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Abstract. Given a morphism f : X Ñ S of complex algebraic varieties and a con-
structible sheaf G on X, we compute the local monodromy of Rf˚pGq and Rf!pGq in
terms of the local monodromy of G. Our results generalize previous results by Brieskorn,
Borel, Clemens, Deligne, Landsman, Griffiths, Grothendieck, and Kashiwara in the set-
ting of quasi-unipotent sheaves. In the following, we consider the general setting of
sheaves of R-modules for a commutative noetherian ring R, and give applications to
computing local monodromy of abelian covers in a uniform manner. We also obtain ap-
plications in the context of ‘generalized Alexander modules’ and intersection cohomology
with torsion coefficients.
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2 MADHAV NORI AND DEEPAM PATEL

1. Introduction1

In the following article, we investigate the behavior of eigenvalues arising from the action
of analytic loops. on constructible sheaves under Grothendieck’s six-functor formalism.
We work in the setting of constructible sheaves of R-modules for a commutative noetherian
ring R of finite homological dimension. In particular, we study situations arising from non-
geometric local systems. An interesting feature of our applications is that the consideration
of local monodromy for possibly non-geometric local systems and with coefficients in R-
modules has implications for certain geometric questions. More precisely, consider a
commutative diagram of complex algebraic varieties:

X
F
//

f

  

G

π
��

S

with S a smooth curve, and G a semi-abelian scheme (over S). Let rns : G Ñ G be the
multiplication by n map, and consider the resulting etale covers rnsX : Xn Ñ X obtained
via base change along F . Let fn :“ f ˝ rnsX , s0 P S, and let ∆ Ñ S be a small disk
centered at s0. Up to further shrinking of the disk, we may assume that Rifn,˚Z is a
local system when restricted to the punctured disk. This data gives a sequence of local
monodromy representations:

ρn : π1p∆
˚
q Ñ GLppRifn,˚Zqtq

for a general point t P ∆˚. Then Grothendieck’s Local Monodromy Theorem ([1]) states2

that the eigenvalues of the local monodromy action on Rifn,˚Z are roots of unity. This3

leads to the following natural question:4

Question 1.1. With notation as above, which roots of unity appear? Can these be5

obtained in a uniform manner (as n-varies)?6

We consider such examples in Section 6 and show that these roots can be computed7

explicitly and uniformly in n as an application of our general results. We also obtain8

applications to the local monodromy of Alexander modules and to the local monodromy9

action on intersection cohomology (with coefficients in arbitrary fields). Our results gener-10

alize various results in the literature on quasi-unipotence of local monodromy. We discuss11

these in detail below.12

1.1. Main Results. Let X be a variety over C, and G be a constructible sheaf of K-13

vector spaces where K is an algebraically closed field. In the following, we let Oan :“ Cttu14

denote the ring of convergent power series in the variable t, and F an denote its fraction15

field.16

Definition 1.1.1. (1) An analytic loop of X is a morphism of C-schemes

γ : SpecpF an
q Ñ X.
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We denote by ALpXq the set of analytic loops of X. In the following, we shall1

sometimes refer to analytic loops as loops.2

(2) Let rns : SpecpF anq Ñ SpecpF anq induced by t Ñ tn. For γ P ALpXq we denote3

by γn :“ γ ˝ rns.4

The loop γ P ALpXq gives an analytic map h : ∆˚ Ñ X from a small punctured disk, and5

(up to shrinking the disk) we may assume that h˚G is locally constant.1 After fixing base6

points, and considering the canonical generator (i.e. counterclockwise loop around the7

origin) T P π1p∆
˚q, we may consider the set of eigenvalues of the resulting monodromy8

action on the (stalk of the) given local system. The set of eigenvalues thus obtained9

is independent of the choice of disk or base point, and we let Spredpγ,Gq Ă Kˆ (the10

‘reduced spectrum’ of the given loop) denote the resulting set of eigenvalues. We set11

BSppGq :“
Ť

γPALpXq
Spredpγ,Gq (the ‘boundary spectrum’ of Gq.12

Remark 1.1.2. (1) If G is non-zero, then 1 P BSppGq. If G is a non-zero constant13

local system, then BSppGq “ 1.14

(2) Moreover, if c P BSppGq, then ck P BSppGq for all k ą 0.15

The main result of this article is the following theorem on the behavior of reduced spectra16

(and the boundary spectrum) under push-forwards. In the following, given a subset17

M Ă Kˆ and an integer r ą 0, we set M
1
r :“ tc P Kˆ|cr P Mu and let M` denote the18

monoid generated by the elements of M Ă Kˆ.19

Theorem 1.1.3. Let f : X Ñ S be a morphism of a complex algebraic varieties, and G20

a constructible sheaf of K-vector spaces on X.21

(1) Let γ P ALpSq, and ALγpXq :“ tγ1 P ALpXq|f ˝ γ1 “ γn, for some n ą 0u. Then22

there is an integer r ą 0 and a finite subset M Ă ALγpXq (both depending only G,23

f , and γ), such that24

Spredpγ,Rqf?pGqq Ă tλ|λr
P

ď

γ1PM

Spredpγ1,Gqu,

where ? P t˚, !u.25

(2) Suppose dimpSq “ 1. There is an integer r ą 0 (depending on G and f), such that26

for all q, BSppRqf?Gq Ă BSppGq
1
r , where ? P t˚, !u.27

(3) In general (for dimpSq ě 1), there is an integer r1 ą 0 (depending on G and f),28

such that for all q, BSppRqf?Gq` Ă pBSppGq`q
1
r1 , where ? P t˚, !u.29

Note that, as a consequence of the fact that Rqf!pGq and Rqf˚pGq vanish for large q, it is30

enough to show that such an integer exists for a fixed q. Similarly, it follows that there31

exists an integer r that will work for both f! and f˚.32

1We refer the reader to section 2.1, before definition 2.1.1 for an explanation of these facts.
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Remark 1.1.4. In the text, we shall work more generally with (bounded) constructible1

complexes, i.e., objects of the derived category. The definitions and results above gener-2

alize immediately to this setting by passing to the corresponding cohomology sheaves.3

The aforementioned theorem generalizes the classical theorem on quasi-unipotence of lo-4

cal monodromy due to Grothendieck ([1]), and related generalizations. We shall briefly5

recall the history and related results in section 1.3 below.6

7

Our second result is an analogous assertion in the setting of constructible sheaves of R-8

modules where R is a commutative noetherian ring of finite global dimension. In order9

to state the result, we first introduce some terminology. Let X be as before and G be a10

constructible sheaf of R-modules (on X). Given an analytic loop γ P ALpXq, one has an11

induced R-linear map T : h˚Gt Ñ h˚Gt (with h as in the line following Definition 1.1.1,12

and t P ∆˚). In particular, we may view h˚Gt as an Rrxs-module. We note that (up to13

isomorphism) this module is independent of the choice of h or base points (and t).14

Definition 1.1.5. Let X be a scheme of finite type over C, G a constructible sheaf of15

R-modules, γ P ALpXq, and h : ∆˚ Ñ X the map associated to γ so that h˚pGq is a local16

system.17

(1) With notation as above, we set Sppγ,Gq Ă SpecpRrxsq to be the scheme theoretic18

support of h˚Gt (t P ∆˚) and by Ipγ,Gq Ă Rrxs the corresponding ideal.219

(2) Given a positive integer r, and a closed subscheme W Ă A1
R, let W

r1{rs denote the20

scheme theoretic inverse image of W under the morphism A1
R Ñ A1

R induced by21

x Ñ xr.22

Remark 1.1.6. In the following, we consider sums of subschemes. Given a scheme X23

and a (finite) collection of closed subschemes Zα Ă X, we define the sum
ř

α Zα to be24

the closed subscheme defined by the product of ideals Iα defining each Zα.25

Theorem 1.1.7. Let f : X Ñ S be a morphism of complex algebraic varieties, and G26

a constructible sheaf of R-modules. Let γ P ALpSq. Then there is a finite set (denoted27

by M) of pairs pγ1, nγ1q where γ1 P ALpXq, nγ1 is a positive integer and f ˝ γ1 “ γnγ1
28

(depending only on G, f and γ), such that29

Sppγ,Rqf?pGqq Ă
ÿ

pγ1,nγ1 qPM

Sppγ1,Gq
r1{nγ1 s,

where ? P t˚, !u.30

If R “ K is an algebraically closed field, then Theorem 1.1.7 implies Theorem 1.1.3 (1)31

by taking the underlying reduced subscheme (in the case R “ K). On the other hand,32

2This notation is consistent with the previous notation for the reduced spectrum. Specifically, if R “ K
is an algebraically closed field, then the closed points of the underlying reduced scheme of the spectrum
defined here is the reduced spectrum defined previously.
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the statement at the level of subschemes is stronger even in this case, since it controls the1

level of quasi-unipotence.2

1.2. Applications. We survey some immediate applications of our main results.3

1.2.1. Application to Integral transforms and Intersection cohomology. As an immediate4

application of our main results, we obtain results on the behavior of boundary spectra5

under various operations on sheaves and, as a consequence, under integral transforms.6

We refer to section 5 for the precise statements. Here we only note that, as a corollary,7

one may obtain results on the local monodromy action on intersection cohomology (see8

Theorem 5.2.1 and Corollary 5.2.2.)9

1.2.2. Monodromy in abelian covers. As an application of our main Theorem 1.1.3, we10

obtain positive results towards Question 1.1 in some situations. For example, we show11

that the roots of unity can be obtained uniformly in n, and, moreover, our methods12

provide a schema for finding such roots explicitly. We also obtain applications to the13

local monodromy of Alexander modules. We refer to Section 6 (in particular, Theorem14

6.1.2, Example 6.1.4, and Corollary 6.2.1) for precise statements.15

1.3. Historical/Related work: We first note that Theorem 1.1.3 (1) generalizes the16

classical monodromy theorem. Specifically, let f : X Ñ S be as in the theorem (with17

dimpSq “ 1q, s P S, G a constant local system and consider γ P ALpSq centered at18

s P S. In particular, h : ∆˚ Ñ Szs. Since Spredpγ1,Gq “ t1u, the theorem shows that19

the local monodromy of Rif˚pGq is quasi-unipotent. In particular, this recovers (at least20

in char. 0), the classical local monodromy theorems of Brieskorn, Clemens, Grothendieck21

and Landsman ([4, 6, 1]).22

23

In ([1]), Grothendieck gives two proofs of the local monodromy theorem: one purely Ga-24

lois theoretic and another based on the computation of his nearby cycles functor in the25

case where the special fiber is a divisor with normal crossings. The proofs of Theorems26

