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A combinatorial model for the moduli of bordered Riemann
surfaces and a compactification

Ralph M. Kaufmann and Javier Zúñiga

Abstract. We construct a combinatorial moduli space closely related to the
KSV-compactification of the moduli space of bordered marked Riemann sur-
faces. The open part arises from symmetric metric ribbon graphs. The
compactification is obtained by considering sequences of noncontractible sub-
graphs. This leads to a partial real blow-up of rational cells that together
form a compact orbi-cell space. For genus zero the constructed space gives an
orbi-cell decomposition of the corresponding analytic moduli space decorated
by real numbers and a compactification of this space. In higher genus the
relation is more involved, as we briefly explain. The spaces we construct are of
interest in their own right as they are constructed directly from an interesting
class of graphs.

1. Introduction

Let Mdec
g,n denote the (decorated) moduli space of Riemann surfaces of genus

g and n marked points together with decorations, i.e., a choice of a positive real
number for each marked point so that they add up to one. Let Mcomb

g,n denote the
(combinatorial) moduli space of metric ribbon graphs (or fat graphs) of genus g
with n boundary cycles so that the sum of lengths of all edges adds up to one half.
The combinatorial moduli space has a natural orbicell decomposition. A known
result of Harer, Mumford, and Thurston [Har86], Penner [Pen87], and Bowdich
and Epstein [BE88], states that the decorated and combinatorial moduli spaces
are homeomorphic. This homeomorphism can be realized by quadratic differentials
with quadratic residues (the ribbon graph model) or by hyperbolic metrics with
horocycles (the fat graph model). As a consequence, the space Mdec

g,n has an orbicell

decomposition given by Mcomb
g,n .

Konsevich’s proof of Witten’s conjecture in [Kon92] requires a compactifica-
tion of the combinatorial moduli space emulating the Deligne-Mumford compact-
ification of the moduli space of Riemann surfaces. This compactification losses a
lot of information (it is more coarse) when the surface degenerates in certain ways,
which is codified topologically by the so called genus defect. The details of this com-
pactification together with a finer compactification recovering the missing data was
given by Looijenga in [Loo95]. A further extension of Looijenga’s compactification
was given in [Zúñ15] using the real compactification proposed by [KSV95].
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For bordered Riemann surfaces a few combinatorial models have been proposed
including [God07] and [Cos07] using BW graphs, see [Ega15] for a summary.
These models are homotopical in nature. In this article, we propose a combinatorial
model based on ribbon graphs and the double construction. The advantage is that
our model identifies the homeomorphism type of a concrete space, but it can be
related directly to the moduli of bordered surfaces only for genus zero with one
boundary component and some special cases in genus one. We also discuss some
relations between out model and the model in [Cos07], and also a connection with
the KSV compactification of the moduli space. This type of space is also of interest
in terms of open/closed field theory and actions [KP06,Kau10].

This article is structured as follows. In Section 2, we review the construction
of polytopes and their truncation. In Section 3, we introduce ribbon graphs and in
Section 4, we define their moduli spaces. In Section 5, we define the combinatorial
blow-up of the moduli spaces in the previous section. In Section 6, we review
the theory of Strebel–Jenkins differentials on Riemann surfaces. In Section 7, we
define several moduli spaces of interest: decorated moduli spaces, moduli spaces
of symmetric surfaces and different compactifications. We also define the space of
interest in this article: the moduli space of symmetric ribbon graphs. In Section 8,
we give a few examples of these new spaces. In Section 9, we establish some
connections with known moduli spaces and BW graphs.

2. Polytopes

1

4

3

2

Figure 2.1. The simplex ΔS where S = {1, 2, 3, 4}.

Figure 2.2. The permutahedron PS where S = {1, 2, 3, 4}.
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Given a finite set S we denote by ΔS the standard simplex on S. Figure 2.1
shows the tetrahedron. In this case if ΔS can be given coordinates so that x1 +
x2 + x3 + x4 = 1 where x1 ≥ 0. Notice that as x1, x3 → 0, we obtain the interval
Δ3,4. For a set S we denote by PS the permutohedron on S which can be defined
as a truncation or blow-up of ΔS along all faces in increasing dimension. When
S = {1, 2, 3, 4}, Figure 2.2 shows PS . The faces are obtained by considering proper,
nonempty sequences of subsets of S. For example, the sequence {1, 2, 3, 4} ⊃ {1, 3}
gives the rectangle P{2,4} × P{1,3}. In the previous example, as x1, x3 → 0, the
rectangle is obtained by blowing-up {1, 3}c = {2, 4}.

