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Abstract

We find and investigate the structure of solutions to the Ginzburg Landau
equation for a high temperature superconductor with tetragonal symme-
try. This is done near an isolated, rotationally symmetric d-wave vortex
state with its core at the origin defined on all of R?. We prove that the
solution’s s-wave component nucleates near the vortex core for tempera-
tures just below the d-wave critical temperature. We further show that
this causes the radial symmetry to break and that the solution develops
a fourfold symmetry with respect to a rotation by an angle of 7.

*Research supported by NSF grants DMS-0456286 and DMS-0604839.



1 Introduction

In this paper we analyze solutions to the Ginzburg-Landau (G-L) equation
for a high temperature (high-T.) superconductor near an isolated vortex state.
We are interested in superconductivity for layered materials with small inter-
layer coupling. As such we work with the two-dimensional problem of a single
superconducting layer (R?). Conventional low temperature superconductivity
can be described with a simpler G-I model given in terms of a complex valued
order parameter v and a real, two-dimensional vector field A called the magnetic
potential. The energy density in this case is given as

2
K
e1 = || + aly|? + ?|1/)|4 + |curl Al?

where IT = V — iA denotes the covariant derivative, curl A is the magnetic in-

duction, o = k?(T — T.) such that & is the G-L parameter, T is the (constant)

material temperature, and T, is the critical transition temperature. Supercon-

ducting equilibria nucleate for T' < T.. Motivated by this the energy is nor-
. . . =5 _ 7 — 1

malized by applying the transformation x = \/(T, = T) x, ¢ 7m¢, and

A= \/ﬁA. Suppressing the tilde, the normalized G-L energy is defined as

E(W,A) = /61 = /}R <H¢|2 + %2(1 — %2 + |curl A|2> . (1.1)

For a vector valued B = (By, Bs), curl B = 883;2 — 852/1 and for a scalar valued

&, curl € = (02€, —01€). The Euler Lagrange equation of the functional & is

_ —I1%y — k(1 = [y *)y _
Fo(v, 4) = (curlcurlA + Li(y*Iy — 1[11’[*1/}*)) =0 (12)

For k > 0 the equation (1.2) has a well known vortex solution

; ar(r) .
U(w) =do = fi(r)e?, A(z)=Ag= 1£ )t
where &+ = 1(—z5,21)" such that the energy & (do, Ao) is finite. The functions
f1,a; are smooth and have following properties (see [3], [8], [14]).

0< f1 <1,0<a; <lon(0,00), and f,a} >0,
fi ~eryar ~dr?asr — 0, and

1— f1,1—a; — 0 at exponential rates as r — oo.

Moreover if x > /2 then f; and a; are uniquely determined (see [2]). Vortices
in solutions to (1.2) are zeroes of the superconducting density [1|?, about which



supercurrent circulate. They are a stable feature in type II superconductors (i.e.
for k > %), and the vortex solution is an accurate local description of a degree
one vortex in a general stable solution for x sufficiently large (see [15]). The
model for low temperature superconductivity described above is isotropic and a
signature of this is that the level curves of |1/|? for the vortex solution are radial.

In contrast to this, most high-T, superconductors have anisotropic mean field
features. Here we investigate solutions to a model for certain high-7, materials
having tetragonal crystal symmetry using a G-L theory with two order param-
eters 1 and g, each with a critical temperature T and T (see [10]). The
corresponding energy density takes the form

Mepg|? + K |, |*
M (wadﬂzlbt - Hywdﬂziﬁ: + H:wznzd}s‘ - HZT/J;HZ;?/%)
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Here, 11, II,, are the components of the covariant gradient operator Il = V —4A
along the crystallographic axes = and y. The coefficients K, x,y, and p are con-
stants independent of T" such that K, x, and v are positive. An interpretation
of ey is given in [7]. The superconductor is viewed at the microscopic level as a
square lattice of atoms representing the crystalline structure forming the layer.
Two complex valued order parameters, v and h are introduced representing
the mean field distributions of superconducting electron pairs generated by the
respective vertical and horizontal nearest neighbor bonds of the lattice. Thus
|v|? (|h|?) represents the number density and Y v=vlllv (ATIA—RITATY popre.

2i 2i
sents the supercurrent density of the pairings due to these bonds. The material

is defined to be in a pure d-wave phase if h = —v and it is in a pure s-wave
phase if h = v. Based on these definitions we set 15 = UL\'/EU) and g = (h\;;).

The coupling constant p is a measure of the anisotropy of the lattice’s atomic
composition. The signs of the quadratic coefficients determine which phase is
dominant. If oy > 0 and ag < 0 then the term a|t,|? promotes |1hs| < 1 and
the material is classified as a d-wave superconductor. If the signs are reversed
it is labeled a s-wave superconductor. Most low temperature superconductors
are isotropic s-wave materials characterized by =0, as < 0, and ag > 0. In
this case es is uncoupled in ¥, and 4. We see it is energetically favorable to
seek a pure s-wave state (4, s, A) = (0,75, A), and ez reduces to a density
equivalent to e;.

Let v be a positive constant. Here we investigate an anisotropic d-wave model
where we assume p # 0, 75 < T < T4 a5 = o(T —T?) > 0, and ag =
k3(T — T¢) < 0. Normalizing ey as before, in this instance with respect to T2,
we are lead to



Ex (s, A) = / ey — (1.3)
[ (00 K2 4 oLl =TT + )

2, 7 4’121_ 22 1 A2
HBJs | + Sl + - (L= [ehal )" + |eur

where 3 = U((;:i__j;;)) > 0. The corresponding Euler Lagrange equations are
~IP%q — p(I13 = T5)tbs — K (1 = [tha]*) Ya = 0 (1.4)
— KT — p(IT; = I)¢a + Bts +3[0s[*ehs = 0 (1.5)

curlcurl A + %i(wéﬂwd — YPall* ) + Ei(zﬁﬁﬂws — P IT*7)  (1.6)

2
p (=i U5 + i3I, + c.c.
2 \ i I — i, + c.c.

We find and investigate the structure of solutions (14,1, A) that are near the
isolated, rotationally symmetric d-wave vortex state (dy, 0, Ag) as T T Tg. Note
that 3(T') — oo, forcing 1, — 0as T T T. It is predicted that 1, nucleates away
from 0 as T' decreases from T with the nucleation concentrating near the vortex
core of ¥4. It is believed that this causes the rotational symmetry of the vortex
state to break and that for 7' < T¢ the solution develops a fourfold invariance
with respect to a rotation through angle of g This scenario was proposed and
studied in a series of papers [1],[4],[5],[6],[7],[10],[12],[17] by examining reduced
models, applying numerical simulations, and using formal asympototics. The
most direct evidence of symmetry breaking has come from examining the level
curves to [¢s]. In [17], based on numerical simulations, the authors conjecture
that a fourfold symmetric s-wave component is generated around the vortex and
that its magnitude is of order O(%) as T T T<. The authors of [1] propose a more

refined picture, that asymptotically ¢ ~ 4 (12 —112) ¢q =~ 5 (113, — 113,,) do
as 8 — oo where Il = V — i Ap. In [6] the solution is expanded as a series in %

and this relation is derived formally. In [10] the authors analyze the zeroes of
the function (I3, — 11§, ) do. It follows from their work that if > 2 then

|(H(2)m — H%y) do(r, 0)’ = |(H(2)z — Hgy) do(r,0 + om)| for all (r,8)
(1.7)
if and only if 2a € Z.

This last result is the only prior analytic evidence supporting fourfold symmetry
that we know of.