1.1.3 and 1.1.7 are a modification of the latter approach via nearby cycles. Analogous27

results in the context of variation of (mixed) Hodge structures (resp. regular singular28

connections) were obtained by Borel-Schmid ([10]) (resp. Katz ([9]). We note that, in29

the Hodge theoretic setting, both Schmid and Katz obtain bounds on the level of quasi-30

unipotency in terms of the Hodge level. We do not obtain such bounds below. On the31

other hand, our results are applicable to sheaves of R-modules.32

33

In [7], Kashiwara defined the notion of a quasi-unipotent constructible sheaf. More pre-34

cisely, a constructible sheaf G in X is quasi-unipotent if Spredpγ,Gq is contained in the set35

of roots of unity for all γ P G. In loc. cit., Kashiwara shows that (for proper morphisms)36

Rf˚ preserves the category of quasi-unipotent sheaves. We note that this is also a special37

case of our Theorem 1.1.3. Moreover, the results of this paper also prove the analogous38

assertion without any assumption on f and also for Rf!.39

40
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1.4. Contents. As noted above, the strategy for proving Theorems 1.1.3 and 1.1.7 follows1

the strategy of Grothendieck’s geometric proof of quasi-unipotence of local monodromy2

via nearby cycles. We briefly recall the contents of each section.3

4

In Section 2, we recall some basic background and set up some notation for the following5

sections. In Section 2.1, we define various notions of loops and show that they give rise to6

the same spectra. In Section 2.2 we recall the notion of boundary monoids and explain7

how Theorem 1.1.3 (3) follows from 1.1.3 (1). In Section 2.3, we recall some basic prop-8

erties of nearby cycles. In Section 2.4, we discuss spectra in the setting of group actions9

on group cohomology. These will be crucially applied in Section 3.10

11

In Section 3, we prove our main results when dimpSq “ 1. In Section 3.1, we use resolu-12

tion of singularities arguments to reduce to a good setting (see Section 3.1), and give a13

basic vanishing cycles computation in the good setting. This proves the main theorem for14

dimpSq “ 1, and also for f! in the case of the higher dimension. In Section 3.2, we consider15

some natural extensions of Theorem 1.1.7 to a slightly more general setting, which will16

be useful in our applications to computing the monodromy of abelian covers.17

18

In Section 4, we explain how to deduce Theorem 1.1.3 (1) for f˚ from that of f! in the19

case where dimpSq ą 1.20

21

In sections 5 and 6 we give our applications to monodromy of integral transforms and22

monodromy of abelian covers, respectively.23

24

Notation: In the following, R will denote a commutative noetherian ring of finite global25

dimension and K “ K will denote an algebraically closed field. For a complex algebraic26

variety X, Db
cpX,Rq denotes the bounded derived category of constructible sheaves of27

R-modules on X; if R “ K, we denote this by Db
cpXq.28

29

2. Preliminaries30

2.1. Remarks on Algebraic Monodromy. In this section, we recall some equivalent31

characterizations of analytic loops and boundary spectra. Recall that if X is a complex32

algebraic variety, Db
cpXq denotes the bounded derived category of K-vector spaces (where33

K is an algebraically closed field).3 Note that in the following, by abuse of notation, we34

will often view X as a complex analytic space and simply use the same notation X for35

the associated complex analytic space Xan.36

37

3Here constructible means in the underlying complex analytic topology but with stratifications given
by zariski locally closed subsets.
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We first explain how to associate an analytic map h : ∆˚ Ñ X to an analytic loop1

γ P ALpXq, and that given a constructible complex G on X one can choose ∆˚ small2

enough so that h˚pGq is locally constant.4 In order to see this, first note that the image3

of γ is contained is an affine open SpecpAq Ă X. Since A is a finitely generated C-4

algebra, we may choose a presentation A “ Crx1, . . . , xks{pf1, . . . , fsq. A morphism γ :5

SpecpF anq Ñ SpecpAq is given by a collection of elements H1, . . . , Hk P F an which satisfy6

the polynomials fi. Each Hi defines a holomorphic function on a small punctured disk,7

and therefore we are given k holomorphic functions on a small punctured disk. Since these8

satisfy the polynomials fi, they give rise to an analytic map h : ∆˚ Ñ X. Let Z denote9

the zariski closure of γ in SpecpAq. Since G is constructible, it is locally constant outside10

of a subvariety W Ă Z. Therefore, we may assume that h˚G is locally constant after11

possibly shrinking the disk. Note that Spredpγ,Gq is independent of the chosen disk (and12

the presentation). The discussion here also applies to constructible sheaves of R-modules,13

with Sppγ,Gq defined as a closed subscheme of A1
R (as given in Definition 1.1.5).14

Definition 2.1.1. (1) Given G P Db
cpXq and γ P ALpXq, let

Spredpγ,Gq :“
ď

iPZ

Spredpγ,Hi
pGqq.

Note that, since G has bounded cohomology, only finitely many sets appear in the
above union. Similarly, for G P Db

cpX,Rq, let

Sppγ,Gq :“
ÿ

iPZ

Sppγ,Hi
pGqq.

(2) We set BSppGq “
Ť

γPALpXq
Spredpγ,Gq.15

We may also define algebraic and formal loops and consider analogously defined spectra.16

Definition 2.1.2. (1) An element of γ P ALpXq is an algebraic loop if the morphism17

γ : SpecpF anq Ñ X factors through SpecpLq where L is a field of transcendence18

degree one (over C).19

(2) Let Cpptqq denote the field of Laurent power series. A formal loop γ is a morphism20

of schemes γ : SpecpCpptqqq Ñ X over C.21

(3) Let G P Db
cpXq. We set BSpapGq to be the union of Spredpγ,Gq over all algebraic22

loops γ.23

(4) We say that a loop γ P ALpXq is constant if it factors through a field of transcen-24

dence degree zero (i.e. SpecpCq).25

Remark 2.1.3. Consider a pair pT Ă T q where T is a smooth curve, T is a smooth26

compactification of T , and a morphism h : T Ñ X. Then every point s P T zT gives rise27

to an algebraic loop of X. On the other hand, every algebraic loop arises in this manner.28

Remark 2.1.4. Note that BSpapGq Ă BSppGq.29

4A constructible complex G is locally constant if all its homology sheaves are locally constant.
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We may also define the eigenvalues of monodromy along formal loops as follows. Let
FLpXq denote the set of formal loops, and γ P FLpXq. Let Y denote the Zariski closure
of the image of γ, U Ă Y be the largest smooth Zariski open subset such γ factors
through U ãÑ X, and such that G|U is locally constant (for example, we may choose a
stratum along which G is locally constant and so that the image of γ is contained in the
given stratum). Let U be a smooth compactification of U with complement D given by
a divisor with simple normal crossings. By the valuative criterion of properness, we may
now extend γ to SpecpCrrtssq, that is, one has a commutative diagram (of C-schemes):

SpecpCpptqqq //

��

U

��

SpecpCrrtssq // U

Let x0 P U be the image of the closed point s0 P SpecpCrrtssq; there exists a chart1

pz1, . . . , znq around x0 such that D is given by z1 ¨ ¨ ¨ zr “ 0 for some r ě 0. We may2

consider the pullback of zi, and these can be written as uit
ki P Crrtss where ui is a unit,3

ki ą 0 for 1 ď i ď r, and ki “ 0 for i ą r. Retaining the n-tuple pk1, k2, ..., knq from the4

previous sentence, and given a tuple ru :“ p ru1, . . . ,Ăunq of units of the ring of convergent5

power series, gives a holomorphic map δ from a small disk ∆ to a neighborhood of x06

in U given by zi “ ruit
ki for 1 ď i ď n. These δ (for varying choices of ru) restrict to7

holomorphic maps ∆˚ Ñ U , and moreover different choices of tuples ru give maps which8

are homotopic to each other. We define Spredpγq “ Spredpδq. Note that the analytic loop9

δ is algebraic if rui “ 1 for all i, and the z1, z2, ..., zn belong to the co-ordinate ring of a10

Zariski neighborhood of x0 in U . Moreover, the definition Spredpγq “ Spredpδq is easily11

checked to be independent of the choice of the compactification U of U . We gather the12

results of this passage in the following lemma.13

Lemma 2.1.5. With notation as above:14

(1) Given γ P FLpXq, Spredpγ,Gq is independent of the choice of U and compactifica-15

tion. We denote by BSpf pGq :“
Ť

γPFLpXq
Spredpγ,Gq.16

(2) BSpf pGq “ BSppGq “ BSpapGq17

We record the following lemma for future use.18

Lemma 2.1.6. Let X be a complex algebraic variety, and γ P ALpXq.19

(1) Given an exact triangle

F Ñ G Ñ H Ñ Fr1s

in Db
cpX,Kq, one has Spredpγ,Gq Ă Spredpγ,Fq Y Spredpγ,Hq. It follows that20

BSppGq Ă BSppFq Y BSppHq.21

(2) If f : Y Ñ X is a morphism of complex algebraic varieties, and G P Db
cpXq, then22

Spredpγ1, f˚Gq “ Spredpf ˝ γ1,Fq where γ1 P ALpY q. It follows that BSppf˚Gq Ă23

BSppGq.24
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Proof. The proofs are standard and left to the reader. □1

One has analogous assertions in the setting of constructible sheaves of R-modules and for2

Sppγ,Gq. If G is a constructible sheaf of R-modules, then in Part (1) above, we take the3

sum of closed subschemes as defined in Remark 1.1.6.4

2.2. Boundary Monoid. Let X be a smooth variety and D “
Ťk

i“1Di be a simple5

normal crossings divisor (s.n.c.d) where Di are the irreducible components. For a subset6

I Ă t1, . . . , ku, DI :“
Ş

iPI Di.7

8

Given a point x P X, there is a chart U around x where, if z1, . . . , zn are the local co-9

ordinates, then U X D is given by z1 ¨ ¨ ¨ zd “ 0. In this case, the fundamental group10

π1pUzDq is the free abelian group generated by the canonical loops (i.e. the counter-11

clockwise loops resulting from identifying UzD with p∆˚qd ˆ ∆n´d) around each of the12

