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Refined phase diagram for a spin-1 system exhibiting a Haldane phase
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We provide the phase diagram of a two-parameter spin-1 chain that has a symmetry-protected topological
(SPT) Haldane phase using computational algorithms along with tensor-network tools. We improve previous
results, showing the existence of a new phase and new triple points. New striking features are the triple end of
the Haldane phase and the complexity of phases bordering the Haldane phase in proximity—allowing moving
to nearby non-SPT phases via small perturbations. These characteristics make the system, which appears in
Rydberg excitons, e.g., in Cu2O, a prime candidate for applications.
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I. INTRODUCTION

Topological phases of matter have drawn much attention
due to their remarkable properties. Their edge transport pro-
tection from disorder and imperfections offers an intrinsic
physical immunity to noise. This has found many applications
in diverse areas like dissipationless electronics, spintronics,
lasers, and quantum computing [1–5].

The modern framework for classifying phases of matter
started with the Landau-Ginzburg paradigm, where phases
were classified by symmetry breaking [6]. This picture was
challenged by the discovery of the integer quantum Hall ef-
fect, the fractional quantum Hall effect [7–9], and subsequent
models such as topological insulators that do not require exter-
nal magnetic fields [10], the Haldane phase in 1D spin chains
[11,12], the quantum spin Hall effect [13,14], string-net mod-
els [15], and quantum double models [16]. These models
exhibit phases that cannot be distinguished locally, can occur
at zero temperature, and have a finite energy gap above the
ground state. They are collectively called topological quantum
phases [17].

The now well-established paradigm of quantum phase tran-
sitions identifies two phases of gapped ground states if there
exists an adiabatic path connecting their Hamiltonians without
closing the finite energy gap and avoiding any singularity in
the local properties of the ground state [18]. The topologi-
cal quantum phases are then classified into three categories:
intrinsic topological order which follows this definition with-
out any additional requirements (the topologically nontrivial
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phase cannot be adiabatically connected to any topologically
trivial phase), symmetry-protected topological phases (SPT)
which only obey this definition if certain symmetries are
imposed on this adiabatic path, and symmetry-enriched topo-
logical phases (SET) when the underlying system has intrinsic
topological order, and then the phases are enriched by impos-
ing symmetries [18,19].

In 1D, there are no phases with intrinsic topological order;
it can be shown that any gapped phase with a local Hamilto-
nian is adiabatically connected to the trivial phase when no
symmetries are imposed [20]. Consequently, the only topo-
logical phases in 1D are SPT phases. SPT phases can have
nontrivial edge states. These edge states can implement topo-
logical quantum computing similar to Majorana zero modes
[1–3].

Haldane mapped the spin-1 antiferromagnetic Heisen-
berg chain exhibiting SU(2) symmetry: HHeisenberg = J

∑
i Si ·

Si+1 with J > 0 to the topological quantum field theory of the
nonlinear sigma model. He then conjectured that the system
would be gapped in 1D chains with integer spin [11,12]. This
was counterintuitive, as the Bethe ansatz for the spin- 1

2 case
is gapless [21]. The AKLT model presents an exactly solvable
model which retains the Heisenberg model’s full SU(2) sym-
metry: HAKLT = ∑

i[
1
2 Si · Si+1 + 1

6 (Si · Si+1)2 + 1
3 ]. In the

AKLT model, the existence of an energy gap, nontrivial entan-
glement spectrum, and edge states can be proved analytically
[22]. It was later shown that the topological Haldane phase
could be realized using only the Z2 × Z2 internal symmetry
which is a subset of the SU(2) symmetry [23]. This symmetry
is represented by the π rotations around the x and y axes: eiπSx

and eiπSy
. Under this symmetry, the Haldane phase belongs to

the class of SPT phases [23].
We start by considering a general spin-1 Hamiltonian

which has translation and parity invariance in addition to
Z2 × Z2 symmetry (realized by π rotations around the x and
y axes), and U (1) rotational symmetry around the z axis [24].
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This Hamiltonian has seven constants, (c0, . . . , c6), given
in Eq. (1). Many important Hamiltonians, like those of the
Heisenberg, AKLT, Ising, and XXZ models are special cases
of this Hamiltonian. The model exhibits the topologically
nontrivial Haldane phase. We further include two perturba-
tions D[(Sz

i )2 − 2/3] and δc1Sz
i Sz

i+1. These perturbations do
not break the symmetries of the Hamiltonian Eq. (1):

