$$
\begin{align*}
& \text { > } \\
& \text { 1) Lafayette Savings Bank offers an account that pays a nominal rate of i\% per year, compounded } \\
& \text { daily. A deposit of } \$ 1,000 \text { made on January 1, } 2008 \text { had grown to } \$ 1,127.49 \text { on January 1, 2013. Find } \\
& \text { i. } \\
& \mathrm{B}=1127.49 / 1000 \\
& (1+\mathrm{i} / 365)^{\wedge}\left(5^{*} 365\right)=\mathrm{B} \\
& 1+\mathrm{i} / 365=(\mathrm{B} / 1000)^{\wedge} 1 /\left(5^{*} 365\right) \\
& >B:=\frac{1127.49}{1000} ; i:=365 \cdot\left(\mathrm{~B}^{\frac{1}{5 \cdot 365}}-1\right) \\
& \begin{aligned}
B & :=1.127490000 \\
i & :=0.0239995
\end{aligned} \tag{1}\\
& \text { 2) The value of the Purdue P\&C Insurance Company's reserve account was } \$ 850,000 \text { on January 1, } \\
& \text { 2010. They paid claims of } \$ 400,000 \text { on December 31, 2010, } \$ 300,000 \text { on December 31, 2011, and } \\
& \$ 150,000 \text { on December 31, } 2012 \text { from the reserve account. Assuming that the reserve account earned } \\
& 4 \% \text { interest and they paid all of the claims from this account, what was the value of this account on } \\
& \text { January 1, 2013? } \\
& >i:=.04 ; F V:=850000 \cdot(1+i)^{3}-400000 \cdot(1+i)^{2}-300000 \cdot(1+i)-150000 \\
& i:=0.04 \\
& F V:=61494.4000
\end{align*}
$$

[3)I just won a prize that promised to pay $\$ 10,000$ at the end of the year for n years, with the first payment made at the end of the current year. I computed that at 4% interest, my prize is worth $\$ 186$, 646.17 today. Find n.
$\left.\left((1+\mathrm{i})^{\wedge} \mathrm{n}-1\right) / \mathrm{i}\right)^{*} 10000=186646.17(1+\mathrm{i})^{\wedge} \mathrm{n}$
Let $\mathrm{x}=(1+\mathrm{i})^{\wedge} \mathrm{n}$.
$\frac{(x-1)}{i}=\frac{186646.17}{10000} \cdot x$
Also $\ln (\mathrm{x})=\mathrm{n} * \ln (1+\mathrm{i})$
$>\mathrm{i}:=.04 ; \mathrm{a}:=$ solve $\left(\mathrm{x}-1=i \cdot\left(\frac{186646.17}{10000}\right) \cdot x, x\right) ; n:=\frac{\ln (a)}{\ln (1+i)}$;
$i:=0.04$
$a:=3.946091341$
$n:=35.00001516$
4)(From January 1, 2006 to December 31, 2008, First Bank paid 4\% interest, compounded monthly. On January 1, 2009, they lowered their rate to 2% interest, compounded monthly. I deposited $\$ 100$ at the end of each month beginning in January, 2006. How much did I have in my account on January 1, 2013?
$>i:=\frac{.04}{12} ; j:=\frac{.02}{12} ;$

$$
i:=0.003333333333
$$

$$
\begin{align*}
& \begin{array}{ll}
& j:=0.001666666667 \\
>B 1:=\frac{\left((1+i)^{3 \cdot 12}-1\right)}{i} \cdot 100 & \\
& B 1:=3818.155830
\end{array} \tag{4}\\
& \begin{array}{rr}
\\
>B:=\frac{\left((1+j)^{4 \cdot 12}-1\right)}{j} \cdot 100+(1+j)^{4 \cdot 12} \cdot B 1 \\
& B:=9128.780348
\end{array}
\end{align*}
$$

5)Over a 7 year period, an account earned 7% annual effective interest for the first two years, 7% annual effective force of interest for years 3 through 5, and 7% annual effective discount during the 6th and 7th years. Find the annual effective rate of return on this account.

$$
\begin{align*}
& >i:=.07 ; j:=\exp (.07)-1 ; d:=.07 ; i i:=\frac{d}{1-d} \text {; } \\
& i:=0.07 \\
& j:=0.072508181 \\
& d:=0.07 \\
& i i:=0.07526881720 \tag{7}\\
& {\left[\begin{array}{rl}
>k:=\left((1+i)^{2} \cdot(j+1)^{3} \cdot(1+i i)^{2}\right)^{\frac{1}{7}}-1 \\
k & :=0.072578461
\end{array}\right.} \tag{8}
\end{align*}
$$

7) You borrow $\$ 1,000,000$ to buy a house which you finance with a 30 year loan at 5% interest, compounded monthly, on which you pay $\$ 5368.22$ at the end of each month. How much do you owe at the end of the tenth year-i.e. immediately after the 120th payment?