Di. The image of the submonoid generated by these loops in π1pXzDq is independent of13

the choice of U (and the base points) up to conjugacy. In particular, it gives rise to a14

commutative monoid in π1pXzDq, well defined up to conjugacy. Moreover, up to conju-15

gacy, a different choice of x in the same irreducible component of DIz
Ť

J DJ (where the16

union is over J such that |J | ą |I|) gives the same monoid up to conjugacy. In particular,17

one has a finite number of commutative monoids well defined up to conjugacy in π1pXzDq.18

19

Let Y be a smooth complex algebraic variety, L be a local system of K-vector spaces20

on Y , and Y a smooth compactification of Y with D :“ Y zY an s.n.c.d. If γ P ALpY q,21

and h : ∆˚ Ñ Y is the associated analytic map, then h extends to a complex analytic22

map h : ∆ Ñ Y . If hp0q P Y , then Spredpγ,Lq “ 1 P Kˆ. Otherwise, let hp0q “ x P D23

denote the center of the disk. In this case, one obtains an element of the monoid given24

by the local fundamental group of x defined above. As a consequence, we note that25

BSppLq “
Ť

pi,γPMiq
Spredpγ,Lq (where Mi are the finite number of commutative monoids26

obtained as in the previous paragraph). In particular, if U is a curve, then27

BSppLq “ t1u Y p
ď

i

ď

nPN

Spredpγn
i ,Lqq

where γi are the loops around the boundary points.28

Remark 2.2.1. Note that the discussion in the previous paragraph shows that the image29

of ALpY q to the set of the conjugacy classes of π1pY q, is the image of the union of the30

boundary monoids in the same set. Note that the set of boundary monoids depends on31

the chosen compactification Y of Y .32

The discussion above allows us now to give a direct proof of Theorem 1.1.3 (3) assuming33

Theorem 1.1.3 (1).34

Proof. (Theorem 1.1.3 (1) implies Theorem 1.1.3 (3)) Let f : X Ñ S and G be as in the
theorem. First, note that we may assume that X, S are reduced and connected. Consider
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H :“ Rf?pGq. We may stratify S so that the restriction of H to each stratum is a local
system. Moreover, one has such a stratification where the strata are smooth. This gives a
filtration of H so that the associated graded are lower shriek extensions of local systems
from strata. An application of Lemma 2.1.6 (1) reduces us to the setting where H is
j!L for a local system L on an open dense subset S 1 Ă S, and S is smooth. Now fix a
smooth compactification S Ă S with complement a simple normal crossings divisor. With
notation as above, we have:

BsppHq “ BSppLq “
ď

pi,γPMiq

Spredpγ,Lq.

Note that each monoid is finitely generated and commutative. Since the monoid is com-1

mutative, we see that the eigenvalues of the action of a loop in a particular monoid are2

given by products of eigenvalues of the generators of that monoid. Since there are only3

finitely many generators and finitely many monoids, we may apply 1.1.3 to each of these4

finitely many loops. In particular, we take for r1 the lcm of the integers r obtained for5

each such loop via Theorem 1.1.3 (1). □6

2.3. Nearby Cycles. We recall some standard results on the nearby cycles functor. We7

refer to ([8], Section 8.6) or ([2]) for more details. Let X be a complex algebraic variety,8

f : X Ñ S a morphism to a smooth curve, and ∆ a small disk centered at a point s0 P S.9

By abuse of notation, we denote by f : X Ñ ∆ the restriction of f to the disk ∆. Let10

G P Db
cpX;Rq, and ∆˚ the disk with the origin (i.e. s0) removed. Let π : Ă∆˚ Ñ ∆˚ denote11

the universal cover. Explicitly, we consider the map p : ∆ Ñ ∆˚ with z ÞÑ e2πiz.5 Now12

consider the resulting Cartesian diagram:13

X0
i
// X

��

rX

��

j̃

oo

∆ Ă∆˚oo

Here X0 :“ f´1p0q, and the nearby cycles complex is defined as follows:14

RΨf pGq :“ i˚Rj̃˚j̃
˚G.

The natural deck transformation T : Ă∆˚ Ñ Ă∆˚ (corresponding to the canonical generator15

of ∆˚) gives rise to the monodromy morphism16

T : RΨf pGq Ñ RΨf pGq.

We recall some basic properties of the nearby cycle functor:17

(1) RΨf pGq is a constructible complex on X0.18

5We shall ignore base points in the discussion below.
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(2) If f is proper (and up to further shrinking of the disk), then there is a spectral1

sequence with2

Ep,q
2 :“ Hp

pX0, R
qΨf pGqq ñ Hp`q

pXt,Gq

where t P ∆˚ is a general point3

(3) Note that for ∆ small HipXt,Gq is a local system on ∆˚, and in particular comes4

equipped with a monodromy action. The aforementioned spectral sequence is5

compatible with the monodromy actions.6

(4) Let x P X0. The stalk RiΨf pGqx can be computed as follows. Let Bpx, εq be7

an open ball of radius ε centered at x in X. Then for all 0 ă ε ăă 1 and8

0 ă δ ăă ε the aforementioned stalk can be identified with HipBpx, εqXf´1ptq,Gq9

where 0 ă |t| ă δ.10

(5) Let T : F Ñ F be a morphism of sheaves of R-modules on X. In this case, we
may view F as a sheaf of RrT s-modules (or RrT, T´1s-modules), and consider its
annihilator AnnpFq Ă RrT s. Let SppT,Fq Ă A1

R denote the corresponding closed
subscheme. We may also work point-wise and define the annihilators AnnpFyq

for y P X. Applying RΓpX,´q gives rise to a functor with values in the bounded
derived category of RrT s-modules. In this setting, one has:

Annp‘RiΓpX,Fqq Ą AnnpFq Ă AnnpFyq.

Note that if F is a constructible sheaf of R-modules, then RΓpX,Fq is an object11

of the bounded derived category of finitely generated R-modules.12

2.4. Group Cohomology. Let G be a group, H Ă G a normal subgroup, and G1 :“13

G{H. Let M be a G-module, where M is a (finitely generated) R-module and the G-14

action is R-linear.15

16

Given g P G, one has an induced R-linear map ρg : M Ñ M , and as before one may17

view M as an Rrxs-module and consider the corresponding scheme theoretic support18

Sppg,Mq Ă SpecpRrxsq, and the corresponding ideal Ipg,Mq Ă Rrxs.19

20

With G and H as above, the exact sequence21

1 Ñ H Ñ G Ñ G1
Ñ 1

gives rise to an (R-linear) action of G1 on the (group) cohomology groups HipH,Mq. We22

briefly recall a description of this action and refer to ([5], III.8) for the details. Given23

g P G, let cg : H Ñ g´1Hg “ H denote the map cgphq “ g´1hg. The maps cg and24

ρg : M Ñ M induce a map on cohomology HipH,Mq Ñ HipH,Mq as follows. Note that25

ρg is not a map of H or G-modules. However, we may view the domain of ρg as an26

H-module where h P h acts via g´1hg; with this modified action on the domain, ρg is a27

morphism of H-modules. An application of the usual bi-functoriality of group cohomology28

(contravariant in the first variable and covariant in the second) gives the desired morphism29
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(of R-modules) HipH,Mq Ñ HipH,Mq. If g P H, then this map is trivial, and therefore1

the action factors through G1.2

Lemma 2.4.1. Let H,G,G1, R be as above, and let M be a finitely generated R-module3

with an R-linear G-action. Let g1 P G1, and g P G be a lift of g1. Suppose g P ZpGq. Then4

Ipg,Mq Ă Ipg1,HipH,Mqq.5

Proof. Let ppxq P Ipg,Mq. It follows that ppgq annihilates the R-module M . We would6

like to show that ppg1q annihilates HipH,Mq. Let Z be the center of RrGs. It is enough7

to show that if ρpzq annihilates M , then the action of ρpz1q (with z1 the image of z in8

RrG1s) on HipH,Mq is also trivial.9

10

We may regard HipH,´q as a functor from RrGs-modules to RrG1s-modules. Now ρpzq is11

a G-module endomorphism of every RrGs-module M , and therefore induces the natural12

transformation HipH, ρpzqq from the functor HipH,´q to itself. As above, let z1 denote13

the image of z in RrG1s; we have the action of ρ1pz1q on HipH,Mq. Their difference14

HipH, ρpzqq´ρ1pz1q is a natural transformation from the functor ffHipH,´q to itself, where15

ff denotes the forgetful functor from RrG1s-modules to R-modules. This difference is zero16

on ffH0pH,´q. The system of ffHipH,´q forms a sequence of effaceable cohomological17

δ-functors, so their difference is zero for all i ě 0. In particular, if M is an RrGs-module18

for which ρpzq “ 0, then the action of ρ1pz1q on HipH,Mq is also trivial.19

□20

Remark 2.4.2. If R “ K is an algebraically closed field, and V is a finite dimensional21

K-vector space, then the previous lemma shows that the eigenvalues of g1 P G acting on22

HipH,V q are contained in the eigenvalues of a lift g P G of g1 P G1 acting on V .23

3. Proof of Theorem 1.1.3 (1), (2) and Theorem 1.1.7: dimpSq “ 1.24

In this section, we prove our main results when dimpSq “ 1. In the first subsection, we25

reduce the statements to a good situation (see below) and give an explicit computation of26

the monodromy action of stalks of nearby cycles in the good situation. The main theorems27

are deduced from this result. In the second subsection, we prove some generalizations to28

the setting where R is replaced by a locally constant sheaf of R-modules. The latter result29

will be useful in the application to monodromy of abelian covers in Section 6.30

3.1. Reductions and Key Proposition. In this section, we prove our main results31

in the setting where dimpSq “ 1. More precisely, we prove Theorem 1.1.3 (1), (2) and32

Theorem 1.1.7 in the setting where dimpSq “ 1. We shall deduce all three statements by33

reducing it to the following setting.34

35

Let f : X Ñ S be a morphism with dimpSq “ 1, and G P Db
cpXq (or Db

cpX,Rq). We say36

that pX,S, f,Gq is in the good situation if the following holds:37
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(1) We have a commutative diagram:

U
j
//

��

X
j
//

f

��

X

f
��

S // S

where all the horizontal arrows are open immersions, f is proper, all the varieties1

in the diagram are smooth (connected), S,X are proper, and D :“ XzU is an2

s.n.c.d.3

(2) Moreover, D “ A ` B where A,B are s.n.c.d.’s with no common components,4

XzX “ A, and XzU “ B X XzA X B.5

(3) For s P S, let Xs denote the corresponding scheme theoretic fiber. Then pXsqred Y6

D is an s.n.c.d. for all s P S. We have a local system L on U , and G :“ j!L.7

Theorem 3.1.1. Suppose that Theorems 1.1.3 (1), (2), and 1.1.7 hold for all quadruples8

pX,S, f,Gq in the good setting. Then, Theorems 1.1.3 (1), (2) (resp. 1.1.7) hold for all9

quadruples pX,S, f,Gq where f : X Ñ S is a morphism with dimpSq “ 1 and G P Db
cpXq10

(resp. G P Db
cpX,Rq).11

Proof. Let f : X Ñ S be a morphism of schemes of finite type over C, with dimpSq “ 112

and G P Db
cpXq. We note that all the reductions below are also valid in the setting of13

Theorem 1.1.7 and G P Db
cpX,Rq. We begin with some preliminary reductions:14

1: First, note that we may assume that all the schemes in question are connected15

and reduced.16

2: We may assume that the morphism f is dominant. Otherwise, the image is a17

collection of points, and the local monodromy on a zero dimensional scheme is18

trivial.19

3: We may assume that the base S is a smooth connected curve. Let S̃ Ñ S, denote
the normalization. To see this, note that since dimpSq “ 1, the natural map

ALpS̃q Ñ ALpSq

is a bijection for non-constant loops since morphisms from SpecpF anq Ñ S factor20

through the generic point.21

We are now in the setting where f : X Ñ S is a morphism of complex algebraic varieties22

with S a smooth connected curve, and f is dominant. We shall proceed via induction on23

dimpXq.24

Step 1: Since G is constructible, there is an open dense subset j : U ãÑ X such that
L :“ G|U is locally constant. Moreover, up to replacing U by a smaller zariski open subset,

we may assume U is smooth. Let Z “ XzU
i

ãÝÑ X denote the closed complement. Then
one has the standard triangle

j!L Ñ G Ñ i˚i
˚G
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in Db
cpXq. By applying induction and Lemma 2.1.6 (since the complement Z :“ XzU is1

of lower dimension), it is sufficient to prove the theorem for j!L. In particular, we now2

assume that j : U ãÑ X is an open immersion with U smooth, L is a local system on3

U , and G “ j!L. Note that we may replace U by an open dense V Ă U . This will be4

necessary in Step 4 below.5

Step 2: Consider a commutative diagram6

U
j̃
//

j

  

Y
f̃
//

π
��

S

X

f
??

where j, j̃ are open immersions and π is a proper morphism. The diagram above induces7

(via functoriality of sheaves on X-schemes) the isomorphism:8

Rπ!j̃!pLq Ñ j!pLq

Moreover, since π is proper, one has Rπ! “ Rπ˚. Because R rf? “ Rf? ˝Rπ? we obtain the9

isomorphism below for ? “! and ? “ ˚:10

Rf̃?pj̃!pLqq Ñ Rf?pj!Lq.

Given γ P ALpSq, π induces a map ALγpY q Ñ ALγpXq. Moreover, if γ1 P ALγpY q, then11

Sppγ1, j̃!Lq “ Sppγ1 ˝ π, j!Lq. It follows that it’s enough to prove the theorem for the12

morphism f̃ and G “ j̃!L.13

Step 3: We apply the previous step to an embedded resolution of singularities of the pair14

pX,Zq. In particular, we may assume that X is smooth and Z is an s.n.c.d. Moreover, we15

may choose a smooth compactification X of X such that XzU “ D is an s.n.c.d. We may16

further assume (once again applying resolution of singularities) that D “ A`B where A17

and B are s.n.c.d.’s and XzX “ A. In particular, XzU “ B X XzA X B.18

Step 4: We fix a smooth compactification S Ă S so that the morphism f extends to19

f : X Ñ S. For s P S, let Xs denote the corresponding scheme theoretic fiber. Applying20

relative desingularization to the pair pX,Dq over S, we may assume that for every s P S,21

pXsqred Y D is an s.n.c.d. Specifically, suppose pDiqiPI are the irreducible components of22

D. For each J Ă I, we restrict f to DJ “
Ş

jPJ Dj, and consider the restriction fJ of f to23

DJ . We apply Sard’s theorem to the morphisms fJ to obtain a zariski open subset S 1 Ă S24

over which each fJ is smooth. We now consider Z :“ Xzf
´1

pS 1q, and apply resolutions25

to the pair pX,Z Y Dq to obtain a pair pX,Dq. Note that our original U is now replaced26

by U X S 1, and X by its inverse image in X.27

28

Finally, note that new pX,S, f,Gq is now in the good situation. □29
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We shall now assume that pX,S, f,Gq is in the good situation and we are concerned with1

the boundary monodromy of Rif?G. We first consider the case of ? “ ˚. In fact, the case2

of ? “! is simpler and will follow immediately from the method of proof of the former case.3

4

Consider now γ P ALpSq, and the associated morphism from the punctured disk h : ∆˚ Ñ

S. Since S is compact, this extends to a map from the disk h : ∆ Ñ S. Seeing γ as a
loop in ALpSq, one has

Spredpγ,Rif˚Gq “ Spredpγ,Rif˚pj˚Gqq

if G is a constructible sheaf of K-vector spaces. The analogous claim also holds in the5

setting of sheaves of R-modules. Let H :“ j˚G. As we shall see below, by the discussion6

in section 2.3, in order to compute Spredpγ,Rif˚pHqq, one is reduced to computing the7

monodromy action on the stalks of the nearby cycles.8

9

The assumptions above have as a consequence the following normal form for the diagram10

above (restricted to ∆). Let x0 P f
´1

p0q. In this case, one has a chart Ω around x0 (and11

centered at x0) with local coordinates given by12

a1, . . . , aℓ, a
1
1, . . . , a

1
ℓ1 , b1, . . . , bm, b

1
1, . . . , b

1
m1 , c1, . . . , cn, c

1
1, . . . , c

1
n1 ,

and N :“ ℓ ` ℓ1 ` n ` n1 ` m ` m1 such that13

(1) A X Ω (resp. B X Ω) is the divisor defined by the vanishing of
śℓ

i“1 ai
śℓ1

j“1 a
1
j14

(resp.
śm

i“1 bi
śm1

j“1 b
1
j).15

(2) The morphism f is given by fpa1, . . .q “ aλ1
1 ...aλl

l b
µ1

1 ...bµm
m cν11 ...cνnn for positive inte-16

gers λi, µj, νk.17

The neighborhood Ω can be identified with a product of small disks ∆N (with coordinates18

as above), and with this notation X X Ω is a product19

p∆˚
q
ℓ`ℓ1

ˆ ∆N´pℓ`ℓ1q

and U is the product20

p∆˚
q
ℓ`ℓ1`m`m1

ˆ ∆N 1

where N 1 “ N ´ pℓ ` ℓ1 ` m ` m1q. With this notation, let p : ∆N Ñ ∆N2

denote the21

projection to the non-primed coordinates (so that N2 “ ℓ`m` n) and g : ∆N2

Ñ ∆ the22

map given by gpa1, . . . , aℓ, b1, . . . , bm, c1, . . . , cnq “ aλ1
1 ...aλl

l b
µ1

1 ...bµm
m cν11 ...cνnn . In particular,23

f “ g ˝ p (when restricted to Ω). We are interested in the eigenvalues of the monodromy24

action on the stalk RΨf pHqx0 of the nearby cycles along the morphism f (restricted to a25

small disk ∆ via h) of the sheaf H.26

Proposition 3.1.2. With notation as above, and suppose R “ K an algebraically closed27

field:28



16 MADHAV NORI AND DEEPAM PATEL

(1) Suppose that x0 is contained in an irreducible component of B which is not con-1

tained in f
´1

p0q (i.e. m1 ą 0), then RΨf pHqx0 “ 02

(2) Suppose m1 “ 0, and n ą 0. Let γ P π1p∆
˚q be the canonical generator as before.3

The action of γ on RiΨf pHqx0 has roots of unity as eigenvalues. Moreover, there4

is a γ̃ P ALpUq and an integer r ą 0 such that f ˝ γ̃ “ γr, the eigenvalues of γ5

acting on RΨf pHqx0 are contained in Spredpγ̃,Lq1{r, and the action of γ̃ is trivial.6

Finally, the action of γ is diagonalizable if the characteristic of K is zero.7

(3) Suppose m1 “ 0 and n “ 0. In this case, there is either an a or a b variable. Then8

there is a γ̃ P ALpUq and an integer r ą 0 such that f ˝ γ̃ “ γr and the eigenvalues9

of γ acting on RΨf pHqx0 are contained in Spredpγ̃,Lq1{r.10

Proof. Before beginning the proof, we set-up some notation. By the discussion in 2.3,11

the stalk RΨf pGqx0 can be computed as follows. For t P ∆˚ small enough, the stalk12

is given by (and choosing Ω small enough) the cohomology group HipΩ X f
´1

ptq,Hq “13

HipΩ X f´1ptq,Gq. In the proof below, by abuse of notation, we shall still use U,X,X to14

denote U X Ω, X X Ω and X X Ω “ Ω (and similarly for the fiber f´1ptq).15

(1) With notation as above, f´1ptq “ g´1ptq ˆ p∆˚qℓ
1

ˆ ∆m1

ˆ ∆n1

where p∆˚qℓ
1

(resp.16

∆n1

, ∆m1

) is the product of punctured disks (resp. disks) in the a1 variables17

(resp. b1, c1 variables). Now note that f´1ptq X B is the same as above, except18

that the product of the disks in the b1 variables is replaced by its closed subset19

b1
1b

1
2...b

1
m1 “ 0. On the other hand, G restricted to B is zero (since it is by definition20

j!L). It now follows by Corollary 3.1.4 that the stalk of the nearby cycles vanishes21

when m1 ą 0. We apply the corollary as follows. We take W “ Ω X f´1ptq, we22

express W “ W1 ˆ W2 where W2 is the product of the discs in the b1
j variables,23

and define F : W ˆ I Ñ W by F pw1, b
1
1, b

1
2, ..., b

1
m1 , sq “ pw1, sb

1
1, sb

1
2, ..., sb

1
m1q.24

(2) Suppose m1 “ 0. Let G denote the fundamental group of the open subset given25

by a1...alb1...bmc1...cna
1
1...a

1
l1 ‰ 0. This set is the product of punctured disks in the26

a,a1,b,c variables and the disks in the c1 variables. Let V denote this set, and we27

shall view it as an open subset of U (or rather U XΩ). Note that U is the product28

of punctured disks in the a,a1,b, variables and the disks in the c and c1 variables.29

Note that one has open inclusions:30

V Ă U Ă X Ă X.