2 3

1

Figure 2.3. The simplex ΔS where S = {1, 2, 3}.

P{1} × P{2,3}

P{2} × P{1,3} P{3} × P{1,2}

P{2,3} × P{1}

P{1,2} × P{3} P{1,3} × P{2}

Figure 2.4. The permutahedron PS where S = {1, 2, 3}.

From the simplex in Figure 2.3, and using that labeling, we can obtain the
permutohedron PS in Figure 2.4 together with all faces.

It is possible to obtain other polytopes (nestohedra) by blowing-up (truncating)
only certain lower dimensional faces of a simplex. One way to indicate which faces
to blow-up in ΔS is by providing a subset B ⊂ 2S \ {∅}.

Definition 2.1. For a given set S, let NB be the result of blowing-up ΔS

along the faces determined by B and increasing by dimension.

With the definition above, N∅ = ΔS and N2S\{∅} = PS . For an intermediate
example, if we consider S = {1, 2, 3, 4} and

B = {{4}, {1, 4}, {2, 4}, {3, 4}}
we obtain the polytope in Figure 2.5 by blowing up first the top vertex of the
tetrahedron in Figure 2.1 and then the corresponding three edges.
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Figure 2.5. An intermediate polytope.

Remark 2.2. It is possible to use the language of hypegraph polytopes as in
[COI19] to deal with the polytopes in this sections.

3. Ribbon graphs

Definition 3.1. A ribbon graph Γ is a connected graph with vertices of valence
at least three together with a subdivision of edges into half-edges, also called edge
refinement, and a cyclic order on the set of incident half-edges to a vertex.

If H is the set of half-edges and v is a vertex of Γ, let Hv be the set of half-edges
adjacent to this vertex. A cyclic ordering at a vertex v is an ordering of Hv up to
cyclic permutation. Once a cyclic ordering of Hv is chosen, a cyclic permutation of
Hv is defined (an element of SHv

): it moves a half-edge to the next in the cyclic
order. Define by σ0 the element of SH (the group of permutations acting on H)
which is the product of all the cyclic permutations at every vertex. Also, let σ1

be the involution that interchanges the two half-edges on each edge of Γ. This
combinatorial data completely defines the ribbon graph.

σ0

σ∞

σ1

Figure 3.1. An example of the permutations that define a ribbon
graph around a boundary cycle.

To be more precise, a ribbon graph Γ can be build out of combinatorial data
in the following way. Let H be a finite set of even cardinality. Let σ1 ∈ SH be
an involution without fixed points and σ0 ∈ SH be such that σ0 is a product of
cyclic permutations with disjoint support. A vertex of Γ is then given as an orbit
of σ0, while an edge is an orbit of σ1. The set of vertices can be identified with
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V (Γ) = H/σ0 and the set of edges with E(Γ) = H/σ1. The graph thus obtained is
required to be connected.

Let σ∞ = σ−1
0 σ1 ∈ SH . The set of cusps is defined as C(Γ) = H/σ∞. The

half-edges in the orbit of a cusp form a cyclically ordered set of half-edges called a
boundary cycle. Given a boundary cycle, all edges and vertices that are associated to
those half-edges via σ0 or σ1 form a graph called a boundary subgraph. For example,
in Figure 3.1 the boundary cycle represented in the middle (and corresponding to
three half edges) forms a boundary subgraph with three edges and three vertices
(the middle triangle as a subgraph). Notice also that knowing σ1 and σ∞ completely
determines the ribbon graph structure since σ0 = σ1σ

−1
∞ .

An orientation of an edge can be defined as an order on its corresponding half

edges and we can use the notation �e =
−−−−→
hσ1(h) where h is a half-edge. The involution

σ1 switches the orientation of an edge.
A loop is an edge incident to only one vertex. A tree is a connected graph T

with trivial H̄∗(T ).

Definition 3.2. An isomorphism of ribbon graphs is a graph isomorphism of
the edge refinement preserving the cyclic orders on each vertex.