In this work, we consider the full set of GL equations (1.4)-(1.6) and find a
locally unique solution, prove that it has fourfold symmetry, and establish the



above approximation rigorously. Setting n = %, s = [, and d = g we
consider the following equations on all of R? for small 1 > 0.

—IPd — nu(IL; —1I))s — k*(1 — |d]*)d = 0
—KnIT?s — p(I1% — H;)d +s5+9n%s]?s =0

1 1
curleurl A + ii(d*ﬂd —dIrd*) + insz’(s*Hs — sII*s™) (1.10)

N (—isllzd" +id*Il;s +c.c\ _
2 \ dsllyd* —id* llys +cc )

where TT = V —id, A= Ao+ A1, d = do+di, (di,A) € (H2(R2,C) x
H?(R?,R?)) and s € H?(R?,C). Our main theorem follows.

Theorem 1.1. Given v,k > 0 and p € R there exist constants Ki(v, k, i),
m (K, vy, Kk, @), 01(K,v,k,u) > 0 such that if K > K, and 0 < n < 1 then
there exists a unique solution ((dy, A1),vs) € (H?(R?,C) x H2(R?,R?)) NK* x
H2(R?,C) to (1.8) - (1.10), for which ||(d1, A1)z < 61.

Here K = kerF; where F; is the linearized operator of Fy at (dg, Ag). Moreover,
we can expand w; = (di, A1) = nroy + 1 and show that ||ty ||z = O(n?).
We further show that s = (I, — 115, )do + O(n) in L*(R?), or equivalently
Y5 = (I3, — 113, )do + O(n?), which coincides with what Affleck, Franz, and
Amin stated in [1]. We then prove that the solution satisfies the underlying
invariance for the problem.

Theorem 1.2. Let (d, A,ns)(n) be the solution from Theorem 1.1. Then

d(ﬂj‘, y) = Zd(y> 71‘)3
(Al(x,y),AQ(x,y)) = (_A2(y7 _'r)vAl(yv —Jf)),
s(z,y) = —is(y,—x)

for all (z,y) € R2.

We next examine (IIf, — II§,)do further and show that (1.7) is valid for all
K # % We then combine this with our expansion in 7 for s to show that radial
symmetry is broken exactly as in Theorem 1.2 by proving a nonlinear version

of (1.7).
Theorem 1.3. Let k # % , o # 0, and (d, A,ns)(n) be the solution from
Theorem 1.1. There exists n2 > 0 so that if 0 <n < ny then

|s(r,0)| = |s(r,0 + an)| for all (r,0) if and only if 2a € Z.

Lastly we remark that the following existence theorem which is analogous to
Theorem 1.1, requiring that the coupling constant g be sufficiently small rather
than K be large, is true and can be proved in the same manner. The assertions
from Theorems 1.2 and 1.3 hold for these solutions as well.



Theorem 1.4. Given K,~,k > 0 there exist constants po(K,~, k), m(K,~, &, (),
01(K, v, k, 1) > 0 such that if |u] < po, and 0 < n < ny then there exists a unique
solution ((dy, A1),vs) € (H?(R?,C) x H2(R?,R?)) N K+ x H2(R?,C) to (1.8) -
(110), fO’f‘ which H(dlaAl)”Hz < (51.

2 Existence and uniqueness of the solution

In this section and Section 3 we prove Theorem 1.1 assuming p =v =x =1
for convenience and note that our analysis works for any 4 € R and v,k > 0.
Thus we consider the following equations on all of R2.

~I%d — (2 = 1I)s — (1 — |d|*)d = 0 (2.1)
—KnIl?s — (I = I)d + s + 1°[s|*s = 0 (2.2)
curleurlA + %i(d*ﬂd —dId*) + %nZKi(s*Hs — sIT*s™)
n (—'isl}ﬂ;cf* —i—_icj*l’[ws + c.c) _
2 \ usllyd® —id*1l,s +c.c

where I1 =V —iA, A= Ag+ A, d=dy+d; and (dq,A4;) € (H*(R?,C) x
H?(R?,R?)) and s € H?(R?,C).

(2.3)

We will use wg = (do, Ao), w1 = (d1, A1) and let

)
F,(dy,A1,5) = Fy(do+di, Ao+ Ay,s)
= Fﬂ(wlﬁs)
= Fo(d7 A) + Hn(dh Aq, S)
where
_ —I12d — (1 — |d|*)d
Fo(d, 4) = <curlcurlA + Li(d*Tld — dII*d*) )’ (2:4)
—n(I; —113)s
Hn(dl,AhS) =

Lp2Ki(s*Ils — sIT*s*) + 1 (_anfd +id HIHOC) (2.5)

isIlyd™ —id* Il s + c.c

and where s is the solution of (2.2) corresponding to (di,A;). For given
(di, A1) € H2? the equation (2.2) is the first variation with respect to s for
the energy (2.18). This energy is strictly convex with respect to s and as such
there exists a unique solution s € H' and it is easy to show that s € H? since
(dl, Al) € H?.

Now split Fg as a linear part F; and nonlinear part Fs.

Let Fo(do + dl, Ao + Al) = Fl(dl, Al) + Fg(dl,Al) where

Fl(dl,Al) = (26)
(-1 + (2ldo|* = 1)] dy + did; + i [21a,do + do V] - Ay
Im([I05,d5 — diTLa,] dy) + (~A + V9 + |dol?) - Ay



and

Fg(wl) = Fg(dl,A1> =

<2d0|d12 + déd% + |d1|2d1 + |A1|2(d0 + dl) + ’L(V . Al)dl + 2iA7 - Vdy +2A0 - A1dq

—Im (d;(V — ido)dy) + Ay (2Re(dgdy) + |di|?)
It is easy to see from (1.1) and (1.3) that for any given smooth function ¢,
€l(wa A) = El(wei@’ A + v@) and 52(wda ¢S, A) = 52(wd€i@a wseicp, A + V(,O)

which is to say that the densities are gauge invariant. The equation (1.2) is
invariant under coordinate translations, and because of the invariance of 1 the
equation is invariant under gauge transformations as well. Gustafson and Sigal
study the linearized operator F; in [8]. They use these invariants to characterize
the kernel of F;.

Proposition 1. [8/,[16]

K= KerF, =
. 0pdy — i Addo dydy — iA%dy
span{ (Zéo;p) , ( 0 ) , (@,A(l) — aiAg) )g@ € H3},
0, A3 — 0, A} 0
and (Frw,w) > 1o(w,w) on K+ NH? for some 9 > 0.
Here (w,w) = || f Iz + | g lgz for
w = (f.g) € L([R? C) x L*(R*,R?)

and K+ is the subspace orthogonal to K C L2 x L2. The operator F, is
an invertible map from K+ N H? onto K+. Moreover by elliptic estimates
|wlg: <7il|Fi(w) ;2 for some 1 < o0.

2.1 Existence of projected solutions

In this subsection,we will show
P(Fn(d(]+d1,A()+A17S)) :0 (28)
—KnIl’s — (I = I2)d + s + 1°[s|?s = 0 (2.9)

have a unique solution (di,4;) € (H*(R?,C) x H*(R?,R?*)) N K+ and s €
H?(R?,C) using a fixed point theorem where P is the orthogonal projection
onto K.

We need some preliminaries.

Proposition 2. (Interpolation; Gagliardo and Nirenberg) [13]
Let u € LY\L? in R™ and its derivatives of order m,

D"ueL"1<q,r<o0,0<j<m, for someq< oo.

(2.7)

).



Then HDjqu < C || D™ ||u|\(11_a provided
1 j 1 1 j
1<p<oo, :j—|—a<—m)—|—(1—a)7 and L <a<l1
p n roon q m

(the constant C' depending only onn, m, j, q, r, a), with the following exception.
n

If1 <r <oo, and m — j — = is a non negative integer then it is required that
L <a<l

Let M = By2(0,6;) N K+ and 0 < n < n; where 8, 71 > 0 will be fixed
later. For a solution of (2.2) corresponding to a given (dy, A1) € M, we get the
following estimate.