Now G is the free abelian group with basis given by the canonical loops in the31

punctured disks. We denote these by32

γipaq, γjpbq, γkpcq, γi1pa1
q where 1 ď i ď l, 1 ď j ď m, 1 ď k ď n, 1 ď i1

ď l1.33

The inclusion of V Ă U gives a surjection

G Ñ G2,

where G2 is π1pUq, and the map is given by killing the loops in the c variables. On34

U , the constructible sheaf G is the local system L and therefore corresponds to a35
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finite dimensional representation L of G2. As noted above, we are interested in1

the monodromy action on Hipf´1ptq,Gq. First, note that t ‰ 0, and in particular2

f´1ptq Ă U since m1 “ 0 and therefore all µi ą 0 (for all 1 ď i ď m) or there3

are no b-variables (in which case U “ X). In particular, G is the local system4

given by the local system L on f´1ptq. Similarly, since none of the c-variables can5

vanish on a point in f´1ptq, it follows that f´1ptq Ă V . Now, the morphism f6

restricted to V induces a morphism η : G Ñ γZ on fundamental groups, and we7

let K “ kerpηq. We are interested in the action of γ on Hipf´1ptq, Lq. Note that8

K is the fundamental group of a connected component of f´1ptq. The number9

of such connected components is d where ηpGq “ γdZ. Note that hpγipaqq “ γλi ,10

hpγjpbqq “ γµj , hpγkpcqq “ γνk and ηpγi1pa1qq “ 0. It follows that d is given by11

the g.c.d. of the λ1, . . . , λl, µ1, . . . , µm, and ν1, . . . , νn. Below, let rλi
“ λi{d, and12

define rµj
, rνk similarly. We shall consider two cases: d “ 1, and d arbitrary.13

Case (i) Suppose d “ 1. In this case, η is surjective, and Hipf´1ptq, Lq can be identified14

with the group cohomology HipK,Lq (since f´1ptq is an Eilenberg-MacLane15

space with fundamental group K). Moreover, the monodromy action can16

be identified with the action of the quotient G{K on the aforementioned17

cohomology group. It now follows from Lemma 2.4.1 and Remark 2.4.2 that18

the eigenvalues of γ can be computed by choosing a lift of γ to G. If n ą 0,19

then there is a c variable appearing; we may assume that ν1 ą 0. In particular,20

the action of γ is given by the induced action of γ1pcq. But, the latter acts21

trivially, and therefore γν1 is the identity. It follows that the eigenvalues22

of γ are contained in the ν1-th roots of unity. In this case, the γ-action is23

diagonalisable if the characteristic of K does not divide ν1.24

Case (ii): Suppose d ą 1. Again, since there is a c variable, we may assume ν1 ą 0. In
this case, we have the action of G{K – γdZ on HipK,V q and therefore the

natural action of γZ on IndγZ

γdZH
ipK,V q. Moreover, this representation (of γZ)

can be identified with the monodromy action of γ on Hipf´1ptq, V q. One can
see this geometrically as follows. Consider the morphism f 1 “ f 1{d (which
is well defined in the current setting), and consider the resulting cartesian
diagram (in the neighborhood Ω of x0):

Ω
Id

//

f 1

��

Ω

f
��

∆˚ z ÞÑzd
// ∆˚.

Restricting to X (and denoting by f 1 the resulting morphism), and arguing25

as in the previous case, we see that the assertion holds for f 1 and the sheaf26

G. In particular, γ1ν1{d is the identity on HipK,V q, where γ1 denotes the loop27

in the disk on the left in the diagram above; it maps to γd in the disk on the28

right. The local system Hipf´1ptq,Gq (on the disk on the right) is identified29
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with the push-forward of the local system Hipf 1´1ptq,Gq (on the disk on the1

left) along the morphism z ÞÑ zd. In particular, it is identified with the2

induced representation above. The action of γd on Hipf´1ptq, V q is therefore3

the natural action of γd on the direct sum of d copies of HipK,V q. It follows4

that γ has roots of unity as eigenvalues. More precisely, pγqν1 is the identity.5

(3) Suppose now that both m1 “ 0 and n “ 0. We may once again argue as in the6

second case above. In all cases (including those considered in (2) above), we may7

consider f 1 “ f 1{d with d as above. Note that ηpγipaqq “ γλi . Suppose that8

there is an i such that λi ą 0 (i.e. there is an a-variable). Arguing as in (2), the9

eigenvalues of γ are therefore contained in the set of λi-th roots of the eigenvalues10

of γipaq on V . If there are no a-variables, then there is certainly a b-variable, and11

we see that the eigenvalues of γ on the nearby cycles are contained in the µ1-th12

roots of the eigenvalues of γ1pbq.13

We note that in all cases considered in (2) the eigenvalues of γ are roots of unity, and14

the γ-action is diagonalizable if the characteristic of K is 0 (or more generally if the15

characteristic does not divide any of the λi, µj, νk). □16

Lemma 3.1.3. Let W be a paracompact Hausdorff space, I “ r0, 1s, and H be a sheaf of17

abelian groups on W ˆ I such that18

(1) Hwˆp0,1s is locally constant for all w P W ,19

(2) H|Wˆt0u “ 0.20

Then HipW ˆ I,Hq “ 0 for all i ě 0.21

Proof. Suppose W is a single point. Then the statement amounts to the assertion that if22

H is a sheaf on I which is locally constant sheaf on p0, 1s and whose stalk at 0 is 0, then H23

is cohomologically acyclic. Therefore, the claim is clear in this case. Let p : W ˆ I Ñ W24

denote the projection map. By proper base change and previous discussion, Rp˚pHq “ 0.25

Consideration of the Leray spectral sequence now gives the desired conclusion. □26

Corollary 3.1.4. Let W and I be as in Lemma 3.1.3. Let F : WˆI Ñ W be a continuous27

map such that F pw, 1q “ w for all w P W , G be a sheaf on W , and H “ F ˚pGq. Suppose28

H satisfies the hypotheses of Lemma 3.1.3. Then HipW,Gq “ 0 for all i ě 0.29

Proof. Let i : W Ñ W ˆI denote the map ipwq “ pw, 1q. Then F ˝ i “ IdW , and therefore
the induced composite morphism

Hi
pW,Gq

F˚

ÝÝÑ Hi
pW ˆ I,Hq

i˚

ÝÑ Hi
pW,Gq

is the identity map. On the other hand, by Lemma 3.1.3, the middle term is zero.30

Therefore, HipW,Gq “ 0 for all i ě 0.31

□32

Proof. (Theorem 1.1.3 (1)) By Theorem 3.1.1, it is enough to prove this in the good33

situation. We explain how to deduce this from Proposition 3.1.2.34
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(i) We first consider the case of Rf˚. By the discussion preceding Proposition 3.1.2,
it is enough to prove that there is a finite set M of loops on X (mapping to γ
under f) so that

Spredpγ,RifHq Ă
ď

γ1PM

Spredpγ1,Gq.

In fact, we shall see that there is a finite set M Ă ALpUq with the requisite
property. Recall that RΨf pHq is a constructible complex of KrT, T´1s-modules.

Fix a stratification of f
´1

p0q on which RΨi
f
pHq is locally constant, and let Z be

a connected component of one of the strata. By Proposition 3.1.2, given a point
x0 in this stratum, either the stalk RiΨf pHqx0 “ 0, or there is a loop γ̃ P ALpUq

such that f ˝ γ̃ “ γ and

Spredpγ,RiΨf pHqxq Ă Spredpγ̃,Lq
1{r.

It follows that

Spredpγ,RiΨf pHq|Zq Ă Spredpγ̃,Lq
1{r.

Since there are only a finite number of strata, we conclude that there is a finite
subset M Ă ALpUq such that for all γ1 P M , f ˝ γ1 “ γ, and

Spredpγ,RiΨfHq Ă
ď

γ1PM

Spredpγ1,Lq
1{r.

Note that we can choose an r and a finite set M that works for all i. By the
discussion in Section 2.3 (5), we have

Spredpγ,Hj
pf

´1
p0q, RiΨf pGqq Ă Spredpγ,RiΨfGq.

We now apply the nearby cycles spectral sequence (see section 2.3 (2)). Note that
the abutment is

Hp
pX t,Hq “ RpfpHqt.