Therefore, two graphs Γ, Γ′ are isomorphic when there is a bijection η : H → H ′

between the set of half-edges of these two graphs that commutes with σ0, σ
′
0 and

σ1, σ
′
1. In particular, the boundary cycles are preserved, i.e., η also commutes with

σ∞, σ′
∞.

θ graph twisted θ

Figure 3.2. Two nonisomorphic ribbon graphs of different topo-
logical types.

Let Aut(Γ) denote the automorphism group of the edge refinement as a usual
graph. The automorphism group of a ribbon graph, denoted by Autrg(Γ), is the
group of automorphisms of the edge refinement that also preserve the cyclic order
on every vertex. Figure 3.2 shows two isomorphic graphs that are not isomorphic
as ribbon graphs.

When replacing the edges by ribbons and gluing them according to the cyclic
ordering, one obtains an orientable surface of genus g with n holes as in Figure 3.3.
Each hole can be retracted to a boundary subgraph. Since the surface retracts
to the graph, its Euler characteristic is χ = 2 − 2g − n. Figure 3.4 shows three
nonisomorphic graphs of type (0, 3): the theta graph, the double noose and the
figure eight respectively. All ribbon graphs of type (1, 1) are shown in Figure 3.5:
The twisted theta graph and the twisted figure eight.

Analogously to a labeling of the marked points on a surface, the boundary
cycles or cusps of a ribbon graph can be labeled.
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Figure 3.3. Two surfaces obtained from thickening ribbon graphs.

Figure 3.4. Nonisomorphic ribbon graphs of type (0, 3).

Figure 3.5. Nonisomorphic ribbon graphs of type (1, 1).

Definition 3.3. For a labeled ribbon graph, let Autrg∂ (Γ) denote the ribbon
graph automorphism group preserving the labels.

It can be shown that up to isomorphism, there is exactly one labeled theta
graph and three labeled double nooses. Since the twisted theta graph has only one
boundary cycle, there is only one twisted labeled theta graph up to isomorphism.
From now on, we assume that all ribbon graphs have labeled boundary cycles.

A metric on a ribbon graph is a function l : E(Γ) → R+. A metric can be

represented by a point in R
|E(Γ)|
+ . A metric is unital when the sum of the lengths

of the boundary cycles is equal to one. This is equivalent to requiring that the
sum of all edges equals one half since each edge is counted twice in the sum of the
lengths of boundary cycles. A unital metric can be then represented by a point in
int(ΔE(Γ)).

Figure 3.6. Surface obtained from a metric twisted figure eight.
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To every metric ribbon graph Γ we associate an oriented punctured surface

Surf(Γ) as follows. To each oriented edge �e =
−−−−→
hσ1(h) we attach an oriented triangle

K�e = C|�e|, where |�e| is a segment of length l(e) and C refers to the cone con-
struction. The base of K�e is identified with the base of Kσ1(�e). Next we paste the
right-hand edge ofK�e with the left-hand edge ofKσ∞(�e). All vertices opposite to the
bases of all triangles in the same boundary cycle are identified. Such points are in
one to one correspondence with the orbits of σ∞; which is why we call them cusps.
Gluing triangles is done in a way compatible with the orientation of each triangle,
and thus, this punctured surface is triangularized. Let v′ = |V (Γ)|, e′ = |E(Γ)| and
n′ denote the number of vertices, edges and cusps, respectively. It is easy to shows
that there are 2e′ faces, 3e′ edges and v′+n′ points. The surface Surf(Γ) has genus
g = (2 − v′ + e′ − n′)/2. This surface comes with a natural orientation given by
the tiles since they are naturally oriented and their orientations match each other
because of the way we have glued them. Figure 3.6 shows the surface obtained from
a metric twisted figure eight. The meridian and longitude joint at the dark point
in the front of the torus and form the metric twisted figure eight. There are four
cones based at the ribbon graph, their walls run from the dark point in the front
of the torus to the hollow point at the back.

4. Combinatorial moduli space

Figure 4.1. Rational cell of the theta graph.

Definition 4.1. For a given ribbon graph Γ, its associated rational cell is
the quotient space int (ΔE(Γ))/Autrg∂ (Γ) where int (ΔE(Γ)) is the space of unital
metrics of Γ and the action is by given by permutation of edges.

Figure 4.1 shows the theta graph and its corresponding rational cell. The
automorphism group is trivial in this case.