Lemma 2.1. If (di, A1) € M and s is the solution of (2.2) corresponding to
(dy1, Ay),then

K 12 |, 2 [ Bealtts + sl + 2 oflsl
< |~ 1) (do + ) ||, < €.
(We will use a constant C for any constant independent of 7, 61, K and 7.)
Proof. By (2.9)
H (—Kn) I’s + s+ n3|5|25 ||i2
= K|S+ sl + 5?2 [ sl
+/(—K77)((H25) s 4 (st)* s) +/(—Kn4)((H2$) |s|?s* + (H2s)* |s|25).
I (an

Now (I) =2 [ Kn|IIs|? and

(IT) = Kn* / [sIT* (s5*s*) + c.c.
- K7]4/Hs(2 (Vs* +iAs*)|s]2 + (Vs — iAs) (s*)2) +ee.
_ K774/2|Hs|2|s|2+(ﬂs)2 (5%) + c.c. > 0,
Since we may assume 01, 1 < 1,
I T2 (do + d1) || 2
= [ B (do + i) = 20410, (do + da) — 10, A1 (do + dy) — AV A (do + ) |

SO+ ld g + || 0eAldy [| o + [ Oecr AT [ + || AT AN [| )
<CH O 0,A |l llga +C 1 Dadh e || A"
<C+C|A |y s gz < C

L2



Here and after we use Proposition 2 for various values. For example, the third

inequality follows from Proposition 2 for p = 4,7 = 0,m =1, =r =n =

_ 1
2andaf§.

So the claim follows. O

Using
/|HS|2 :/(|V$|2fiAsVs*JriAs*VerA-Ass*) > %/|Vs\2701/|5|2,

we can get the following inequality if we choose 7; small enough (e.g.Kn1C; <
1
5)-

1
Ko 12 |+ [ KalVsf 4 5 st + [ ol
< || (@2 ~12)(do + du) || < C. (2.10)

Lemma 2.2. If s satisfies (2.9), then

C
nlAs|lg: < 'l Cn.

Proof.
| Asllge < [|T28]|, + 1124~ Vs lga + [ (V- A) s o + | A- As [
sy, < o

124 Vsl < Gl Dslye < (1520 4y ),

The second inequality is due to Lemma 2.1.
Moreover, using Proposition 2 we have

(V- Dslle < Clisllge + (V- Av)s
< Cllsllge + 11V Au Il llsle
1 3
< Cllsllge +Ca (1 As I sl )
< Cllsllge + Codt |1Aslga +Cdi [z

Also ||A - Asl|y2 < C||s|y2 by Proposition 2. Therefore, if C36; < % then

C C
nl|Asly. < K +Cnlsllg: < It +Cm. O

Note. If we choose 7; small and K big enough, we can make 7|52 < d2
(for any 62 > 0) which will be fixed later. Without loss of generality we may
put K = %0 for some fixed constant Cj.



Lemma 2.3. For given wy = (dy1, A1), ws = (d2,42) € M, let s1, sz be the
solutions of the following equations
—K’I]H?Sl - (H%m —ny) (d0+d1)+81 —|—7’]3‘81|281 = 0 (211)
—KnIl3sy — (113, — 113, ) (do + d2) + s2 + 1°[s2f’s2 = 0 (2.12)
where H1 =V—i (AO + Al) H2 =V—i (AO + AQ) B Hlx == Vx—z (AO + Al)l

and A} means first component of Ay and A3 means second component of Ay.
Then

N

C
nlsi —sollg < <K +7710) [ (di, A1) — (d2, A2) || g2

Cds [|wi — walge -

IN

Proof. From (2.11) and (2.12)
—KnlI3 (s1 — s2) + 51— 52 + 1°|s1 — s2|* (51 — s2)
=Kn (I} —103) so + (I3, =103, ) dy — (113, — 113, ) d»
+ (13, 103, ) do — (13, — 113, ) do
—n* (s155 + s752) (s1 — s2) — n°s152(s] — 53).
Similar to Lemma 2.1

1 2
3 <K2772 | 103 (51 — s2) || 12 + /KﬁW(Sl —52)* + [[s1 — s2llf2 + /773|81 - 82|4>

<[ (13, 113, ) dy — (113, = T13,) da || + || K (103 = 113 ) 2 ||
+ ” (H%r - H%y)do - (H%r - Hgy) do Hiz
+[|7* (s185 + s782) (51 — s2) + 1’5152 (57 — 85) |72
Since

In® (s183 + sis2) (51— s2) + n°s1s2 (s} — s5) |2

< Cnds |l sy — s llge
1 2
T (Kn || 117 (s1 — s2) || o + lls1 — s2ll.2)

< (| dy = T05pds g, + | Ty dy — 15, da ||, + | K (T0F —105) s |
[ Mpdo = o do [, + || TTFydo — 15, do || -

10



The first term
[T dy —TI5,da || .

< ‘ Ouncly — 2i (AL + AY) Opdy — i0, (AL + AY) dy — (AL + AY) (AL + AY) dy

oy = 20 (Al + AY) 0udy — i, (Al + AY) do — (A + Ab) (45 + 43) & |,
< | Duads — Drady ||y + || 2648 (Dudy — Do) ||y + || 102 AD (dy — ds) |
+ || AgAG (dy — da) || + || 246 (ATdy — Addy)

o

e + | AT Aids = A3 Agds ||,

HL2 + H OrAvdy — 0, Azdy HL2 :

First four terms are easily bounded by C’le - wQH -
H

2[| Ag (A1 — Ayds) ||, < O Aldy = Adda ||
= C| Aldy — Aldy + Ajdy — Ajds ||
(1144 N = dalgs + ] |43 = 43| )

Cllwy — w2 ||y -

IN A

Similarly,

HA}A}dl - A5A§d2HL2 < Cle - ngH and

2 || A10pdy — A30nds ||
=2|| A}0ydy — AjOpdy + A30pdy — Ajpds ||
<2 || A} - A% ||L4 || azdl ||L4 + H A% HOO || aﬂcdl - axd? HL2
1 3 3 1
< || D* (A}~ A3 1 || (A1 = AD) | [| D | 1 s 1 +C flun =z g

< Cllwr — w2 |l -

is estimated in the same manner.

Furthermore, | 0, Atdy — 0, Ald,

Therefore

I
[ M,di —3,ds ||, < Cllwr —ws g2 and [T, dy — 13, da ||, < C'llwi —ws g -

[ K (T = TI3) 55 | e
< || Kn(=iV(Ag+ Ay)se +iV(Ag + Az)sa) |2 (= 1)
+2Kn|| (Ao + A1) Vsa — (Ag + A2) Vs |12 (= 1o)
+En || (Ao + A1) - (Ao + A1) s — (Ao + Az) - (Ao + A2) 52 |2 (= Ts)
I < Klnsall | VAL — VA |1
< CK6 || VA, —VAs |l < Cllwr — wy ||y

11



I, < 2Kn| (A1 — A2) Vsallp.
< 2K || Ay = Az |y [InVsz |y
1 3 3 1
< CK||D* (A = Ao) |1 | Ar = As || || nD%s2 || 2 [l ms2 I e
< CKéllwy —wsa || < Cflwr —wz ||z
Is = Knl[240 (A1 —A2)sa+ (A1 + Az) - (A1 — Az) 52 |12
< CK|Ins2 o[l A1 = Az [|ge
+COK || ns2 o (HA1||OO + ||A2||oo) | A1 — Az [|g2
S CK52 ||w1—w2 ||H2 S C’||w1—w2 ”HQ
Therefore
Kn || TF (s1 = s2) || + 151 = s2 |2 < O lwi — wa [l - (2.13)

As in the proof of lemma 2.2,

Cllwr — ws ||

MIAGs1 = 52) s < 2

+Cnu || (51— 52) |2 -

Son|si—s2 g2 < (% —l—mC) || w1 — w3 ||gg2 - Therefore, the claim follows. O

Note 7]”51 — So ||H2 SC(;Qle 7U)QHH2.