Since this is an extension of subquotients of Hjpf
´1

p0q, RiΨfHq, the result follows.1

(ii) Consider now the case of Rf!pGq. Note that in this case, we are reduced to com-2

puting Spredpγ,Rf˚pj!Gq. Therefore, this is the good situation where X “ X and3

A “ H.4

□5

Proof. (Theorem 1.1.3 (2)) This is a consequence of the reductions above. The key point6

is that on an open subset of S, Rif˚G (resp. Rif!Gq) is a local system. Since dimpSq “ 1,7

the complement is a finite set. In particular, there are only a finite number of algebraic8

loops to consider on the base S (the ones with center in this finite set and those with9

center in SzS). More precisely, the discussion in Section 2.2 and Remark 2.2.1 combined10

with the first part of the theorem now immediately gives the second part.11

□12
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Proof. (Theorem 1.1.7) Suppose now that G is a constructible sheaf of R-modules. Again,1

by Theorem 3.1.1, we may assume that we are in the good situation. Arguing as in2

the proof of Theorem 1.1.3 (1) above, it is enough to prove the analog of Proposition3

3.1.2 in the setting of sheaves of R-modules. Note that in the last step of the argument4

in the proof of Theorem 1.1.3 (1) (for Rf˚) when passing to extensions, the union of5

reduced spectra must be replaced by the sum of the corresponding subschemes. We now6

explain the modifications needed for the analog of Proposition 3.1.2 in the setting of R-7

modules. The proof of part (1) of that proposition clearly goes through in the setting of8

R modules, giving the same conclusion in the case that m1 ą 0. One can deal with parts9

(2) and (3) of the proposition simultaneously as follows. First, we set f 1 “ f 1{d as in the10

proof of Proposition 3.1.2, and continue with the notation above. Now suppose P pT rλi q11

(resp. P pT rµj q, P pT rµk q) is a polynomial that annihilates Hipf 1´1ptq, V q, then the induced12

representation described in the proof of Proposition 3.1.2 is annihilated by P pT λiq (resp.13

P pT µjq, P pT νk)). This gives the desired result.14

□15

3.2. Some remarks and extensions. In this section, we discuss some extensions of16

Theorem 1.1.7 to a slightly more general setting. These will be useful in section 6 for our17

applications to monodromy in abelian covers.18

19

Let f : X Ñ S be a morphism with dimpSq “ 1 and consider the following data:20

(1) A locally constant sheaf RS of commutative noetherian rings (of finite homological21

dimension) on S.22

(2) A sheaf F of f´1RS-modules on X which is weakly constructible as a sheaf of23

abelian groups. Recall, this means that there is a good stratification on which F24

is locally constant, but we do not require any finiteness hypotheses.25

(3) A locally constant sheaf of ideals IS Ă RS,26

We first note that the functors Rf˚, Rf! are still defined on such objects. Let s0 P S,27

and consider a loop γ P ALpSq with center s0. In particular, the morphism h : ∆˚ Ñ S28

associated to γ extends to the full disk h : ∆ Ñ S so that hp0q “ s0. Upon restricting29

everything to this disk we have the following data:30

(1) R (resp. I) is constant (up to shrinking ∆), and canonically identified with its31

stalk R :“ Rs0 (resp. I :“ Is0).32

(2) Rif?pFq is a weakly constructible sheaf of R-modules, and up to shrinking the disk33

is locally constant on ∆˚. Note that since R is locally constant on the disk, the34

monodromy action on Rif?pFq is R-linear. We are interested in Sppγ,Rif?pFqq.35

(3) Let RI :“ R{I. Note that this is also a locally constant sheaf of commutative36

noetherian rings (of finite homological dimension). Again, we may assume that its37

restriction to the disk is constant and canonically identified with the stalk R{I.38

Let FI :“ F bf´1pRq f
´1pR{Iq.39
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(4) Rif?pFIq is a weakly constructible sheaf of R{I-modules, and we are also interested1

in Sppγ,Rif?pFIqq.2

We claim that the conclusion of Theorem 1.1.7 remains valid in the previous setting. In3

addition, we also have a compatibility property when going modulo I. Given a closed4

subscheme Z Ă A1
R and I Ă R, we denote by ZI :“ Z

Ş

A1
R{I the corresponding scheme5

theoretic intersection considered as a closed subscheme of A1
R{I .6

Theorem 3.2.1. With notation as above, there is a finite set M of pairs pγ1, nγ1q where7

γ1 P ALγpXq, f ˝ γ1 “ γnγ1 such that:8

(1) We have

Sppγ,Rif?pFq Ă
ÿ

γPM

Sppγ1,Fq
r1{ng1 s.

(2) We have

Sppγ,Rif?pFIq Ă
ÿ

γPM

Sppγ1,Fq
r1{ng1 s

I .

Proof. This follows from the following observations, whose details we leave to the reader:9

(1) Firstly, for both assertions, the reductions of the previous section to the good10

Hironaka situation can be performed in our given setting.11

(2) Secondly, once in the good situation, we note that locally around the loop, we12

are dealing with constructible sheaves of R-modules. In particular, this is exactly13

the setting of (the proof of) Proposition 3.1.2. This immediately proves the first14

assertion.15

(3) We assume that we are in the local setting of Proposition 3.1.2. Our sheaf F
is the G of loc. cit. and FI is the sheaf GI . Consider a stratification such that
both RiΨf pFq and RiΨf pFIq are locally constant. Given a stratum Z (of such a
stratification), we see that for an x P Z:

Sppγ,RiΨf pFqxq Ă Sppγ1,Fq

and therefore
Sppγ,RiΨf pFq|Zq Ă Sppγ1,Fq.

We have also have the analogs of these inclusions for the sheaf FI . The stalks16

RiΨf pFqx can be computed as in the proof of Proposition 3.1.2. We see that in17

each case it is either zero, or a certain group cohomology with coefficients in the18

module M or M{I. Since AnnR{IpMq “ pI ` AnnRpMqq{I, the result follows.19

□20

4. Proof of Theorem 1.1.3 (1) and Theorem 1.1.7: dimpSq ě 1.21

In this section, we will complete the proof of Theorems 1.1.3 (1) and 1.1.7. Let f : X Ñ S,22

and G be a constructible sheaf of R-modules on X.23

24
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First note that, in order to prove Theorems 1.1.3 (1) and 1.1.7 for Rqf!pGq, we may reduce1

to the case of dimpSq “ 1 since any algebraic loop lies in a curve and since Rf! commutes2

with base change. Therefore, the claims for Rf! follow from the results of the previous3

section.4

5

We consider the case for Rf˚ in a special setting. Suppose X is smooth and proper, and6

let U ãÑ X ãÑ X be open immersions where U is Zariski dense. Let D :“ A ` B Ă X7

be a simple normal crossings divisor such that XzA “ X, XzD “ U and U “ XzB X X.8

We shall refer to such a triple pU,X,Xq as a ‘good Hironaka triple’.9

Proposition 4.0.1. Let U ãÑ X be an open dense subset and X ãÑ X such that pU,X,Xq10

is a good Hironaka triple. Let L be a local system of R-modules on U and γ P ALpXq. Let11

j : U ãÑ X and j1 : X ãÑ X denote the given open immersions, with A,B, and D as above12

and consider Rqj1
˚pj!Lq. Then γ lifts to a loop γ1 P ALpUq such that Sppγ,Rqj1

˚pj!Lqq Ă13

Sppγ, Lq. If L is a local system of K-vector spaces, it follows that BSppRqj1
˚pj!Lqq Ă14

BSppLq.15

Before proving the proposition, we prove Theorems 1.1.3 (1) and 1.1.7 for Rf˚ assuming16

the proposition.17

Proof. (1.1.3 (1) and 1.1.7 for Rf˚) We begin with some reductions. Recall, Theorem18

1.1.7 implies Theorem 1.1.3 (1) by passing to the underlying reduced scheme. Therefore,19

we shall only consider the former setting. Without loss of generality, we may assume that20

G is a constructible sheaf (rather than a bounded complex of such) of R-modules and let21

γ P ALpSq.22

23

Step 0: As before, we may assume that X and S are connected and reduced. We may
also assume that S is proper.
Step 1: We note that if Theorem 1.1.7 holds for morphism g : Y Ñ Z and h : Z Ñ S,
then it also holds for h ˝ g as application of the Leray spectral sequence. We may factor

our given morphism f : X Ñ S as X
j

ãÝÑ X
f
ÝÑ S where the first morphism is an open

immersion and the second is proper. Since Rf ! “ Rf˚ for proper morphisms, we are
reduced to proving 1.1.7 of an open immersion.
Step 2: Consider now an open immersion j : X ãÑ X. We may stratify X by smooth
locally closed subsets such that the restriction of G to each of these is a local system. Since
these give rise to a (finite) filtration of the original constructible sheaf, we are reduced to
proving the claim for each such stratum. In particular, we may assume that there is a
connected smooth locally closed subset Z Ă X, and G is obtained as an extension by zero
from a local system on Z.
Step 3: Consider the closure Z of Z in X. We may reduce to establishing the claim for
X “ Z. In particular, we may assume that there is an open dense smooth subset U Ă X
and that G is given as an extension by zero from a local system on U .
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Step 4: Note that we may assume X is proper by an application of Nagata compactifi-
cation.
Step 5: We now apply resolution of singularities to obtain a commutative diagram:

U

“

��

jV
// V //

π

��

V

��

U
jU
// X // X

where V , V are smooth, the right square is cartesian, the left horizontals are open immer-1

sions, and the vertical maps are proper. Moreover, pU, V, V q is a ‘good Hironaka triple’.2

Arguing as in Step 1 and noting that pjV q! ˝Rπ˚ “ pjUq! (by properness of π), it is enough3

to establish the claim for the triple pU, V, V q. Since the latter is a ‘good Hironaka triple’,4

the result follows from Proposition 4.0.1.5

□6

In the remainder of this section, we give the proof of Proposition 4.0.1. In particular, we7

now fix a good Hironaka triple pU,X,Xq with D “ A ` B as above. If γ P ALpXq, then8

the associated morphism h : ∆˚ Ñ X extends to the disk h : ∆ Ñ X since X is proper.9

By abuse of notation, we set γp0q :“ x P X to be the image hp0q, and call this the center10

of γ.11

Proof. (Proof of Proposition 4.0.1) We begin the proof with setting up some notation and12

making two preliminary observations. For a ě 0, the set of x P XzB that belong to13

exactly a irreducible components of A is denoted by T a. Note that T 0 “ U . We define14

T´1 “ B. Thus, X is the disjoint union of its Zariski locally closed subsets T a taken over15

a “ ´1, 0, 1, . . .. The proposition is concerned with the sheaves Rqj1
˚G where G :“ j!L.16

Observation 1: The sheaves Rqj1
˚G vanish for all q ě 0 when restricted to B.17

Proof: Fix q ě 0. The observation is deduced by checking that the stalk of Rqj1
˚G is zero18

at every point x of B. By definition Rqj1
˚Gx is the direct limit of HqpΩ X X, j!Lq taken19

over all neighborhoods Ω of x in X. So, it suffices to check that HqpΩ X X, j!Lq “ 0 for20

a cofinal system of neighborhoods Ω of x in X. Suppose that x belongs to exactly b ě 121

irreducible components of B. Then x has a neighborhood Ω Ă X and complex-analytic22

maps pb : Ω Ñ ∆b and pn´b : Ω Ñ ∆n´b such that:23

(i) pb ˆ pn´b : Ω Ñ ∆b ˆ ∆n´b is an isomorphism,24

(ii) Ω X pXzBq “ p´1
b pp∆˚qbq, and25

(iii) Ω X X “ p´1
n´bΩ

1 for some open Ω1 Ă ∆n´b
26

The homotopy pz, w, tq ÞÑ ptz, wq for z P ∆b, w P ∆n´b, t P r0, 1s pulls back to a homotopy27