H =
∑

i

c0 + (c1 + δc1)Sz
i Sz

i+1 + c2
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
+ c3

(
Sz

i Sz
i+1

)2 + c4
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)2

+ c5
[
Sz

i Sz
i+1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + H.c.
]

+ c6
(
Sx

i Sy
i+1 − Sy

i Sx
i+1

)2 + D
[(

Sz
i

)2 − 2/3
]
. (1)

We study the phase diagram as a function of the parameters
D and δc1, fixing the parameters c0, . . . , c6 as in Eq. (5),
as these parameters are of special interest in applications to
Cu2O [25].

Previous studies [26] left some questions open, such as
whether all phases meet at triple or higher critical points. They
also suggest a direct phase transition from the ferromagnetic
to the antiferromagnetic phase.

We show that all critical points are triple points at most,
as shown in Fig. 2. Four of them involve the Haldane phase.
Interestingly, there is a new direct phase transition between the
Haldane and the anisotropic phase. We also predict the exis-
tence of a new phase, which we call the negative D phase, that
obstructs a direct phase transition between the ferromagnetic
and the antiferromagnetic phases.

II. RYDBERG EXCITONS

The Hamiltonian (1) can be realized using a 1D chain
of traps of Rydberg excitons in Cu2O [26]. The parameters
D and δc1 then correspond to trap anisotropy and coupling
anisotropy in the exciton implementation [25,26].

Rydberg atoms have an electron excited far from its va-
lence shell, leaving a hole behind. The pair then resembles
a Hydrogen atom and exhibits long-range dipole-dipole in-
teractions and robust Rydberg blockade [27]. Analogously,
in a semiconductor environment, an electron can be excited
from the filled valence band to the conduction band, leaving a
hole behind. This electron-hole pair is called an exciton [28].
Rydberg atoms and excitons have been studied and used in
many applications [27,29–33]. In these applications, however,
they were mostly used as two-level systems distinguishing
the ground state from other excited states (qubits). However,
our implementation here is different as we are exploiting the
angular momentum degree of freedom which offers a richer
structure that acts as an intrinsic spin-1 system (qutrit). This
provides a more direct simulation platform for many-body
systems with integer spins.

The concrete model consists of a 1D chain of trapped
excitons which are effectively spin-1 particles with nearest-
neighbor interactions, see Fig. 1. The interaction between
two neighboring excitons is a Coloumb interaction given by

FIG. 1. The 1D chain of spin-1 particles. Blue lines represent the
interactions between nearest neighbors. The z axis is aligned with the
chain.

Eq. (2):

V (i j) = e2

4πε0εr

(
1∣∣r(i)

e − r( j)
e

∣∣ + 1∣∣r(i)
h − r( j)

h

∣∣
− 1∣∣r(i)

e − r( j)
h

∣∣ − 1∣∣r(i)
h − r( j)

e

∣∣
)

. (2)

Here, r(i)
e (r(i)

h ) denotes the position of the electron(hole) of the
atom i. This Coulomb interaction can be expanded in terms of
the center of mass distance Ri j = |Ri − R j | giving Eq. (3):

V (i j) = e2

4πε0εr

∞∑
l,L=1

VlL(ri, r j )

Ri j
l+L+1

. (3)

Here, VlL(ri, r j ) are the multipole expansion coefficients writ-
ten as a summation of spherical harmonics Ylm(r̂i ),YL−m(r̂ j ).
When the exciton separation is larger than the Le Roy radius

Ri j � 2 · (
√

〈r2
i 〉 +

√
〈r2

j 〉), the interaction will be dominated

by dipole-dipole interactions (L = l = 1) [25,34]. Under this
condition, VlL(ri, r j ) will simplify to Eq. (4):

V (i j) ≈ e2

4πε0εr

(
rir j

R3
i j

− 3(ri · Ri j )(r j · Ri j )