Lemma 2.4. If s1, 82 satisfy (2.2) corresponding to wy,ws respectively, then

| Hy (di, A1, s1) — Hy (da, Az, 82) [ < C2 || wy — w2 [|ge -

Proof. Recall
—n(II7 — II))s

L2 o TTe  oTTH ok p (sl d* +id*1l,s + c.c
3 Ki(s71ls = s1l's7)) + 3 ( isTTEd* — id*Tls + c.c

Hn(dhAlas) =

We will prove the inequality for each term separately.

H77H%x31 _77H3132HL2
= (v —itas + 40) (V= i(ag + A1) 51
0 (V = i(Ao+ A2)) (V= i(Ao + 42))' 2 ||,
H 7783396(51 — 82) ||L2 +n || 2Z(A0 + Al)l - OpS1 — 2Z(A0 + A2)1 - Oy 89 ||L2
+n || 02 (Ao + A1) s1 — 92(Ao + Az)'so ||L2

+77 H (Ao + Al)l(Ao + A1)181 — (AO + Ag)l(Ao + A2)182 HL2
=+@+B)+1

IN

12



By Lemma 2.3

(1) < nlls1—s2llge < Co|lwr —wa g
(2) < Cnl||0zs1 —0zs2lpe +Cnll A1 — Az ||y 10251 |14
<

C2 [|wr — w2 [

(3) < |n (0:A5) (s1— s2) HLz +||n (0. Als1 — 0, A}s2) HLz
< Clinlsi = s2) e + || 1 (0241 — 9:A43) 51 + 00z Aj(s1 — 52) || 12
< O fwr — w2 gz + {051 [l | 02 (A1 — A2) |2 + [| 0z A2 [ [[1(s1 — 52) [|1.4
< Corflwr — w2 [z + C02 [ w1 — w2 lgz + C || A2 [y [ 1(s1 — 52) |2
< Cog ||wy — wa || g2
(4) < n||AjAgs1 — AjAgsa ||, + 2n || AlAgs1 — AzAgss ||
+n || A%A%sl - A%A;SQ HL2
< Onllsy—s2llge + Cnl| Alsi — Absy + A3(s1 — s2) || o

+n || AjAls) — AJALs) + AYAL(s1 — s2) HL2
< O f|wr —wa g2 +2C | 051 || [| A1 — Az [[g2 +2C02 [ n(s1 — s2) |2
2
+lmsillo || ATAT = A3AS || o + 11l A2 llo [ 51— s2 [l
< Cof|wr —ws g -

Similarly H nH%ysl — T]H%ySQ HL2 < Co ||wy — w2 |-

I P Kst(V —i(Ag+ A1) s1 — n?Ksy (V —i(Ag + Ag)) 52 HL2
< H n2KsTV51 - n2K53V52 HL2

(1)
+ || K57 (Ao + Ar)sy — * Ks5 (Ao + Az)sa || -

(2

K || s7Vs1 — s5Vsy + 55 (Vs1 — Vsa) ||

K0 (st —s3) lpa 1mVsillps + Ins2 | nK | Visy = Visa |
CHrK b || wr — wa ||gg2 + CO2K s || w1 — wo |52

Coa [|wy —wa ||g=  since 62K = Cy, a fixed constant.

VAN VAN VAN VAN

(2) < H 772KA()515>1k — 7’]2KA0528§ HL2 + H nQKAlsls’{ — 772KA2323§ HL2 .

I 11
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I < C’KHn2 (8187 — s185 + 5185 — $283) HL2
< CK|[ns1llo (st = 83) [lpz + CK |[ns2 || |0 (51— 52) [I12
< CK&G||wy —ws g < Ca || wi — wa || -
II < K H n? (A1s187 — Agsi s + Agsist — Agsish + As(sy — s2)s5) HL2
2
< K(H n81 oo | A1 = Az flg2 + [ A2 | (51 [l n [l 81 — 82|12
1 Azl s Lo (1 = 52) Il )
< Cdy||wr — w2 |y -

151 (V + (Ao + A1) (d + di) = ms2 (V + (Ao + A2))* (d + d)
< || madi(s1 = 52) s + || ms10ai = 152025
(1) (2)
|31 (Ao + A1) (5 + ) = > (Ao + A2)" (d5 + )

‘Lz

‘L’A"

(3)

—

—_
~—
I

Clin(si — s2) lgg= < C02 w1 — w2 |2

| ns102d] —1510.d5 +n(s1 — 52)02d3 ||y,

[m51 [l | 02dy — Ordz |12 + [ n(s1 — 52) | | Oud |2
Coz || w1 — w2 g2

H n(sy — SQ)A(I)df; ||L2 + H nslA}dfj — nszA%df) HL2

+ || ns1Agdy — ns2Aqds || . + || ms1ATdy — nsaAyds
I+ 1T+ 11T+ 1V.

—~

[\

~—
|

IA A CIA

[

ClIn(s1 —s2) |z < Coa || wi — w2 ||y

C || ns1A7 = ns145 + (ns1 — ns1) Ag ||

Clinsillo A1 = A2 [lp2 + C | A2 | [In(s1 — s2) [I1.2

Coa | wy — wa || g2

C || ns1d] — nsadi + sz (di — d3) ||y

Céz || w1 — w2 ||gg2

| ns1ALd; — nso ATd] + nsadi (AL — Ag) +ns2 Ay (df — d5) ||
Coa || w1 — w2 [l + [ ms2 | 1 di [l | A1 — A2 ||y

+ [ms2 oo [ A2 [ [ d1 — da [|y2

Céy || w1 — w2 |42 -

11

117

v

(VAN VAN VAN VAN VAR VARSI VAN VA

IA

Furthermore  2i(sIl}d*—id*Il,s) can be estimated in the same way. Therefore

| Hy(dy, A, 51) — Hy(da, Az, 82) || < O || w1 — w2 [ -

14



Lemma 2.5.
H FZ(wl) - F2(w2) HL2 <Ch || w1 — w2 ||H2 f07‘ wy, wy € M.
Proof.

|| 2do|d1|? — 2do|da|? || .. Clldjdy — dydy + di(dy — doa) || 1.2

Clldillo Idi = dalpe + Cllda || [ d1 — da |12
Coy || wr — w2 ||y -

IA A CIA

Similar estimates hold for || didf — djd3 H
|| 2A0 . A1d1 — 2140 . A2d2 ||L2'

L2 } |A1‘2d0 - |A2|2d0 HLz and

[4(V - A1)dy = i(V - A2)dz g

< (V- A)di — (V- Ag)dy + (V- Az)(d1 — da) |y

SNl V(AL = A2) [l + [V - Az [l [l dy — da |[gs

SO0 || A — Az flgge + Chr || di — da [lig2 < C1 || w1 — w2 || gg2 -

|| Id1]?dy — |da|da | 1d1[?dy — |da|*dy + |d2[*(dy — d2) ||

iy [l || [da]* = Idal? ||z + 1 d2 12, [ d2 = da ||
Co1 || di —da || g2 -

[

IN N A

The remaining differences are estimated in an identical manner. Therefore the
claim follows. O

Lemma 2.6. If w; = (dy, A1) € M then
(1) IF2(wr) 2 < C6F and (2) | Hy(wi, ) [l < Ca.
Proof.