F : Ω ˆ r0, 1s Ñ Ω satisfying:28

(a) F pu, 1q “ u for all u P Ω29

(b) F pu, 0q P B for all u P Ω30

(c) The restriction of F ˚j!L to tuu ˆ p0, 1s is locally constant for every u P Ω31

(d) Moreover, F pW ˆ Iq “ W when W “ Ω X X.32
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Applying Corollary 3.1.4 to W “ Ω X X and the restriction of the sheaf j!L to W , we1

deduce that HqpΩXX, j!Lq “ 0 for every q ě 0. This vanishing is valid for a fundamental2

system of neighborhoods Ω of x. This completes the proof of Observation 1.3

4

Observation 2: The sheaves Rqj1
˚G are locally constant when restricted to T a for every5

a ě 0. This is a simple consequence of the product structure (in the usual topology)6

induced by the stratification. More precisely, every point x of T a (with a ě 0) has7

(i) a neighborhood Ω in XzB,8

(ii) holomorphic maps pa : Ω Ñ ∆a and pn´a : Ω Ñ ∆n´a such that9

Ω X X “ p´1
a pp∆˚qaq and pa ˆ pn´a : Ω Ñ ∆a ˆ ∆n´a is an isomorphism10

(iii) Furthermore, there is a locally constant sheaf L1 on p∆˚qa and an isomorphism11

from p˚
aL

1 to the restriction of L to ΩzA.12

By (iii), the arrow p˚
a : Hqpp∆˚qa, L1q Ñ HqpΩ X X,Gq is an isomorphism. From this

we easily deduce that every x1 P Ω X Ta “ p´1
a p0q possesses a fundamental system of

neighborhoods Ω1 of x1 such that HqpΩXX,Gq Ñ HqpΩ1 XX,Gq is an isomorphism. This
produces a natural isomorphism from the constant sheaf

Hq
pp∆˚

q
a, L1

qΩXTa Ñ Rqj1
˚G|ΩXTa .

The proposition will now be deduced from Lemma 2.4.1. Recall that an analytic loop13

γ of X, by virtue of being an F an-valued point X, is in fact an F an-valued point of T a
14

for a unique a. The action of γ on the local system Rqj1
˚G|Ta is under discussion; by15

Observation 1, we only need to discuss the case a ě 0.16

17

Note that the center γp0q of the loop lies in the intersection of exactly a ` s components18

of A for some s ě 0. Assume that the center γp0q lies in exactly b components of B. Now19

we have a neighborhood Ω of γp0q and (pointed) complex analytic maps pa, ps, pb, p
1 from20

pΩ, γp0qq to p∆a, 0q, p∆s, 0qp∆b, 0q, p∆n´a´s´b, 0q respectively such that21

(i) pa ˆ ps ˆ pb ˆ p1 : Ω Ñ ∆n is an isomorphism22

(ii) ppa ˆ psq
´1pp∆˚qa`sq “ Ω X X and Ω X X X p´1

b pp∆˚qbq “ Ω X U23

(iii) there is a local system L1 on p∆˚qaˆp∆˚qsˆp∆˚qb which pulls back to L on ΩXU .24

Denote by Ga, Gs, Gb the fundamental groups of p∆˚qa, p∆˚qs, p∆˚qb respectively. The25

map pa ˆ ps ˆ pb from Ω X U to p∆˚qa ˆ p∆˚qs ˆ p∆˚qb induces an isomorphism of26

fundamental groups. Choose a point t P Ω X U and let M denote the stalk of L1
27

at ppaptq, psptq, pbptqq. Thus, M is an RrGs-module where G :“ Ga ˆ Gs ˆ Gb. Let28

W “ t0u ˆ p∆˚qs ˆ p∆˚qb Ă Cr ˆ Cs ˆ Cb, and note that ppa ˆ ps ˆ pbq
´1W “ Ω X T a.29

30

Now, the locally constant sheaf we are mainly concerned with, namely Rqj1
˚G|TaXΩ, is31

clearly the pullback of a sheaf F on W . Observation 2 gives an explicit description of F .32

The stalk of F at p0, psptq, pbptqq is identified with HqpGr ˆ 1 ˆ 1,Mq. The fundamental33

group of Ω X T r is identified with the quotient group Q :“ G{pGr ˆ Gs ˆ 1q.34

35
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Now γ has its image q P Q. We choose a lift q1 P G of q, and then define γ1 to be the1

preimage of q1 under the isomorphism π1pΩ X Uq Ñ G. All the groups in question are2

commutative, and so the proposition follows from an application of Lemma 2.4.1. □3

5. Integral Transforms and Intersection cohomology4

In this section, we collect some general results on the behavior of local monodromy under5

various functors and give an application to the behavior of local monodromy under integral6

transforms and intersection cohomology.7

5.1. Local Monodromy under integral transforms. Let f : X Ñ Y be a morphism8

of schemes, and as before G P Db
cpXq a constructible sheaf of K-vector spaces.9

Theorem 5.1.1. (1) One has BSppf˚Hq Ă BSppHq.10

(2) There is an integer r ą 0 (depending on f,G) such that BSppf˚Gq` Ă pBSppGq`q
1
r .11

The similar assertion also holds for Rf!.12

(3) Given F ,G, BSppF b Gq Ă BSppFqBSppGq. Here, the right-hand side is the set13

consisting of the products of elements in each of the sets.14

(4) Given F ,G, BSppHompF ,Gqq Ă BSppFq´1BSppGq. Here BSppFq´1 is the set of15

λ such that λ´1 P BSppFq.16

Proof. (1) We have already taken note of the case of f˚ (see 2.1.6).17

(2) This is the main result of the previous sections.18

(3) This follows from the standard fact that the eigenvalues of a tensor product of19

matrices consists of the products of the eigenvalues of each of the matrices.20

(4) This follows from the previous assertion and the fact that for finite dimensional21

vector spaces HompV,W q – V ˚ bW (as representations of some G). Moreover, the22

eigenvalues for the dual representation are given by the inverses of the eigenvalues23

of the original representation.24

□25

As an application, we compute the monodromy for various integral transforms.26

Corollary 5.1.2. Consider a diagram of schemes

Z

p
~~

q

��

X Y

Let K P Db
cpZq, and consider the functor I : Db

cpXq Ñ Db
cpY q where IpGq “ q˚pp˚pGqbFq.

Then there is an integer r ą 0 such that

BSppIpGqq
`

Ă ppBSppGqBSppKqq
`

q
1
r .

For example, this applies to the usual Radon transform (or more generally Brylinski-27

Radon transform). In the case of the Radon transform, X “ Pn is projective space28
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and Y “ P̌n is the dual projective space. If H Ă Pn ˆ P̌n denotes the usual incidence1

correspondence, then K :“ i˚K i.e., the direct image of the constant sheaf K under the2

inclusion i : H ãÑ PnˆP̌n. With this notation, the Radon transform R : Db
cpPnq Ñ Db

cpP̌nq3

is (up to shifts) by definition q˚pp˚pGq b Kq. Note that BsppKq consists of r-th roots of4

unity for some fixed r (since it is the direct image of the constant local system).5

Corollary 5.1.3. With notation as above, there exits r1 ą 0 such that

BSppRpGqq
`

Ă ppBSppGqµrq
`

q
1
r1 .

Here µr is the set of r-th roots of unity. In particular, R preserves the full subcategory of6

quasi-unipotent sheaves.7

5.2. Intermediate Extensions. In this section, we discuss the monodromy of inter-8

mediate extensions of perverse sheaves, and, in particular, intersection cohomology. We9

denote by PpXq the category of perverse sheaves in X (with coefficients in R where R is10

also assumed to be an artinian ring).11

12

Given a locally closed immersion j : U ãÑ X, one has the intermediate extension

j!˚ : PpUq ãÑ PpXq.

In this setting, we have the following result for spectra of intermediate extensions.13

Theorem 5.2.1. Let γ P ALpXq. Then there is a finite set M of pairs pγ1, nγ1q with
γ1 P ALpUq, nγ1 a positive integer, j ˝ γ1 “ γnγ1 , and such that

Sppγ, j!˚pGqq Ă
ÿ

pγ1,nγ1 qPM

Sppγ1,Gq
r1{nγ1 s.

Proof. Let U denote the closure of U in X, j : U ãÑ X the resulting closed immersion,14

and let j1 : U ãÑ U denote the natural inclusion. Since j is a closed immersion, j!˚ “ j˚.15

Moreover, j!˚ “ j!˚ ˝ j1
!˚. As a result, we may reduce to the case of an open immersion.16

17

We may assume that X (and U) is integral (i.e. connected and reduced). We may stratify18

X by strata Si for 0 ď i ď d :“ dimpXq such that:19

(1) dimpSiq “ i, each Si is smooth, and the closure Si “
Ť

jěi Sj.20

(2) For each ´d ď k ď 0, let Uk :“
Ť

iďk S´i. We may find a stratification such that21

U “ Ur for some r. Note that U0 “ X.22

Let jk´1 : Uk´1 ãÑ Uk denote the natural open immersions. Recall U “ Ur and j : U ãÑ X
is the natural inclusion. With this notation, one has the following formula (see [3], 2.1.11):

j!˚pGq “ τď´1j´1˚ ˝ τď´2j´2˚ ˝ ¨ ¨ ¨ ˝ τďrjr˚pGq.

The result is now a direct consequence of Theorem 1.1.7.23

□24
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We give an application of the previous result to the monodromy of intersection cohomol-1

ogy. Let X Ñ S be a proper morphism to a proper curve, s0 P S, and j : U ãÑ X2

be a smooth dense open subscheme. Let G P PpUq, and consider H :“ j!˚pGq P PpXq.3

Consider a loop γ P ALpSq centered at s0 and the corresponding map h : ∆ Ñ S. Up4

to shrinking the disk, we may assume that Rf˚pHq is locally constant when restricted5

to the punctured disk. For t P ∆˚, one has Rif˚pHqt “ HipXt,Htq, and the standard6

monodromy action of γ on HipXt,Htq. The previous theorem has the following corollary.7

Corollary 5.2.2. With notation as above, there is a finite set (denoted by M) of pairs
pγ1, nγ1q with γ1 P ALpUq, nγ1 a positive integer, f ˝ γ1 “ γnγ1 , and such that

Sppγ,Hi
pXt,Htqq Ă

ÿ

pγ1,nγ1 qPM

Sppγ1,Gq
r1{nγ1 s.