The contraction of an edge that is not a cycle results in a new ribbon graph
(with induced cyclic orders on each vertex) of the same topological type. This
process is called edge collapse. The process can be generalized to the collapse of
any disjoint union of subtrees. The edge collapse can be used to glue rational
cells. For example, the collapse of one edge of the theta graph or the middle edge
in the double noose results in the figure eight graph. This induces a gluing of
a higher dimensional rational cell to a lower dimensional one. The orbispace of
metric ribbon graphs of a fixed topological type (g, n) up to isomorphism is the
combinatorial moduli space Mcomb

g,n obtained by gluing all rational cells of type
(g, n). The orbicell structure is studied in detail in [MP98].

Figure 4.2 shows the combinatorial moduli space Mcomb
0,3 . The 2-dimensional

rational cell in the middle corresponds with the theta graph. The other three 2-
dimensional rational cells correspond with the three nonisomorphic ways to label
the boundary cycles of the double noose graph. The three one-dimensional rational
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Figure 4.2. The orbispace Mcomb
0,3 .

cells correspond with the three nonisomorphic ways to label the boundary cycles of
the figure eight graph.

Z/3Z

Figure 4.3. The orbispace Mcomb
1,1 .

Figure 4.3 shows the combinatorial moduli space Mcomb
1,1 . There is only one 2-

dimensional rational cell corresponding with the twisted theta graph and depicted
as the whole triangle. The automorphism group of the twisted theta graph is Z/3Z.
The action of the automorphism group on the rational cell is by rotations, thus the
shaded region represents the fundamental domain. This actions glues the lower
left edge of the fundamental domain to the lower right edge. The top half of the
left edge of the fundamental domain corresponds with the twisted figure eight.
The automorphism group of the twisted figure eight is Z/2Z and its action glues
the top half of the left edge to top half of the right edge. As a result, Mcomb

1,1 is
homeomorphic to a sphere minus a point.

5. Combinatorial blow-up

Given a ribbon graph Γ, define A ⊂ 2E(Γ) \ {∅} as the family of subsets of
edges corresponding with subgraphs of Γ that are not a union of trees. Let B be
the family defined by taking the complement of every element in A.

Definition 5.1. Since the action of Autrg∂ (Γ) can be extended to the boundary
of NB , we define the compact rational cell associated to Γ as NB/Autrg∂ (Γ). Gluing
compact rational cells along the edge collapse of the union of trees, we obtain the
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compact combinatorial moduli space

Mcomb
g,n =

∐
Γ of type (g,n)

NB/Autrg∂ (Γ).

The subspace Mcomb
g,n \Mcomb

g,n is formed by new cells created by the combina-
torial blow-up. It is possible to identified these new cells by combinatorial objects
that are generalizations of metric ribbon graphs. These new graphs are in fact more
general than the semistable ribbon graphs defined in [Zúñ15], but we will not try
to define them here in full generality. This will be addressed in future work, here
we will be content with a description in terms of truncations given by chains of
inclusions.

Figure 5.1. The orbispace Mcomb
0,3 .

Figure 5.1 shows Mcomb
0,3 . In this case all vertices are truncated because the only

subgraphs that are unions of trees are single edges. In this case all automorphism
groups are trivial.

Z/3Z

Figure 5.2. The orbispace Mcomb
1,1 .

The spaceMcomb
1,1 can be seen Figure 5.2. The vertex of the single 2-dimensional

compact rational cell is truncated. The gluings due to the group actions of Z/3Z and
Z/2Z work as before, but in this case a boundary isomorphic to a circle is created
due to the truncation. The resulting compact moduli space is homeomorphic to a
surface minus an open disc.
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6. Quadratic differentials

Definition 6.1. A meromorphic quadratic differential on a Riemann surface Σ
is a meromorphic section of (T ∗Σ)�2, the second symmetric power of the cotangent
bundle.

The notions of zero and order of a zero do not depend on the local representation
of a quadratic differential. In the same way, the notion of pole and order of a pole
are invariant by change of coordinates. Zeros and poles are called critical points.
A pole of order two of a quadratic differential is called a double pole and a pole
of order one is called a simple pole. Given a representation in local coordinates
f(z)dz2 around a double pole q, we can express f as

f(z) =
a−2

z2
+

a−1

z
+ a0 + · · ·

and call the term a−2 its quadratic residue. It can be shown that this number does
not depend on the choice of local coordinates.