R5
i j

)
. (4)

The resulting Hamiltonian for the pair of excitons can be
expanded in terms of their wave functions ψni,li,mi (ri ) and
ψn j ,l j ,mj (r j ) for li = l j = 1. After exact diagonalization, the
resulting eigenvectors were found to not depend strongly on
n for 15 � n � 25 [25]. The Hamiltonian corresponding to
the eigenfunctions can then be written in terms of the seven
spin-1 operator terms in Eq. (1) [26]. The eigenvalues will fix
the seven constants c0, . . . , c6 as presented in Eq. (5):

c0 = −5.58ε0, c1 = 9.53ε0, c2 = −8.97ε0,

c3 = 1.27ε0, c4 = 6.59ε0, c5 = −3.18ε0,

c6 = 5.04ε0. (5)

Here, ε0 = 10−4n11h̄s−1 × µm6/R6 where n is the quantum
number which ranges from 15 to 25, and R is the distance
between traps [25].

III. ORDER PARAMETERS

The model exhibits six phases: antiferromagnetic, ferro-
magnetic, anisotropic, Haldane, negative D, and large D, as
shown in Fig. 2. While the anisotropic phase has algebraically
decaying spin correlations in the XY plane, the negative D and
large D phases have exponentially decaying spin correlations
in all directions.

For the magnetic phases, we use the antiferromagnetic
order parameter: OAFM = lim|i− j|→∞(−1)|i− j|〈Sz

i Sz
j〉 and the
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FIG. 2. Comparison of the old phase (a), the updated phase (b),
and the close-up phase (c) diagrams for the Hamiltonian Eq. (1) for
different values of trap anisotropy D and coupling anisotropy δc1.

ferromagnetic order parameter which is just the magnetization
in the z axis: OSz = 〈∑i Sz

i 〉
N . The anisotropic phase has some

z magnetization and algebraically decaying spin correlations
in the x and y directions. We can detect it using the spin

TABLE I. Order parameters identifying different phases.

Phase Nonzero Order Parameter(s) SPT

Haldane OString, OHaldane and OS2
z

Nontrivial
Negative D OS2

z
Trivial

Anisotropic OSxSx, OSz and OS2
z

Trivial
Antiferromagnetic OAFM, OS2

z
and OString Trivial

Ferromagnetic OSz and OS2
z

Trivial
Large D OS2

z
< 1 Trivial

correlation function of x or y for distant spins

OSxSx = 〈
Sx

N/3Sx
2N/3

〉
. (6)

For the Haldane phase, we use the string order parameter [35].
More details on the string order parameter and its generaliza-
tion are provided in Appendix 6:

Ostring = lim
|i− j|→∞

〈
Sz

i

[
�

j−1
k=i+1eiπSz

k
]
Sz

j

〉
. (7)

It should be noted that the string order parameter will nec-
essarily have a zero value for any trivial SPT phase if the
phase is symmetric. The string order parameter can have a
nonzero value for a trivial SPT phase if the symmetry is
broken. For example, the Néel state: ψ Néel = |1〉 ⊗ |−1〉 ⊗
|1〉 ⊗ |−1〉 ⊗ · · · will have a nonzero value for the string
order parameter because it breaks the Z2 × Z2 symmetry,
namely, the eiπSx symmetry. This issue is resolved by first
inspecting the symmetry-breaking phases and then classifying
the symmetry-preserving phases using the topological order
parameters. In our case, it is also convenient to combine
order parameters to distinguish the Haldane phase from other
topologically trivial phases using only one order parameter.
We define:

OHaldane = lim
|i− j|→∞

〈
Ôstring + (−1)|i− j|Sz

i Sz
j

〉
. (8)

This new order parameter will be nonzero in the Haldane
phase and will be zero in the antiferromagnetic phase. The
new negative D phase has exponentially decaying correlations
in the XY plane, unlike the anisotropic phase. It is character-
ized by the absence of all order parameters except OS2

z
:

OS2
z
= 〈(Sz )2〉. (9)

The large D phase is distinguished by the vanishing of all
order parameters except ÔS2

z
, which asymptotically reaches

zero. These order parameters are then used to construct the
full phase diagram Fig. 2 as summarized in Table I.