$$
\begin{gather*}
>i:=\frac{.05}{12} ; n:=10 \cdot 12 ; M:=5368.22 ; B:=(1+i)^{n} \cdot 1000000-\frac{\left((1+i)^{n}-1\right)}{i} \cdot M ; \\
i:=0.004166666667 \\
n:=120 \\
M:=5368.22 \\
B:=8.13420040810^{5} \tag{9}
\end{gather*}
$$

8)In problem 7 , immediately after the 120th payment, you refinance the loan at 4% interest, compounded monthly. Assuming that the answer to Problem 7 is $\$ 800,000$ (which is not correct), find the new monthly payment.

$$
\begin{align*}
&>i:=\frac{.04}{12} ; n:=20 \cdot 12 ; \mathrm{M}:=\operatorname{solve}(\left.\frac{\left((1+i)^{n}-1\right)}{i} \cdot P=(1+i)^{n} \cdot 800000, P\right) \\
& i:=0.003333333333 \\
& n:=240 \\
& M:=4847.842950 \tag{10}
\end{align*}
$$

9) At the end of year 1 I deposit $\$ 1000$ into an account that is earning 4% interest compounded annually. At the end of each subsequent year I deposit 3% less than I did the previous year. Find the final accumulation in the account at the end of year 30.
$\mathrm{j}=1.04 ; \mathrm{k}=.97$
10)What price should you pay for a 15 year bond having a $\$ 5,000$ redemption value which has $\$ 200$ coupons, paid 4 times a year, assuming that you want a 5% yield, compounded 4 times a year? Note: The 5% is a nominal rate, not an annual effective rate.
$>i:=\frac{.05}{4} ; C:=200 ; n:=15 ;$

$$
\begin{gather*}
i:=0.01250000000 \\
C:=200 \\
n:=15 \tag{12}\\
000 ; P V:=(1+i) \\
F V:=22714.90155 \tag{13}\\
P V:=10779.75637
\end{gather*}
$$

$$
\overline{\mid}>F V:=\frac{\left((1+i)^{n \cdot 4}-1\right)}{i} \cdot 200+5000 ; P V:=(1+i)^{-n \cdot 4} \cdot F V ;
$$

11)The bond in the previous question is sold after 5 years, immediately after the payment of the coupon, to an investor wanting a 7% yield, compounded 4 times a year?? What should the selling price of the bond be?
$>i:=\frac{.07}{4} ; C:=200 ; n:=10 ;$

$$
\begin{gather*}
i:=0.01750000000 \\
C:=200 \\
n:=10 \tag{14}\\
000 ; P V:=(1+i)^{-} \\
F V:=16446.82678 \tag{15}\\
P V:=8216.850825
\end{gather*}
$$

$$
>F V:=\frac{\left((1+i)^{n \cdot 4}-1\right)}{i} \cdot 200+5000 ; P V:=(1+i)^{-n \cdot 4} \cdot F V
$$

$$
\begin{align*}
& \mathrm{A}=1000\left(\mathrm{j}^{\wedge} 29+\mathrm{k}^{*} \mathrm{j}^{\wedge} 28+\mathrm{j}^{\wedge} 28^{*} \mathrm{k}^{\wedge} 2+\ldots+1 * \mathrm{k}^{\wedge} 29\right)=1000^{*} \mathrm{j}^{\wedge} 29\left(1+(\mathrm{k} / \mathrm{j})^{\wedge} 28+(\mathrm{k} / \mathrm{j})^{\wedge} 27+\ldots+1\right) \\
& =1000 \mathrm{j}^{\wedge} 29\left((\mathrm{k} / \mathrm{j})^{\wedge} 30-1\right) /(\mathrm{k} / \mathrm{j}-1) \text { or } \\
& \left.\mathrm{A}=1000\left(\mathrm{j}^{\wedge} 29+\mathrm{k}^{*} \mathrm{j}^{\wedge} 28+\mathrm{j}^{\wedge} 28^{*} \mathrm{k}^{\wedge} 2+. . .+1^{*} \mathrm{k}^{\wedge} 29\right)=1000^{*} \mathrm{k}^{\wedge} 29(\mathrm{j} / \mathrm{k})^{\wedge} 29+(\mathrm{j} / \mathrm{k})^{\wedge} 28+. .+1\right) \\
& =1000 \mathrm{k}^{\wedge} 29\left((\mathrm{j} / \mathrm{k})^{\wedge} 30-1\right) /(\mathrm{j} / \mathrm{k}-1) \\
& >j:=1.04 ; k:=.97 ; \frac{1000 \cdot k^{29} \cdot\left(\left(\frac{j}{k}\right)^{30}-1\right)}{\frac{j}{k}-1} ; \frac{1000 \cdot j^{29} \cdot\left(\left(\frac{k}{j}\right)^{30}-1\right)}{\frac{k}{j}-1} ; \\
& j:=1.04 \\
& k:=0.97 \\
& 40605.57799 \\
& 40605.57774 \tag{11}
\end{align*}
$$