Quadratic differentials define certain curves on the Riemann surface. If q =
f(z)dz2 is a meromorphic quadratic differential, then the parametric curve �r :
(a, b) → C is called a horizontal trajectory or leaf of q if

f(�r(t))

(
d�r(t)

dt

)2

> 0

and a vertical trajectory if

f(�r(t))

(
d�r(t)

dt

)2

< 0.

Definition 6.2. A Strebel–Jenkins differential is a meromorphic quadratic
differential with only double poles with negative quadratic residues.

Strebel–Jenkins differentials have only two kinds of leaves: closed ones (sur-
rounding a double pole) and critical ones (connecting zeroes). The union of critical
leaves and zeroes forms the critical graph. The vertical trajectories connect the
double poles to the critical graph and are orthogonal to the closed leaves under
the metric induced by

√
q. The following existence and uniqueness theorem follows

from the work of Jenkins and Strebel (see [Str84] and [Loo95, Theorem 7.6]).

Theorem 6.3 (Strebel). Given a Riemann Surface of genus g with n marked
points and decorations in int(Δn−1), there exists a unique quadratic differential with
the following properties. It is holomorphic in the puncture surface. The union of
closed leaves form semi-infinite cylinders around the marked points. The quadratic
residues coincide with the decorations.

7. Moduli spaces and decorations

LetMg,n denote the moduli space of Riemann surfaces of genus g and nmarked
points. The topological type of these surfaces is defined as (g, n). The interior of a
Riemann surface of type (g, n) is the result of taking away the marked points, thus
obtaining a punctured surface.

Following [Liu20], let RM(g,b,k),(n,m) denote the moduli of smooth symmetric
compact Riemann surfaces with 2n+m marked points where a symmetric surface
is a pair (Σ, σ) of a surface Σ and σ is an antiholomorphic involution. The index
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q = dz2 q = zdz2 q = − dz2

z2

Figure 6.1. Different behaviors of Strebel–Jenkins differentials.
The solid lines represent horizontal trajectories and the dotted one
vertical trajectories.

g fixes the genus of Σ and b is the number of components of the fixed points of σ
that is, Σσ ∼= 	bS

1. The index k fixes the orientability, it is 0 if Σ/〈σ〉 is orientable
and it is 1 if Σ/〈σ〉 is not orientable. The symmetry interchanges n pairs of marked
points away from Σσ and fixes m marked points in Σσ.

Denote by RMg,n,m the moduli space of symmetric surfaces of genus g with
(n,m) marked points. This space is a disjoint union of the spaces RM(g,b,k),(n,m)

ranging over all the different topological types depending on b and k. Forgetting
the symmetry induces a map f : RMg,n,m → Mg,2n+m that is generically injective,
but it fails to be injective when the automorphism group of the marked surface Σ
is bigger than the automorphism group of the marked symmetric surface (Σ, σ).

Following [Liu20] again, letMg,b,n,�m be the moduli space of bordered Riemann
surfaces of genus g with b boundary components isomorphic to S1, n marked points
away from the boundary and �m marked points on the boundary. Here the boundary
components are also marked.

There is an alternative theory in terms of hyperbolic geometry which leads to
the same combinatorics, cf. [Pen04,KP06].

Figure 7.1. The double of a surface of type (1, 1, 1, 1).

The complex double or simply double of a surface of topological type (g, b, n, �m)
is a surface of topological type (2g + b − 1, 2n + m). The doubled surface has a
complex structure and a real involution σ whose fixed points lie in the boundary of
the bordered surface as in Figure 7.1. By definition, the Euler characteristic of the
bordered surface is

χ = 2− 2g − b− n−m/2,
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this is half the Euler characteristic of the doubled surface. A doubled surface is
in fact symmetric. This observations induces a finite to one map d : Mg,b,n,�m →
RM2g+b−1,n,m.

By considering stable Riemann surfaces with possible nodal singularities one
can define the Deligne–Mumford compactifications of these spaces ([Abi80],
[Sep91], [Sil92], [Liu20]). Moreover, the composition of the double and forgetful
map

Mg,b,n,�m
d−→ RM(2g+b−1,b,0),(n,m)

f−→ M2g+b−1,2n+m

has similar characteristics as before, in particular the double map is generically two
to one.

The KSV compactification Mg,n is obtained by decorating the nodes of a stable
surface with relative phase parameters [KSV95]. Geometrically, this is the same
as a real tangent direction: a ray in the complex tensor product of the tangent
spaces on each side of a node.

