infinite
sequence {ik}k∈Z of (4.23) shall rather be constructed as a limit of finite sequences.
Explicitly, to define {ik}k≤0, consider Ls = {(α, d) |α ∈ ∆+, 0 ≤ d < fN(+,s)(α)} in-
stead of L from (3.14). Then, Ls = Lµ̂(+,s) with µ(+,s) =

∑
i∈I N

(+,s)
i ω∨

i . Applying
the arguments from the proof of Theorem 4.7, we get a reduced decomposition (4.22)
of µ̂(+,s) such that the ordered finite sequence β0 < β−1 < · · · < β1−l(µ̂(+,s)) coin-

cides with Ls ordered via (4.29). By uniqueness, such a sequence for Ls+1 refines
the one for Ls. Furthermore, the roots βk = si0si−1 . . . sik+1

(αik) for k ≤ 0 are all
distinct and satisfy {βk}k≤0 = ∆+ × Z≥0. The construction of {ik}k>0 is similar.

• With the above update of Theorem 4.7, the results of Propositions 4.9, 4.10 still
hold (for any fixed i ∈ I, d ∈ Z), once {pj}j∈I from (4.33) are rather redefined via:

(6.2) pj is the unique integer satisfying j(−pj) ≥ i(−d) > j(−pj+1) .

•With the above update, the analogue of (5.38) and the paragraph afterwards hold,
implying (5.35, 5.36). Thus, the main result of Section 5, the construction of PBW
bases of Uq(Ln

+) from Theorem 5.8 still holds (with eℓ, ew as in Definition 5.7).

Appendix A. Computer code

In this Appendix, we present some interesting examples of standard Lyndon loop
words that nicely illustrate the key properties of Theorem 3.6 and Proposition 3.8.
We also provide a link to our code used to evaluate standard Lyndon loop words.

A.1. Examples.
The first version of our code did not use the key results (Theorem 3.6 and Propo-

sition 3.8), but was rather based on Remark 3.10, which is a simple generalization
of [16, Proposition 2.26]. Thus, when evaluating ℓ(α, d), the code simply goes
through all the ways to split α into an ordered sum of simple roots, and distribute
d between the exponents of these simple roots while satisfying (3.12). In the table
below, we present examples of standard Lyndon loop words computed through this
code (which also nicely illustrate the results of Theorem 3.6 and Proposition 3.8).

Type Order Weights d ℓ(θ, d) ℓ(θ, d+ 1) ℓ(θ, d+ 2)

A4 1234 1 1 1 1 0 [1(0)2(0)3(0)4(0)] [4(1)3(0)2(0)1(0)] [3(1)2(0)1(0)4(1)]
A5 51324 4 3 1 8 5 19 [3(1)4(8)5(4)2(3)1(3)] [1(4)2(3)3(1)4(8)5(4)] [5(5)4(8)3(1)2(3)1(4)]
B2 21 7 8 18 [1(6)2(6)2(6)] [2(7)1(6)2(6)] [2(7)2(7)1(6)]
B3 123 4 3 1 10 [2(3)1(3)3(1)3(1)2(2)] [2(3)3(1)3(1)2(3)1(3)] [1(4)2(3)3(1)3(1)2(3)]
C3 312 4 3 6 8 [1(2)2(1)1(2)2(1)3(2)] [3(3)2(1)2(1)1(2)1(2)] [2(2)1(2)3(3)2(1)1(2)]
C3 321 1 10 3 17 [2(8)1(0)3(2)2(7)1(0)] [2(8)1(0)2(8)1(0)3(2)] [2(9)1(0)3(2)2(8)1(0)]
D4 3124 4 3 7 5 8 [3(3)2(1)1(1)4(2)2(1)] [1(2)2(1)4(2)3(3)2(1)] [3(4)2(1)4(2)1(2)2(1)]
G2 21 2 3 11 [2(3)1(2)2(2)2(2)1(2)] [2(3)1(2)2(3)1(2)2(2)] [2(3)2(3)1(2)2(3)1(2)]
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Let us clarify the conventions in this table:

• In the column “Order”, the elements i ∈ I are listed in the increasing order,
• In the column “Weights”, the weights ci are listed with i ordered as in [23],
• In all these examples, we choose to consider only the highest root α = θ.

Let us also provide examples of standard Lyndon loop words for the remaining
exceptional types (these were evaluated using our second code presented below):

Type Order Weights d ℓ(θ, d)

F4 1234 1 2 3 2 17 [3(3)2(1)2(1)4(2)3(3)2(1)1(0)3(3)2(1)1(0)4(2)]
F4 1234 1 2 3 2 18 [2(2)1(0)3(3)2(1)1(0)4(2)3(3)2(1)2(1)3(3)4(2)]
E6 142653 1 2 1 2 2 1 9 [5(2)4(1)3(1)6(0)2(1)1(0)3(1)2(1)4(1)3(1)6(0)]
E6 142653 1 2 1 2 2 1 10 [6(1)3(1)2(1)1(0)4(1)3(1)2(1)5(2)4(1)3(1)6(0)]
E7 1234567 4 5 3 7 3 2 5 25 [4(3)5(1)6(0)3(1)7(2)4(2)2(2)1(1)3(1)2(2)4(3)5(1)6(0)3(1)7(2)4(2)5(1)]
E7 1234567 4 5 3 7 3 2 5 26 [4(3)5(1)3(1)7(2)4(2)2(2)1(1)3(1)2(2)4(3)5(1)6(0)3(1)7(2)4(3)5(1)6(0)]
E8 14572386 1 32 13 3 10 9 6 15 46 [8(3)5(1)4(0)6(1)5(1)3(2)4(0)7(1)6(1)5(1)2(6)1(0)3(2)4(0)2(6)3(2)