IV. COMPUTATIONAL PARAMETERS

We used the density matrix renormalization group
(DMRG) algorithm to obtain the extended phase diagram for
the finite system and the variational uniform matrix prod-
uct states (VUMPS) algorithm to simulate the system in
the thermodynamic limit [36–38]. Both algorithms use the
matrix-product state (MPS) representation of the wave func-
tion [36,39,40]:

|ψ〉 = Tr(Ap1 Ap2 · · · ApN ) |p1〉 ⊗ |p2〉 · · · ⊗ |pN 〉 . (10)

This is a representation of a periodic and translationally
invariant state. The indices pi run over the spin-1 degrees of
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FIG. 3. The numerical data for the phase diagram of the system
in the thermodynamic limit obtained through the VUMPS algorithm.

freedom. The matrices Api have dimensions χ×χ , where χ

is the bond dimension, and it captures entanglement between
neighboring sites. The product state, for example, is repre-
sented by χ = 1; see Appendix 2 for more details. In DMRG
calculations, we used bond dimensions of up to χ = 300. In
VUMPS calculations, we used a two-site unit cell and bond
dimensions of up to χ = 300. With this choice, we already
achieved energy convergence of better than 0.01% in both
algorithms.

V. RESULTS

The phase diagram of the model was first considered in
Ref. [26], as presented in Fig. 2(a). We obtained an updated
phase diagram shown in Fig. 2(b), and a close-up of the central
region is shown in Fig. 2(c). There are six triple points, A − F .
Four of them are in contact with the Haldane phase. A new
phase, which we call the negative D phase, appears in a narrow
strip between the ferromagnetic and antiferromagnetic phases
and extends as D → −∞.

Two important numerical results of the system in the ther-
modynamic limit, using the VUMPS algorithm [38], are shown
in Fig. 3. In Fig. 3(a), the Haldane order parameter OHaldane

FIG. 4. Proving the existence of critical points A − D. Error bars
are less than the marker size for both figures.

defined in Eq. (8) highlights the region hosting the topological
Haldane phase. In Fig. 3(b), we added the Haldane order pa-
rameter and the ferromagnetic order parameter OSz and OAFM

to visualize the phases and critical points in the central region.
Figure 3(b) is then used to synthesize Fig. 2(c).

A. Central region

The existence of the triple points A, B, C, and D can be
proven by investigating direct phase transitions before and
after the triple points. This is achieved by studying five paths
in the phase diagram, as shown in Fig. 2(c). We show two of
these lines as examples; others will be treated in the finite-
size scaling analysis below. The data were simulated using
the DMRG algorithm with a maximum bond dimension of
χ = 200. Line II is presented in Fig. 4(a), where a direct
transition from the negative D phase to the Haldane phase
occurs. The vanishing of OAFM throughout this path shows the
termination of the antiferromagnetic phase after point A. The
negative D phase has OS2

z
≈ 1, which starts to decrease after

the phase transition. Figure 4(b) follows line III and shows a
direct transition from the anisotropic phase, with algebraically
decaying spin correlations in the XY plane, to the Haldane
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FIG. 5. Line V in Fig. 2(b). A direct phase transition from the
antiferromagnetic to the large D phase at δc1 = 30. The simultaneous
vanishing of the two order parameters shows the termination of the
Haldane phase after point E. Data shown are for N = 75 and OBC.
Error bars are smaller than marker size.

phase, with exponentially decaying spin correlations, proving
the existence of the triple point D.

B. Asymptotic behavior

Upon extending the parameter space we discover that the
Haldane and the anisotropic phases end with triple points
E and F , as shown in Fig. 2(b). This is expected from the
asymptotic behavior of the two parameters D and δc1. When
(D, δc1) → (∞,∞), the model resembles an Ising Hamil-
tonian with uniaxial anisotropy H ≈ ∑

i czS
z
i Sz

i+1 + D(Sz
i )2.