(1) [|2dolads P [l < Clldn |3, < 87

14(V - A)di ||z < Clldi [l |V - Ar g2 < C6F
[ didy ||, < Il dy |15, < €63
All other terms are similar to these.

@) o (I - 1) s . < [0l o + | 1Ly |-

I 11

~
IN

1 B g+ 01241005 . | A" L | A 415
Coy+ Cnll Allggz || s llgg> + Cnll Allzge | 8 llgg> < C62.

N

15



Similarly, 11 < C6é,.

| Ks* s ||, < 7K s*(V —iA)s|y.
< PK | 8*Vs e + CPK | s%s ||
< CnPK ||s |3 < OB

Similarly, || nsITLd* || < Cds and || ndIl,s |1 < Cda. So the claim follows. [J

Theorem 2.1. There exist K1, m(K), 01(K), > 0 such that if K > Kj,
0 < n < n then there exists a unique solution ((di,A;),s) € (H?(R?,C) x
H?(R2,R?))NK* x H2(R2,C) to (2.8) and (2.9), for which ||(dyi, A1)||g> < 0.

Proof. We argue as in [16].
If w € M and s is the solution of (2.9) corresponding to w, then

F,(wo+w,s) = Fi(w)+Fe(w)+H,(w,s) and

PF,(wo +w,s) = PF{(w)+ PFy(w)+ PH,(w,s).

Since Lo = (PFy) U is invertible and ||w||g2 < 71 || Lo(w) |12,
n

Ly ' (PF,(wo +w,s)) = w+ Ly (PFy(w) + PH,(w)).

Now let
Sy(w) = —Lg ' (PFa(w) + PH,(w, s))
then
ISyl < 71l PPa(w) + PH, (w,s) |
< 71 (I PPa(w) s + || PHy(w,5) [ )
< 71 (C102 + Cody) .

We choose §; sufficiently small so that 71C16; < % Then take K big enough
and 7, small enough so that 71Cady < 36;. We then have || S, (w) ||z < 61
Thus S, (w) € M if w € M. Furthermore

| Sp(wi) = Sp(wa) [l < 71 || Fo(wi) — Fa(wz) |l + 71 || Hy (w1, s1) — Hy(wa, s2) || 1.2
< 11 ( OOl wr = ws s + O w1 — w2 g )
1
= 3 | w1 — w2 [|gg2

if 1C(61 4 62) < 3, where s; and s, are the solutions of (2.9) corresponding
to wy and wy. Therefore S, is a contraction map and S, has a unique fixed
point w;, in M. Then (w,, s,) solves the equations (2.8), (2.9) where s, is the

solution (2.9) corresponding to w,. Therefore this proves the theorem. O

16



2.2 w; =0(n)

In this section,we show that if (wy, s) is the solution found in Section 2.1, then
| wi|lgz < CKn. Let wi = (di, A1) € M, s = sg + s1 be the unique solution of

PFn(d() —+ d17 A(] + Alv S) = 0

—KnIlPs — (I = 12)d + s + 1°[s|?s = 0
where d = do +dy, A= Ao+ Ay, so = (H%w — H%y) dop. Then sq is smooth and
is in H2.
We need some properties of Fa(w1) and H, (w1, s).

Lemma 2.7. (1) || Fg(wl) ||L2 S C(Sl H w1 ||H2
(2) | Hy(wi, 50 + 1) 2 < Cn (|| D?s1 ||z + 1151 lL2) + Cnll so Il -

Proof. (1) By simple estimation, the claim follows.
(2) Using

nl| (I = 155) s [lps < [ s [lge +nf| Ty |l

12 (50 + 51) || 2

= || Oua (50 + 51) — 20A 0y (s0 + s1) — i(s0 + 51)9 A" — (AT A")(s0 + 51) HL2

< H Ora:50 ”L2 + || OraS1 ”L2 +C H ar(So =+ 51) ”L2

+ [ 'so + s1 |y || 024" HL4 +Cso + 51 |2 -
Thus
[n (I3 1) s || < Cn (| D?s1f|po + st lige) + Cnlisollga,  (2.14)
Since Hydy € L2,
| sId™ |2 [[slloo I TI5d [l < C]ls] g2

C([|D%s1 s + Is1llpz) + Clisollgz . (215)

IN A

K || s*(V = id)s || K (|lslloo || Vsllez + Cllslloollsllr2)

C?’] (||31HL2 + H D281 HL2 + HS()||H2) . (216)

Note. ||7s]lec < C|ns|lzz < Cdo and 3K = Cp a constant. By (2.14), (2.15)
and (2.16), the claim follows. O

<
<

Lemma 2.8. K || II%s1 ||, + | s1 ||y < CKn+ Cllw: [|g
Proof. Set s = sp + s1 in (2.2). Thus s; satisfies
—  KnI’s; 4 s1+n°[s1)°s1
= (I —1) dy + KnIl®so + (113 — 113,,) — (I — 113,) ) do
(1) (2) (3)

—1° ([50|*s0 + 2|s0[*s1 + 5557 + 5557 + 2[s1]%s0) -

(4)

17



Since || ns|lge < 02 and sp € H?, we may assume | ns1 ||z < 202. (Choose
small 7y if necessary.) As in (2.10),

2
Ko 1251 [+ [ KnlVsi P+ fsalfe + [ s

<1 (1) e+ 1@) e+ 1 B) e+ 11 (4) 1)

Cr Il (4) 172 < AC2 (|| 1sol?s0 |50 + || 2050151 |11 + [| Is0/s1* ||7.
+ H s0%s1% + 2|51|2$0 Hi2)

§0ﬁ+@ﬁwwé+@ﬁ/mﬁ

Therefore if we choose 77; small enough such that C’gnf < % and Csn; < %, then

En |15y [ + st llpe < Cn+ C (1) [l + 1(2) Iz + [/ (3) |2) and

| T2dy || = || Ouads — 2iA'0pdy — d18, A" — AV~ Aldy ||,
< Clldi gz + 20 Alloc | Oadn [l + || dr (92Ag + 02 A1) [[a + | Allc i g2

Using Proposition 2, we can estimate the term

[di10:AL [ < ldillps || 0: AL [|pa < Clldy [lgge | A g2 < C'llwn [lgge -

I«

All other terms related to (1) can be easily bounded by C'|| w1 ||¢-
So [[(DlLe < Cllwr[lge-

12) Il

Kn||1Ps0 |,
KT}”ASO — 2iA - VSQ 7Z‘Sov CA-A- ASO ||L2

< Kn(l[Asolly: +C I Vsollg + 150 llps [V - Ax[lps)
< CKn.
In (3), the term
| (03 —T05,) do ||y = || —iA1 (9 —iAg) do —i (0x — iA5 — iA}) (A1do) ||pa
< Ol Al + ClIDAL gz + Cll Ax g
< Cllw ||H2 .
So [|(3)llLe < Cllwy g2 O

Theorem 2.2. Let wy, s = sg+s1 be the unique solution of (2.8) - (2.9) found
in Section 2.1. Then there exists a ne = n2(K) > 0 such that || w1 |2 < Cn
for any 0 <n <mn2 <m.

18



Proof. Since PF(w1) = —P (Fa(w1) + H, (w1, s)),

< 71| PFi(w1) [lye
< 7 ([Fa(wi) g + 1 Hy(wi, 8) [lg2)
< Ciéi||wi g2 +Cn (H D?s, ||L2 + | s1 ||L2) + Cn.