The decorated moduli space of Riemann surfaces of genus g and n marked
points is by definition

Mdec
g,n = Mg,n × int(Δn−1).

Each marked point is decorated by a positive real number so that the sum of
decorations is one. In [MP98, Section 5], a homeomorphismMg,n×Rn

+ → RGBmet
g,n

is described. By restricting the domain to the standard simplex, we obtain the map
ϕ : Mdec

g,n → Mcomb
g,n .

This map is realized by Strebel’s theory of quadratic differentials. Given a
Riemann surface Σ with decorations, Strebel’s theorem produces a Strebel–Jenkins
differential whose critical graph is a metric ribbon graph Γ. For the inverse, given
a metric ribbon graph Γ, it is possible to give complex charts to Surf(Γ) to obtain
a Riemann surface Σ. The decorations of each marked point is the length of the
corresponding boundary subgraph.

Each rational cell of the moduli space Mcomb
0,3 depicted in Figure 4.2 can be

represented by the critical graph of a Strebel–Jenkins differential on the Riemann
surface with three marked points. This is shown in Figure 7.2 and illustrates how
the map ϕ works. This last figure also illustrates how the metric ribbon graphs
deform as we move around the moduli space.

Let us define ϕ : Mdec
g,n → Mcomb

g,n by simply changing the codomain of ϕ and

notice that the closure of the image of this new map is Mcomb
g,n . The seven compact

rational cells numbered in green in Figure 7.3 can be represented via ϕ by the
seven critical graphs numbered in Figure 7.4. This also illustrates the deformations
of metric ribbon graphs. The critical trajectories of the sufaces labeled as 4, 5,
6, 7 and 8 correspond with generalizations of the concept of metric ribbon graph.
For example, let a, b ∈ E(Γ) be the loops of the double noose in 3. As these
loops contract, that is, their lengths l(a) and l(b) go to zero, the ribbon graph
degenerates to an interval (no longer a proper metric ribbon graph). However, due
to the blow-up, those two lengths are not lost: they form a one dimensional family
represented by the two smaller surfaces with two marked points that are attached
to the degenerated ribbon graph. The one parameter famliy is Δa,b.

For a bordered Riemann surface of type (g, b, n, �m), let ci ≥ 0 with 1 ≤ i ≤ n
denote decorations for the marked points in the interior of the surface and let oj ≥ 0
with 1 ≤ j ≤ m denote decorations for the marked points in the boundary of the
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Figure 7.2. Critical graphs on a surface of type (0, 3) correspond-
ing with the seven rational cells of Mcomb

0,3 . The critical graphs ap-
pear in a lighter shade of grey on the surface of Riemann spheres
with three marked points.

1

2

3

4

5 6

7 8

Figure 7.3. Seven compact rational cells in Mcomb
0,3 labeled by numbers.

surface. Suppose that 2
∑

ci +
∑

oj = 1. All these decorations can be considered
in the interior of the (n+m− 1)-dimensional simplex int(Δn+m−1).

Definition 7.1. The decorated moduli space of bordered surfaces of type
(g, b, n, �m) is defined as

Mdec
g,b,n,�m = Mg,b,n,�m × int(Δn+m−1).

The decorated moduli space of symmetric surfaces of type (g, b, k) and (n,m)
marked points is defined as

RMdec
(g,b,k),(n,m) = RM(g,b,k),(n,m) × int(Δn+m−1)

where we require that the decorations of conjugate marked points be equal.
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Figure 7.4. The corresponding seven critical graphs appear in-
side Riemann spheres with three marked points in a lighter shade
of grey.

By doubling the decorations of the n interior marked points, we obtain a com-
position

Mdec
g,b,n,�m

d−→ RMdec
(2g+b−1,b,0),(n,m)

f−→ Mdec
2g+b−1,2n+m

with similar characteristics as before.

Definition 7.2. Let Sdec
g,b,n,�m = f ◦d(Mdec

g,b,n,�m). The moduli space of symmet-
ric metric ribbon graphs is defined by

Scomb
g,b,n,�m = ϕ(Sdec

g,b,n,�m)

and

Scomb
g,b,n,�m = cl(ϕ(Sdec

g,b,n,�m))

is the moduli space of stable symmetric metric ribbon graphs.