6. Monodromy of Generalized Alexander Modules8

In this section, we explain how to deduce a local monodromy theorem in the setting of9

Alexander modules and discuss applications to computing monodromy in abelian covers.10

11

6.1. Monodromy of Alexander Modules. Let S be a smooth (connected) curve, and12

let π : G Ñ S be a semi-abelian scheme. Consider a commutative diagram:13

(1) X

f
  

F
// G

π
��

S

14

In this setting, one has the following data:15

(1) Let e : S Ñ G denote the identity section. Consider the relative tangent bundle
TG{S at the identity, and vector bundle e˚TG{S on S. We have a commutative
diagram:

1 // K // e˚TG{S,e

##

exp
// G //

��

1

S

where the exp is the exponential map, and K is the kernel of the exponential map.16

By abuse of notation, we use the same notation K to denote the sheaf of sections17

of K. This is a sheaf of abelian groups on S with stalks Ks “ π1pGs, epsqq for a18

closed point s P S. We set RS :“ ZrKs. In particular, RS,s “ Zrπ1pGs, epsqqs.19

(2) Consider the diagram above in the case where S “ SpecpCq. In this case G is a
semi-abelian variety, and LG :“ pexpq!pZq is the the local system on G whose stalk
at y P G is given by the free abelian group on homotopy classes of paths from e
to y:

pLGqy “ Zrπ1pG; e, yqs.
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We view this as a (left) R-module, where R “ Zrπ1pG, eqs.1

(3) In the setting of (1), we may also consider the sheaf LG :“ pexpq!pZq on G. For2

s P S, we have L|Gs “ LGs . We also note that, by construction, LG is a sheaf of3

π´1pRSq-modules.4

(4) Below, we make the following additional hypothesis:5

(H) The semi-abelian scheme G is an extension of an abelian scheme A Ñ S by a6

torus T Ñ S. We do not assume that T is a split Torus.7

It follows that π is a fibre bundle. In particular, RS is locally constant.8

(5) Let s0 P S, γ P ALpSzs0q denote a (non-trivial) algebraic loop centered s0, and9

h : ∆ Ñ S denote corresponding map from the disk with center hp0q “ s0.10

By abuse of notation, we use the same notation h : ∆ˆ Ñ Szs0 to denote the11

restriction of h to the corresponding punctured disk. By (4), the restriction of G12

over the disk is a topological fibration.13

(6) Consider now the diagram 1 but with everything restricted to ∆. Then, under the14

hypothesis (H), RS can be (canonically) identified with the constant local system15

given by R :“ RS,s0 (on the disk ∆). Moreover, LG (restricted to G∆) is a local16

system of R-modules.17

(7) Let F on X be a constructible sheaf of B-modules where B is a commutative18

noetherian ring of finite global dimension. We may consider the sheaf FR :“ F bZ19

F ˚pLGq. Under our hypothesis (H), and restricting to ∆˚, this is a constructible20

sheaf of BR :“ B bZ R-modules on X.21

We wish to apply Theorem 1.1.3 and its variant Theorem 3.2.1 to understand the mon-22

odromy action on Rf˚FR. With γ P ALpSq chosen above, we therefore consider a lift23

γX P ALpXq of γr (for some integer r ą 0q. Now, Definition 1.1.1 gives rise to the24

following three schemes:25

(1) the closed subscheme SppγX ,Fq Ă SpecpBrxsq,26

(2) the closed subscheme SpecpγX , F
˚Lq Ă SpecpRrxsq, and27

(3) the closed subscheme SpecpγX ,FRq Ă SpecpBRrxsq.28

Recall, BR “ B bZ R. The BR-algebra homomorphism Brxs bZ Rrxs Ñ BRrxs given by29

1 b x ÞÑ x and x b 1 ÞÑ x induces diag : SpecpBRrxsq Ñ SpecpBrxsq ˆ SpecpRrxsq.30

Definition 6.1.1. Given closed subschemes Z Ă SpecBrxs and W Ă SpecRrxs, we31

define Z
‚

ˆ W :“ diag´1
pZ ˆ W q. Furthermore, when W “ SpecpRrxs{px ´ Mqq for some32

M P R, we will denote Z
‚

ˆ W by Z
‚

ˆ M .33

Note that FR “ F bZF
˚L implies that SppγX ,FRq “ SppγX ,Fq

‚

ˆSppγX , F
˚Lq. The loop34

γX maps to (via composition by F ) a loop γG P ALpGq. It follows that SppγX , F
˚Lq “35

SppγG,Lq. The latter is determined by the homotopy class rγGs P π1pπ´1∆q. Now, the36

loop γG maps to a loop γA P ALpAq. The properness of A Ñ S implies that γA : ∆˚ Ñ A∆37

extends to a map γA : ∆ Ñ A∆, where A∆ denotes the inverse image of ∆ under A Ñ S.38

It follows that the homotopy class rγGs lies in the kernel of π1pπ
´1∆q Ñ π1pA∆q and the39
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latter is clearly given by π1pTs0q ãÑ π1pπ
´1∆q. By the group of monomials we mean the1

subgroup π1pTs0q of the units of R. We now have rγGs “ M P Rˆ. In view of the fact that2

L is a sheaf of free rank one R-modules, we see that SpecpγG,Lq “ SppRrxs{px ´ Mqq.3

By the above discussion, we have established that SpecpγX ,FRq “ SpecpγX ,Fq
‚

ˆM . We4

now apply Theorem 3.2.1 (1) to deduce:5

Theorem 6.1.2. With notation as above, given γ P ALpSq centered at s0 P S, there are6

(a) lifts γi P ALpXq of γri where ri are natural numbers, for all 1 ď i ď m, and7

(b) monomials M1,M2, ...,Mm P π1pTs0q8

such that the closed subscheme Sppγ,Rqf˚FRq of SpecpBRrxsq is contained in the sum of

its closed subschemes pSppγi,Fq
‚

ˆ Miq
1{ri taken over i “ 1, 2, . . . ,m:

Sppγ,Rqf˚FRq Ă

m
ÿ

i“1

pSppγi,Fq
‚

ˆ Miq
1{ri .

Remark 6.1.3. Suppose B “ K, and F is quasi-unipotent. If G “ A, then the group9

of monomials is trivial, and it follows from the previous corollary that the monodromy10

action on Rqf˚FR is quasi-unipotent i.e. the eigenvalues of the monodromy action are11

roots of unity.12

Example 6.1.4. We may apply the previous theorem to the following geometric setting.13

Let Y Ă X be a closed subvariety and consider j : XzY ãÑ X. We set F :“ j!j
˚Z, and let14

FR be as in the Theorem above. With notation as above, we have a local system Rif˚pFRq15

of R-modules (after restriction to a sufficiently small disk). If X Ñ S is proper, or if over16

disk we haveX is a topological fibration, thenRif˚pFRqt “ HipXt, Yt;F
˚
t Zrπ1pGt, eptqsq for17

a general t P ∆˚ and the corresponding monodromy representation. The above theorem18

reduces us to computing the monodromy of the corresponding universal local system19

F´1pLGq, and therefore of LG. In particular, we find that the eigenvalues of monodromy20

are given by M P R whose r-th power is a monomial (from Torus). In particular, we21

obtain results for the monodromy action on ‘generalized Alexander modules’. If G “ A,22

then by the previous remark we get roots of unity, i.e. it is quasi-unipotent.23

6.2. Abelian Coverings. We continue with the notation and hypotheses of the previous24

section. In particular, X,S,G, and F etc. are as in the previous section. We fix a loop25

γ P ALpSq centered at s0, and work over a disk ∆ as before.26

27

Given a finite etale morphism ϕ : H Ñ G, its base change F ˚ϕ : X ˆG H Ñ X is also a28

finite etale morphism. Let nG : G Ñ G denote multiplication by a natural number n; we29

denote the base change F ˚nG by nX : Xn Ñ X and let fn : Xn Ñ S denote the resulting30

composition given by fn “ f ˝ nX . Finally, we consider the sheaf Fn “ n˚
XF on Xn. We31

have the resulting commutative diagram:32
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Xn

nX

��

Fn
// G

nG

��

X
F
//

f !!

G

π
��

S.

Question 6.1. What is the local monodromy of Rqpfnq˚Fn at the loop γ? If F is the1

constant local system Z, then these are roots of unity. What roots of unity appear?2

This is essentially the question 1.1 stated in the introduction. We begin by making the
question above more precise. First, note that Rqpfnq˚Fn “ Rqf˚pnX˚Fnq since nX is a
finite morphism. By the projection formula

nX˚Fn “ F b nX˚ZXn .

On the other hand (working over ∆),

F b nX˚ZXn “ F b F ˚Rn

where Rn is the group-ring of V {V n where V is the fundamental group of π´1s0. Note3

that Rn is viewed as a local system on G. With this notation, Theorem 6.1.2 now has the4

following corollary:5

Corollary 6.2.1. With notation as above, M :“ Rqpfnq˚Fn has the natural structure of a6

Bn :“ BbRn-module, and the γ-action is an automorphism of this module. Let Sppγ,Fnq7

denote the corresponding closed subscheme of SpecpBnrT sq. Then there are8

(a) lifts γi P ALpXq of γri where ri are natural numbers, for all 1 ď i ď m, and9

(b) monomials M1,M2, ...,Mm P π1pTs0q10

such that11

Sppγ,Rqf˚FRq Ă

m
ÿ

i“1

pSppγi,Fq
‚

ˆ Miq
1{ri .

and

Sppγ,Rq
pfnq˚Fnq Ă

m
ÿ

i“1

pSppγi,Fq
‚

ˆ Mi,nq
1{ri ,

Mi,n is the image of Mi in Rˆ
n .12

Proof. This follows immediately from Theorem 3.2.1. □13

We now explain how to use the corollary above in order to solve the question of the14

introduction. In that case, we take F “ Z as the constant local system. By the local15

monodromy theorem, we know that the eigenvalues of the local monodromy of Rfn˚ZXn16

are roots of unity. The above theorem helps to answer which roots of unity appear. More17
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precisely, we look at the sheaf FR, compute the corresponding monomials M and consider1

their images Mn. In particular, this gives a uniform in n computation of the eigenvalues2

of local monodromy.3
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