[[w: [| g2

Taking 07 sufficiently small (e.g. C101 < %) if necessary, we get

lwi g2 < On (|| D?s1 || + Il s1llp2) + O (2.17)

Like in Lemma 2.2,
2
K27 || D?sy ||po + llsallEe < OK?0? ([ sy || Lo + CoB0P s [IEe + [lsu][Te-

If 15 is small enough (e.g. CoK?n3 < 1),

K% || D21 |1, + Is1l2e < CK20? || T2 ||7, + 25112
< Ciflwr e + CE?y?
< o (I D% |lga + Isill3) + O,

The second inequality follows from Lemma 2.8. Therefore replacing K by a

larger one if necessary, we get || D?%s; ||i2 < C for small 72. So [[wi |lgg2 < Cn
by (2.17). O

2.3 Projected solutions are solutions

In this section, we show that if (wy, s) is the solution found in Section 2.1, then
(w1, s) is the solution of (2.1) - (2.3).

Theorem 2.3. There exists a r > 0 which is independent of n so that if w; =
(di, A1), s satisfy

PFn(wo + w1,8) =0
—KnIl?s — (I12 — II2)d + s + 1°|s[*s = 0

and ||wy ||z < 7, then (w1, s) is the solution of (2.1) - (2.3).

To prove this theorem, we need following lemma.
Let

Gn<d0+d1,A0+A1,S)EGn (d,A,S) (218)
1 4
= [ leurtAP AP + 5 (1= 1dP)° + alsf + T lsft + Ko NP
R2
+n {I,sILd" — I, sIL d" + c.cldz.

We can get the following lemma using that the integral is invariant under trans-
lation.
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Lemma 2.9. For d;, A;, s € H>(R?),

iAyd
~/]R? Fﬂ(dbAlv ) (gA vAl)

(s - (- a4 s+ Pl - (22— iags) =0

Proof. Notation. d(h) = d(z + hey), A(h) = A(z + her), s(h) = s(z + hey),

d=d(z), A= A(z), s =s(z
Since G, (d ( ), A(h),s(h)) = G,(d, A, 5),
o G (), AQR), () — Gyl As)
h—0 h
Using difference quotients, gauge invariance and the fact that the terms curlA,
s, (1 —|d|?), IIs, Ild € H', we get the proof of the lemma (see [8],[16]). O
Remark. (1) Similar to Lemma 2.9,
871/ — ’LAQd
Gi,(d, A, s) - —~VA2| =0 (2.19)
R —iA3s

where

B F,(d,A,s)
Gunldr, A1, 5) = (—Knn% — (I = T2)d + s + 1°|s]?s

(2) Since G, is gauge invariant, for any ¢ € H*(R? R),
G, (de'?, A+ Vi, se?) = G,(d, A, s).

Using
8(}77 thp ihe _
h (de A+ hVp, se ) ‘h:o =0
we can get
idy
Gi,(d,A,s)- | Ve | =0. (2.20)
R? 15

proof of Theorem 2.3. Suppose there is no such r. Then for each i, there exist

(d;, A;, 5;) satisfying the equations (2.8) - (2.9) and 7; (d;, A) - <
; and F,, (dl,Al,sl) € KerFq

ie. there exist C1;, Co; € R and ¢; € H(R% R?) such that

F,,(di, A, 5;)
ad 2
— iA5d 0 — 3 Agdo
=Chu < Vilﬁ) +C2; <8A0 vA2 + (—ivo, pivo, (Pi)as (i)y) #0
%,_/
aq
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where §; is the solution of (2.2) corresponding to (d;, A;). After normalization
we may assume

| Crics + Cosaz + (—pivo, wito, (@i)e, (@i)y) [l = 1. (2.21)

Since oy and ao are perpendicular to (—p;vo, @ito, (¥i)z, (¢i)y) and linearly
independent, there exists a constant M independent of ¢ such that |Cy;|+|Ca;|+
| @i [lgn < M.

By Lemma 2.9, remark (2.19), (2.20) and density of H? in H*,

/ (Crior + Coiaz + (—@ivo, 9ito, (9i)zs (0i)y))
R2
2d _iAld 94— iA%d
(e (B 9) o (Bl
+ (=pi(vo + v14), wi(uo + v1i), (Pi)e, (%‘)y)) =0.
Since Ali, dli — 0 in Hz,

/ |Chicr 4 Casars + (—pivo, itio, (9i)as (9i)y)|° — 0 as i — oo. (2.22)
RZ

This contradicts (2.21). Therefore the claim follows. O

By Theorem 2.2, if we choose 75 small enough such that ||wi||gz < r, then we
find that (wy, s) satisfies (2.1) - (2.3).

3 Expansion of the solutions

In this section, we show that the solution @ found in Section 2 can be expanded
W = nroy + s and || s |2 = O(n?). Note that we can prove w = O(n) as the
same method in Section 2.2.

Let w, s be the unique solution of

F,(0,s) =F(0) + Fao(w) + Hy(w,s) =0
—Knll?s — (12 —12) d+ s + 1°|s]?s = 0

where wg = (j()). If we formally expand w = nt; + vy and s = sg + ns; +
0

sz, where so = (I12, — Hio) dp, then (after comparing the coefficients of the

Dl) € K+ NnH? as the

constant and 7 term) we are led to define ro; = (Ql
1

solution to
2 - (ng - H(Z)y) 50
F, ( 1> S (isongzd;; + id5 o, 50 +c.c.> . (3.1)

2 50115, dg — idgIloyso + c.c.
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In order for this to be well defined, we need to verify that the right side is in
K*.

Lemma 3.1.

- (H%J, - H(%y) 50
—isoIlh, d +id3Tloeso + c.c.\ | € K*.
50115, dg — idgIloyso + c.c.

N

1
Proof. Only in this proof, we use the notation Ay = (A >

A2
Let
6 —(ng - H%y)so
a= (Bl) =— | 1 (—isollf,df + idiozso + c.c
! 2\ isoIly, dg — idgIloyso + c.c

It is enough to show that « satisfy

(a) Im(dgér) =V - By

Iy, do
(b) a, 0 =0
0,42 — 9, A1
oy, do
(0) a,_(@ﬁ—@ﬂj ~0.
0

For (a), we will show <a, Z%nyo =0 for any v € C5°(R?, R).

Then by integration by parts, (a) follows.
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|
—
=
oN
5}
|
=
N
<
>
va)
o
—
L
2
Q,
O ¥
S~—
+
o
o

so(Ilgz — TI55) (vdg) + c.c

— i/so Ovw — Oyy + 21410, — 2iA%0, + 200, A" — ((A")* — (AQ)Q))('de) +c.c
/so (Ozzydy + 20,70,dG — 20,70, dg + 2iA* 0, ydy — 22’A28y7d8) +c.c

+ <i/50’y(ﬂ(2)x - Hgy)d(’;) + C.C)

= i *2 _T[*2) J* — o *
=0 since (IFZ—-TII52)dg=sg

= i/(—@zfyamsods — 028005}y + 2800570 dly + 21 AT d50,7y50) + c.c.
+i /(@,v)(@sodf; + 800y dfy — 2500, dfy — 21 A%d}s0) + c.c.

oy / (007) (— w0y + 500adly + iA diso + iA diso) + c.c.
i/(ayv)(aysods — 800,df — 1A% ds0 — iA%dsg) + c.c

- / (—soTT2, d + d2Tlous0)Duy — i / (soTL, i — diTloys0)0,7 + coc. -

So (a) follows.
(b) Using the integration by parts, we can easily get

/ Mo, ull, df — / o, ully,d} = i / ud}y (0, A* — 0,A") (3.2)
for any u € H!(R?,C). Also, for any v € L2(R?, C),

/HOzHOySOU — /HOyHQrSOU = 72‘/80(5}‘42 - 8yA1)’U. (33)
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Therefore,
- [ sotty s + [ 150l
_ / (TowsoTT22d5) + / Ty (Toy s0)TTG, i + i / Mo, s0d5 (9, A — 9, A
= / (MozsolIi2ds) + / oy Moz 0115, dg
i / Moy sodt (9, A% — 9, A") — i / sollf, 5 (0,42 — 0,AY)
_ / Moy so (1132 — 1132)do + i / Mo, sodt (9. A2 — 9, A1)

—i / $0(0, A% — 8, ANIIG, df.

