
Ch 2.1:  Linear Equations; Integrating Factors.

• A linear first order ODE has the general form  

where f is linear in y.  

Examples include equations with constant coefficients, such as those in Chapter 1,

or equations with variable coefficients:

(Question) How do we solve the ODE?

(Ex) (1)                                                    (2)  

(3)                                                    (4)   
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Constant Coefficient Case

• For a first order linear equation (: separable equation) with constant coefficients,

recall that we can use methods of calculus to solve:

(EX)

(1)                                    (2)                                      (3)                           (t > 0)
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(Question)   How do we solve ODE 

with variable coefficients?

Can we transform a linear equation 

into an equation like an integrable

equation?
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Linear Differential Equation

(Ex)   Find the general solution of the equation:

(1) idea

(2) integrating factor
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Method of Integrating Factors for  

General First Order Linear Equation

• Next, we consider the general first order linear equation

• Multiplying both sides by (t), we obtain

• Next, we want (t) such that '(t) = p(t)(t), from which it will follow that
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Integrating Factor for 

General First Order Linear Equation

• Thus we want to choose (t) such that '(t) = p(t)(t). 

• Assuming (t) > 0, it follows that

• Choosing k = 0, we then have

and note (t) > 0 as desired.
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Solution for

General First Order Linear Equation

• Thus we have the following:

• Then
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Solve the IVP(Example 3)



Example 3:  General Solution   (1 of 2)

• To solve the initial value problem

first put into standard form:

• Then

and hence 
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Example 3:  Particular Solution   (2 of 2)

• Using the initial condition   y(1) = 2  and general solution

it follows that

• The graphs below show solution curves for the differential equation, including 
a particular solution whose graph contains the initial point (1,2).  Notice that 
when C=0, we get the parabolic solution  (shown)  and that solution separates 
the solutions into
those that are asymptotic  
to the positive versus
negative y-axis.
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Example 4

• Solve the initial value problem:
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Example 4: A Solution in Integral Form (1 of 2)

• To solve the initial value problem

first put into standard form:

• Then

and hence 
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Example 4: A Solution in Integral Form (2 of 2)

• Notice that this solution must be left in the form of an integral, 

since there is no closed form for the integral.

• Using software such as Mathematica or Matlab, we can 

approximate the solution for the given initial conditions as well 

as for other initial 

conditions.

• Several solution curves 

are shown.
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Example 5

• Solve the ODE



Example 5:  General Solution   (1 of 2)

• We can solve the following equation

using the formula derived on the previous slide:

• Integrating by parts,

• Thus
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Example 5:  Graphs of Solutions   (2 of 2)

• The graph shows the direction field along with several integral curves. If 

we set C = 0, the exponential term drops out and you should notice how the 

solution in that case, through the point    (0, -7/4), separates the solutions 

into those that grow exponentially in the positive direction from those that 

grow exponentially in the negative direction.
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