Theorem 7.3. The combinatorial moduli space Scomb
g,b,n,�m is a compact Hausdorff

space and it is a compactification of the decorated moduli space Sdec
g,b,n,�m.

Proof. The combinatorial moduli space Scomb
2g+b−1,2n+m is a compact, Hausdorff

space since it is a finite union of compact rational cells. This implies that Scomb
g,b,n,�m

is a compact Hausdorff space. Moreover, since

Scomb
2g+b−1,2n+m \ Scomb

2g+b−1,2n+m

is made of lower dimensional rational faces and ϕ is a homeomorphism, then the

decorated space Sdec
g,b,n,�m compactifies to Scomb

g,b,n,�m �
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The real dimension of this moduli space is 6g + 3b+ 3n+ 2m− 7. This follow
by counting dimensions of the bordered moduli space and the simplex defining the
decorations. The lowest dimensional examples with boundary and negative Euler
characteristic are shown in Table 7.1.

Table 7.1. Euler characteristic of a bordered surfaces of the cor-
responding topological type and dimension of the corresponding
combinatorial moduli space.

g b n m χ dim

0 1 0 3 -1/2 2
0 1 1 1 -1/2 1
0 1 1 2 -1 3
0 1 2 0 -1 2
0 2 0 1 -1/2 1
0 2 0 2 -1 3
0 2 1 0 -1 2

It would be interesting to define Scomb
g,b,n,�m in a purely combinatorial way. That

would involve a combinatorial notion of bordered ribbon graphs and their semistable
versions.

8. A few examples

Figure 8.1. The spaces Scomb
0,1,1,1 and Scomb

0,1,1,1 are depicted in the
middle with thicker lines.

The moduli space Scomb
0,1,1,1 sits inside Mcomb

0,3 and must be one dimensional.
Considering symmetric versions of the theta graph, figure eight and double noose,
Figure 8.1 shows on the left Scomb

0,1,1,1 represented by the thicker subspace in the

middle of the triangle. On the right of Figure 8.1 the space Scomb
0,1,1,1 is depicted as

the thicker subspace of Mcomb
0,3 . The compact combinatorial moduli space consists

of three 0-dimensional cells and two 1-dimensional cells.
Figure 8.2 shows the five critical graphs corresponding to the five compact

rational cells of the space Sdec
0,1,1,1.

The space Scomb
0,2,0,1 is one dimensional and sits inside Mcomb

1,1 , this is depicted

by the thicker line in Figure 8.3. The moduli space Mcomb
0,2,0,1 consists of two 0-

dimensional compact rational cells and one 1-dimensional compact rational cell. A
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Figure 8.2. Critical graphs corresponding with the compact ra-
tional cells of Scomb

0,1,1,1. The critical graphs appear inside the Rie-
mann with three marked points spheres in a lighter shade of grey.

Z/3Z

Figure 8.3. The space Scomb
0,2,0,1 is the thicker edge with two uni-

valent vertices.

typical symmetric critical graph in Mcomb
1,1 describing a point in Scomb

0,2,0,1 is shown in
Figure 8.4.

Figure 8.5 shows a theta graph as a symmetric critical trajectory in Mcomb
0,3 .

In fact, all graphs of type (0, 3) can be placed in the double of the disc with
three marked points on the boundary as symmetric graphs. This implies that
Mcomb

0,1,0,3
∼= Mcomb

0,3 whose picture can be found in Figure 5.1.



COMBINATORIAL MODULI OF BORDERED SURFACES 17

Figure 8.4. Critical graph in Scomb
0,2,0,1. The critical graph is the

twisted figure eight on the bottom-center of the torus.

Figure 8.5. Critical graph representing a point in Scomb
0,1,0,3. The

critical graph is the theta graph inside the sphere represented with
a lighter shade of grey.

Scomb
0,2,1,0 consists of only one 2-dimensional cell as shown in Figure 8.6. That

figure also shows the double of annulus with one marked interior point, that is, the
symmetric torus with two marked points. In the torus we see the critical trajectory
right in the middle which is a ribbon graph of type (1, 2).

The space Scomb
0,1,2,0 is formed by three 2-dimensional cells as depicted in Fig-

ure 8.7. In that figure the 2-dimensional cells are labeled together with two addi-
tional 1-dimensional cells. They correspond with the critical graphs in Figure 8.8.
The double of the disc with two interior marked points is the symmetric Riemann
sphere with four marked points.