/HOmsosg—i—/ngsSso = —/SOHSISS +/H;s{§so =0,

we get (b). In a similar way to (b), we can get (c). Therefore, the claim

Since

follows. O
By Lemma 3.1, ro; € K- N H? in (3.1) is well-defined.

Define

S1 = K (V — 7:140)2 So + (ng — Hgy) 01 + (V - iAo)w(—iﬁl)wdo

+ (—7;9[1)9,; . (V — Z'A())wdo — (V — iAo)y(—iml)ydo + (—lel)y(V — iAo)ydo.

By the elliptic regularity theory, |[to1]|gs < C and thus [|s1]|g2z < CK.
We now prove the expansion rigorously by showing that the remainder ||tog||gz =
O(n?) using a similar argument as in Section 2.2.

—Knll%sy + 59 + n3|52\52

= (I —1I2) (do + 101 + 02) + KnII*(51) — 51

(1511751 + 2|51|s3 + 5755 + 5753 + 2[s2]51) (3.4)

where 51 = sg + ns1. Expanding the right side we get

(I — IT2) (do + no1 + d2) + KnII?(51) — 5,

—n3(151]%51 4 2151|785 + 3755 + 57535 4 2|s2]%51)
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= (—0)A3(0y — iAg — iny — i3)(do + 101 + 02)
—inU} (—inU} — i%3)(do + 101 +02) + (—inA})(0y — iAF) (01 + 02)
10y — 1A (0 — iAN)D: — (9, — iAZ)(9, —iAR)0y
+iA3(0, — A5 — inAT — iA3)(do + 101 + 02)
+inAf(—inAT —iA3)(do + no1 + 02) + (+inA3) (0, — iAF) (701 + 02)
+EKn(—in; —iAs) - (V — 14y — iy — i2s)sg
+En(V —idAo)(—inAy — iAz)so
+KnA(V — iAo —iny —is) - (V —iAg — inAy — iAp) sy
—n° (nlso|s1 +nsgst + 20%[s1]%s0 +n*sisg +1’[s1[7s1)
—n3(2]51|%s5 + 3953 + 5753 + 2s2]%51).
We may assume ||51||iz < C. Using this, we get
| =n% (nlsol®s1 + nsgst + 20°[s1[*s0 + nsisg + n’[s1l*s1) || < On’
Also

~ - ~ ~ 2
2 || =0 (+2]51%s5 + 3785 + 5755 + 2[s2/*51) ||

< O || 52 |2 + Con® / 5ol

Therefore if we choose 74 small enough then we get the following lemma.

Lemma 3.2. There exists a ng = n4(K, §1) > 0 such that

2 -
K 152 |+ [ KnlVsal? + salis+ [ o sal
< C||wo|f2 + CK*n* for0<n<mny.

Proof. Since ||w||gz < 071 for small 7, we may assume ||og||gz < 26;.
We will estimate each term separately.

| =25 (Y, — iA§ — i} — i23) (dondr +22) |
< || (Vo —iAL — it} —iud)(do + 101 +02) || _ ™3 ]le < Cllrozee-

|| =m0 (—in2y — i2A3)(do + 701 +02) || . < || 21 (A + A3)(do +n01 +02) || .

< Ol ez + CllAllee < Cn* + Cllwa||se.

| (=in2}) (nVa01 + Vad2) + (—iag) (01 +02)) ||, < Cn?llto1 |2 + Cllrz w2

Using ||9[%Vx01 < C||M || g2|01 || ;2

1
|| Kn(—ivﬂll — ZQ[Q) . (V — iAO — Z'ngll — iQ‘Q)SO ||L2

<V —iAp — iRy — iAg)so || | Kn(—in2ly — iAa) ||

< CKn?|| 1 |lmz + CKn|2s|lmz < CKn?|jwy|[m2 + Cl|ro|pe
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if we choose 74 small enough. Next
|| K??Q(V — iAo — 77911 — ZQ[Q) . (V — ’iAo — 7;779[1 — ’LQ[Q)S1 ||L2
< CKn?||si|lgz < CK?n?.
Other terms can be estimated similarly. So the claim follows. O
Lemma 3.3. 1. || Fa(nwy + w2) || < Cn? + C8y |10z m2
0
2. H 77F1 (9111) + Hn(ﬂml + 1’02) H < CK2772+C’I7||1'02”H2+C77 (H D282 ||L2 + || So ||L2)
L2
for small ny.

The proof of Lemma 3.3 is similar to the proof of Lemma 2.7.

Theorem 3.1. Let W = ntoy + o, § = So + 1s1 + s2 be the unique solution of
(2.1) - (2.3) found in Section 2.2. Then there exists a ny = na(K,61) > 0 so
that |[ta| gz + [|s2llLe < CK?n? for any 0 <n <ny <my.

Proof. The main idea is similar to that for Theorem 2.2. Since Fy(toy) =
— (nF1(roy) + Hy (w0, s) + Fa(nrog + 3)),

C (| Fo(@) ||z + | nF1 (v01) + Hyy (@, 5) [|1,2)
C61[ws|lgz2 + Cn° K? + Cnllroslmz + Cn (|| D?s2 || + Il 52 lIp2) -

[roo]lg2 <
<

So if we substitute small ¢; and choose 74 small,
Iw2lr= < CE2y® + O (| D?s2llez + [|s2lxz) - (3.5)
Moreover for large K,

2
K2n? || D?s, ||L2 + || 52 ||i2 < C1 || o2 ||f{2 + CoK*)* by Lemma 3.2 .

Therefore we can get n? || D?s; Hiz + |s2 7. < CK** and then |ty || <
CK*% by (3.5). O

4 Fourfold symmetry of the solutions

1 1

Lemma 4.1. Letd=dy+dy, A=Ay + A = (ﬁg) + (ﬁ%), s be the unique
0 1

solution of (1.8) - (1.10) found in Theorem 1.1.

Let

d(x7 y) = Zd(yv —.’ﬂ),
A _ _AQ(ya —l‘) _ _AQ(yv —(E) _A%(:% _‘T)
A(x,y) B ( Al(y7 —.’IJ) > B < A(lJ(Eyv —LI}) > * < A%(ya —.’L‘) ) ’
S(z,y) = —is(y, —x).