8(3)5(1)4(0)6(1)5(1)3(2)4(0)7(1)6(1)5(1)8(2)2(6)1(0)]
E8 14572386 1 32 13 3 10 9 6 15 47 [8(3)5(1)4(0)6(1)5(1)3(2)7(1)6(1)2(6)1(0)8(3)5(1)4(0)6(1)5(1)3(2)

4(0)7(1)2(6)3(2)8(3)5(1)4(0)6(1)5(1)3(2)4(0)2(6)1(0)]

A.2. The code.
The second version of our code was written using Proposition 3.2 as well as

Proposition 3.8 which provides an inductive way to compute exponents of ℓ(α, d).
This drastically improves the code performance, allowing us to compute words for
much larger values of the degree d and the weights ci. This code can be used at the
following clickable link (the interested reader can use this code to check the results
of this note as well as to compute standard Lyndon loop words):2

• C++ Code 2

A.3. Divisible weights in type A.
In this Subsection, we consider a special setup for type An (naturally generalizing

[16, Section 7.3]): the order is 1 < 2 < · · · < n, and the weights c1, c2, . . . , cn ∈ Z>0

are such that ci divides ci+1 for any 1 ≤ i < n. By induction on n and the
periodicity of Proposition 3.15, it suffices to evaluate ℓ(θ, d) for 0 < d ≤ c1+· · ·+cn.
Let a(k) be the first letter of the standard Lyndon loop word ℓ(θ, d). Then, we have:

ℓ(θ, d) =
[
a(k)(a− 1)(k2) . . . 1(ka) (a+ 1)(ka+1) (a+ 2)(ka+2) . . . n(kn)

]
with ki =

⌈
k · ca−i+1

ca
− 1

⌉
if 1 < i ≤ a , ki = k · ci

ca
if a < i ≤ n .

It thus suffices to describe the first letter a(k). This is uniquely determined by
a sequence encoding the underlying element a ∈ {1, . . . , n} as d increases from 1
up to c1 + c2 + · · · + cn. Indeed, the exponent k of a (as well as the exponent of
any other i) is then equal to the number of times this a (respectively i) appears
among the first d terms of that sequence, due to Proposition 3.8. One can depict
this sequence by a table placing each n in the top of a new column to the right

2The user should press the “Run” button and they will see the instructions and a small example
afterwards. Type in the input in the console afterwards, following the instructions. Names of Lie

algebra types for input are: A, B, C, D, G2, F4, E6, E7, E8. This code was written using C++23.

https://onlinegdb.com/efjH329LN
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and then moving top-to-bottom until getting to the next n. Let us now present a
general rule for the construction of this table:

1. At the first step, place n in the top-left corner;
2. At the i-th step (with 2 ≤ i ≤ n), copy the current table and paste it to

the right cn−i+2

cn−i+1
− 1 times. After that, add an extra entry n− i+ 1 at the

bottom of the right-most column;
3. Copy the resulting table and paste it to the right c1 − 1 times.

Let us illustrate it with some examples. For n = 4 and c1 = 1, c2 = 2, c3 = 6, c4 =
12, the sequence is 4 4 3 4 4 3 4 4 3 2 4 4 3 4 4 3 4 4 3 2 1, and so the table is:

4 4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3

2 2
1

For n = 3 and c1 = 1, c2 = 3, c3 = 15, the sequence is 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3
3 3 2 1, which is thus encoded by the following table:

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 2

1

Likewise, for n = 4 and c1 = 1, c2 = 3, c3 = 9, c4 = 27, we get the following table:

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3

2 2 2
1

Remark A.4. We note that similar tables can also be produced for other classical
types Bn, Cn, Dn with the order 1 < 2 < · · · < n. By induction on n, the periodicity
of Proposition 3.15, and the A-type case treated above, it suffices to evaluate ℓ(α, d)
for the roots α = m1α1 + · · · + mnαn ∈ ∆+ with m1, . . . ,mn ≥ 1 and 0 < d ≤
m1c1 + · · · + mncn. The only difference between the corresponding tables and
those for An-type, is that now when adding each i we shall be adding it mi times.
Explicitly, the corresponding table is constructed by the following algorithm:

1. At the first step, build a column of height mn with all entries equal to n;
2. At the i-th step (with 2 ≤ i ≤ n), copy the current table and paste it to the

right cn−i+2

cn−i+1
− 1 times. After that, add mn−i+1 times the number n− i+1

at the bottom of the right-most column;
3. Copy the resulting table and paste it to the right c1 − 1 times.

As an example, consider type C4 with the weights c1 = 1, c2 = 2, c3 = 6, c4 = 12,
and α = 2α1 + 2α2 + 2α3 + α4 = θ. Then, we get the following table:

4 4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3
3 3 3 3 3 3

2 2
2 2

1
1
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The multiset of all letters appearing in ℓ(α, d) is easily determined by this table: if
pi = midi + ri (di ∈ N, 0 ≤ ri < mi) denotes the number of times i appears among
the first d terms of the table, then ri exponents of i are di + 1 and the rest are di.
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