9. Relations to known spaces

Ideally, we would like to construct orbicell decompositions for the moduli spaces
RMdec

(2g+b−1,b,0),(n,m). However since the forgetful map f is not injective in general,

it is not possible to do so in a straightforward manner. For g = 0 and b = 1, the
forgetful map is injective since the moduli spaces for Riemann spheres are fine (see
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Figure 8.6. The space Scomb
0,2,1,0 and the critical graph representing

the interior. The critical graph is represented by three loops on the
middle of the torus in a lighter shade of grey.

1

2

3

4

5

Figure 8.7. The space Scomb
0,1,2,0 The numbers label different

racional cells.

1 2 3 4 5

Figure 8.8. Critical trajectories in a symmetric sphere with four
marked points. The numbers correspond with the rational cells in
Figure 8.7.

[Cey06]). The genus one examples in the previous section are also decompositions
for the corresponding real moduli spaces because the real and complex automor-
phism group of an elliptic curve are equal, thus the injectivity of the forgetful map
follows (see [Sil92]).

A possible way forward would be to study the difference between complex and
real automorphisms of a real curve. As suggested by the referee, one can consider
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the cone of the morphism

Ψ∗ : C•(Mg,b,n,�m,Q) → C•(M2g+b−1,2n+m,Q) ∼= C•(Mcomb
2g+b−1,2n+m,Q)

The complex on the lefthand side admits a combinatorial model in terms of BW
ribbon graphs. The complex on the right admits a model in terms of classical
ribbon graphs. The corresponding cone can be considered as the combinatorial
tool to detect the differences between complex and real isomorphisms of the double
of a bordered surface.

There is also a connection between Scomb
g,b,n,�m and M2g+b−1,2n+m. It should be

possible to construct a nonsurjective map

π : Scomb
g,b,n,�m → M2g+b−1,2n+m

which in the interior corresponds with ϕ−1 and forgetting the decorations by real
numbers. On the boundary, the construction of the stable surface can be achieved
by considering sequences of nested subgraphs as in [Zúñ15]. The decorations by
real tangent directions at the nodes can be obtained by remembering how the
subgraphs degenerate. The exact nature of this map and its fibers needs further
investigation.

In [Cos07] a combinatorial model Dg,b,m,n is introduced formed by BW graphs
as defined in [WW16]. This complex is weakly homotopic to a partial compacti-
fication of the moduli space Mg,b,n,�m. It is interesting to note a relation between
BW graphs and the graphs presented here. The first three examples in the previ-
ous section have marked points in the boundary and one can obtain a BW graph
choosing half of one of the critical trajectories.

Figure 9.1. BW graphs in D0,1,1,1, D0,2,1,0, and D0,1,3,0, respectively.

At the top of Figure 8.2 there is a graph consisting of an edge with two vertices
and two extra circles. One half of the single edge (say the left half) gives the
first BW graph in Figure 9.1 with only one white vertex corresponding with the
interior marked point and one half-edge corresponding to the boundary marked
point. Notice that this graph only has one boundary cycle since b = 1. Figure 8.4
shows the twisted figure eight as a critical graph. One half of this graph (the left
half) gives the second BW graph on Figure 9.1 with two boundary cycles since
b = 2, one black trivalent vertex, and one half-edge since m = 1. There are no
white vertices since n = 0. Finally, Figure 8.5 shows the theta graph as a critical
graph. Again, one half of this graph (the left half again) gives the third BW graph
in Figure 9.1 with only one boundary cycle since b = 1, three half-edges since
m = 1, and no white vertex since n = 0. For the last two examples m = 0 and the
same idea can not be applied. However, for the critical trajectory in Figure 8.6,
after contracting the middle loop, there is a dual graph in the left half of the torus:
a loop with one edge and one white vertex at the interior marked points. This BW
graph has two boundary cycles since b = 2. For the critical graph marked as “3” in
Figure 8.8, after contracting the middle horizontal loop, there is a dual BW graph
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in the left half with two white vertices at the interior marked points joined by a
single edge. This seems to indicate a way to extract BW graphs in Dg,b,m,n from

Scomb
g,b,n,�m in a similar way in which one chooses a bordered Riemann surface out of

a symmetric one.
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Maŕıa, Lima 11 - Perú
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