Then d, 3, A satisfies the equations (1.8) - (1.10).
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Proof. Using X =y and Y = —x,

(ar—i;ll)ci = (~1)dyid(X,Y) — i(~1)A*(X,Y)id(X,Y)
= —i(Oyd(X,Y)—iA*(X,Y)d(X,Y))

- —iHyd‘
(X’Y)

—
SV
|
.
o
[\V)
U
|

= 0xd(X,Y) —iAY(X,Y)id(X,Y)
i(0xd —iAd)

- z‘de‘
(X,Y)

(0, —iAN (9, —iAY)d
= —i ((~1dyyd(X,Y) —i(~1)dy (A*(X,Y)d(X,Y)))

—i (—A*(X,Y)) (-1) (Oyd(X,Y) —iA*(X,Y)d(X,Y))
=i (dyyd —i0y (A*d) —iA*0yd — A* - A%d(X,Y))
:iH%d’

(XY

Similarly, (8, — iA? )d—zHXd’ (9, —iA2)- (9, —iA%)d = ilI% d’ and

(X,Y)
_ 2 j2 Al
curlcurlA = Ozdy~_ -

_ <6X§YA1(XY) (—1)% A%(X, Y))
axay (~DAX(XY) - 5 AN (XY)

_ ( a)gaYAl(X Y)+ a{sz 2(X, Y))
ST A(X,Y) — S AY(X,Y)

8Y2
Therefore
- ((ax —iAY) (0, —iAY)d + (9, — iA%) - (0, — ijx?)&)
i (n? - ng) 5 k21— |d?)d
= — (I3 d(X.Y) +i3d(X,Y)) — e ((—) — (~)TT) s(X,Y)
K2 (1 —Jd(X, Y)\Q) id(X,Y)
= i (~T12d — (I — T8 )s — k3(1 — |d*)d) |

(X,Y)
=0 and
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KI5 — (H ﬁZ)d+§+n|§|2§
= —KnII*(—i)s(X,Y) — p (I}, — 1% ) id(X,Y) — is(X,Y)
+1° [s(X, Y)[* (=i)s(X, )

= —i (—KnT1%s — p(I% — T2)d + 5 + 17| 2s) ‘(X ., =0

Consider
curlcurl A + %z (cz*l:[ci — (le[*cz*)
1/ o e i i —z§ﬁ;c§* +id* s + c.c.
3 (77 Ki(5"11s — 511°5 >) T ( isT0d* — id* 11,5 + c.c. ) - (41)
The first component of (4.1) is

—_

i ((—i)d* (—i) Iy d — idillid*)

[\')

IXOY ax?
+;n Ki (il — (~i)s(~i)TTy 5°) + "2 (—i(—i)siTTyd* +i(~i)diTlys + c.c)

(- o AYX,Y) + o A% (X, Y))+

=— ” Al — o A% ) — lz (d*lyd — dII5.d*)
— \oxoy T ax? 2 " Y
=31 Ki(s*Ilys — sII s™) — 5 (isIly-d* —idllys +c.c.) =0.

The second component of (4.1) is

0? 0? 1 1
( A(X,Y) - —— AM(X, Y)) +5i (d*Txd — dlT%d*) + §n2Ki(s*HXs

0XoYy 0Y?
sl s™) + % (i(—4) I (—i)d* — i(—i)d Ty (—i)s + c.c.) = 0.
Therefore, d, 5, A satisfy the equations. O
Lemma 4.2.

(1) ido(y, —z) = do(x,y) and

) < Ad(y, ‘f”> ( ) for any  (z,y) € R

0 (y,—x
Proof. (12) ido(y, —x) = if1(r)e’ i(0-3) = fi(r)e? = dy(z,y).
@ (T3 = alr) o —2) = Aot )

Note. Ag = ao(r)(y, —z) = “H2¢+ and do(@,y) = f1(r)e”
Therefore, the claim follows. O

We may write d=dy+d; and A= Ay + A; where

dy = id (y, ~) and Ay (z, ) :( ?1(; ))>
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~ - —A2(y. —
Lemma 4.3. d;(z,y) =idi(y, —x), A1 (z,y) = ( Ai(y, x)) e Kt
1

i.€.

(i) Im(dgdy) =V - Ay

(i6)(dy, Ay) - (9;do, 0;A0) = 0 forj = 1,2.
Proof. (i) Note. Im(dgdy) = V - Ay ie. 2920 — g Al 4 9, A2
Let —x =Y, and y = X, then
dy (=Y, X)idi (X, Y) — do(=Y, X)(—=0)d](X,Y) _ d5(X,Y)di(X,Y) — do(X,Y)di(X,Y)

2 o 2
(=i)do(~Y, X) = —ifi(r)e!"+E) = f1(1r)e? = do(X,Y)
V-A =0, ( A2 (y,—z)) + 9y (Al(y, —7))

= 0y (—AI(X,Y)) + 0x (AL(X,Y)) = (V- A)(X,Y).

Therefore, (i) follows.
(ii) We want to show

Opdo(X,Y)d* + Opdid  (9,AL\ [AYY

Oydod} + Oydidy  (0,A8\ (AN
o [t (Grg) (3) =0

udod; + Dudydy . (0,AY\ (AD\

[ (5rd) - () =0 e
Oydodi + 0,y (9,A3 (A} _
2 0y A3 A2) T

Let y = X, —x =Y jthen 0, = —0y,0, = Ox and

Y
@ = [

~ydo (‘X ) ()i (X, Y) + (—1)dy d(~Y, X)idh (X, V)
/ Oy do(X, Y) X,Y) — Oy di(X,Y)di (X, Y)

when

(giﬁl > (ﬁi( )
2

) (ay<—1>A3<X, )\ | <—A%<X,Y>) .
oy AY(X,Y) ANX)Y) )

since (—i)do(~Y, X) = do(X,Y), AL(~Y,X) = —A2(X,Y) and A2(-Y,X) =
—AJX,Y).
We can prove (b) similarly. Therefore the claim follows. O
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Proof of Theorem 1.2. Since the solution is uniquely determined in By (0,41)N
K+, it follows that (d, A, 3) = (d, A, s) for 1 sufficiently small. Thus the three
identities hold. O

Lemma 4.4. Let (dy, Ag) be a vortex solution. If Kk # % then (1.7) holds. If

K= % then | (113, — I13,)) do| is radial.

Proof. From [10] we have that
¥ = (I3, — I03,) do(r,0) = (cos(20)h(r) + isin(26)g(r)) et
where

h(r) = QTL{ _ 2(1—;121)2f1 _ l€2(f12 _ 1)f1

/ , (4.2)
g9(r) =2(1 - ay) (L_L) _ah

Note that |X]? = (h(r)? — g(r)?) cos?(26) + g(r)?. Thus the lemma’s assertions
will follow once it is determined whether h? = ¢2 or not.

case i) Kk # % The asymptotic forms for fi, f1,a1,a} as r — oo are derived in
[14]. Inserting these into (4.2) we find that as r — oo

kzar~2e V2[4 0(1)] if0< k<2
h(r) = { 267" [1 4 o(1)] if K =2
b2r—le=?r gi;f;; +o(1)| if K > V2

g(r) = —brze " [140(1)],
where a and b are positive constants. We see that if k £ % then h? # ¢°.

case ii) kK = % Equation (1.2) is called self-dual in this case and any solution

for which & is finite also solves the first order Bogomolniyi system (see [11]). In
the case of a vortex solution it reads

,_r(l=f}) ,_ (I—a)fr
= d = .
aj 5 and f; "
Inserting these expressions for ¢} and f{ into (4.2) one sees that h = —g. O

Proof of Theorem 1.3. Note that in polar coordinates, the identity for s in
Theorem 1.2 reads s(r,0;n) = —is(r,0 — 5;n). This implies that the second
assertion is sufficient for the first to hold. To prove that the second assertion is
a necessary condition for the first, suppose that there exists a sequence 7; | 0
such that |s(r,8;n;)| = |s(r,0 + a;m;n;)| for all (r,0) where 2c; ¢ Z. Then it
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is easy to see that there exists a subsequence 7;, sequences k; € Z, and 0 <
Bj» < 2, such that 8;; = kj a;s mod 2, for which §;; — By where 203, £Z. Since
limos(«; n) = u¥(-) in L2(R?) and p # 0 it follows that |X(r, 0)| = |X(r, 0+ Bom)|.
7]—)

Since k # % this would contradict Lemma 4.4. O
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