In this regime, we expect only antiferromagnetic or large D
phases. Similarly, when (D, δc1) → (∞,−∞), only ferro-
magnetic or large D phases will survive. The existence of
the triple point E is evidenced by a direct phase transition
between the antiferromagnetic and large D phases at δc1 = 30
(line V), proving that the Haldane phase ends, see Fig. 5.
Analogously, the existence of the triple point F is proven by
a direct transition from the ferromagnetic phase to the large D
phase (not shown here).

VI. FINITE-SIZE ANALYSIS

A. Antiferromagentic-negative-D transition (line I)

We perform finite-size scaling analysis to show that the
new phases and triple points survive the thermodynamic limit.
We start with the phase transition from the antiferromagnetic
phase to the negative D phase at D = −10. This transition is
continuous and according to finite-size scaling theory [41,42],
we can use fidelity susceptibility to determine the position of
the critical point in the thermodynamic limit. Fidelity suscep-
tibility is defined as χF = 〈 ∂

∂λ
ψ | ∂

∂λ
ψ〉 − 〈 ∂

∂λ
ψ |ψ〉〈ψ | ∂

∂λ
ψ〉

where λ is the controlling parameter. The value of the fidelity
susceptibility at the critical point is expected to scale as a
power law in the system size χF (λc) ∝ Nμ−1 [42–44]. We can
then define a function of δc1:

χ̃F (δc1, N, N ′) := ln(χF (δc1, N )) − ln(χF (δc1, N ′))
ln(N ) − ln(N ′)

. (11)

FIG. 6. Reduced fidelity susceptibility (χ̃F ) for different system
sizes as a function of δc1 at fixed D = −10. This is the transition
from the antiferromagnetic to the negative D phase along line I in
Fig. 2(c). The functions collapse into one point at the critical value
of δc1.

The function χ̃F should be independent of the system size at
the critical value of δc1. The functions χ̃F versus δc1 for differ-
ent N and N ′ were simulated using the DMRG algorithm for
system sizes N ∈ {40, 50, 60, 70} and with maximum bond
dimension χ = 200. We show that the functions collapse at
one point in Fig. 6. The lines intersect near the point δc1 =
−3.70(5).

B. Negative-D-Haldane transition (line II)

We use the nonlocal string order parameter as a signature
for the topological Haldane phase since it vanishes in the
negative D phase as seen in Table I. The finite-size scaling
of the string order parameter is expected to show a power-law
dependence near the critical point for continuous transitions
[45,46]:

Oα
string(N, D) = N−ηα f ((Dc − D)N1/να ), (12)

where f is a universal function, ηα and να are critical expo-
nents, and the index α represents the direction of the string
order parameter (z in our case). We can then define a size-
independent function analogously to Eq. (11):

S̃(D, N, N ′) := ln(Ostring(D, N )/Ostring(D, N ′))
ln(N/N ′)

(13)

The function should collapse into one point at the true critical
point D∞. We simulated the transition for different system
sizes N ∈ {32, 40, 50, 80, 90, 100} using the DMRG algo-
rithm with a maximum bond dimension of χ = 200. The data
are presented in Fig. 7, which shows that the critical point is
around D∞ = −7.27(1).

C. Anistropic-Haldane transition (line III)

This first-order transition is marked by a very sharp be-
havior even for relatively small system sizes (N = 26). We
can use the string order parameter to detect this transition
since it vanishes in the anisotropic phase. Since the transition
is first order, the string order parameter does not show the
same power-law dependence expected for continuous phase
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FIG. 7. Reduced string order parameter (S̃) defined in Eq. (13) as
a function of D for different system sizes at δc1 = −4.35. It shows
line II in Fig. 2(c) which tracks the transition from the negative D
to the Haldane phase. The functions collapse into one point at the
critical value of D.

transitions such as line II. We use a data collapse to estimate
the true critical point in the form of:

Ostring(δc1, N ) : −Ostring((δc1 − (δc1)∞) × N ). (14)

We simulated the transition for system sizes N ∈
{50, 60, 70, 90} using the DMRG algorithm with a maximum
bond dimension of χ = 150. By fitting (δc1)∞, near perfect
collapse is obtained for (δc1)∞ = −4.48(9). The data
collapse is shown in Fig. 8.

D. Anisotropic-negative-D transition (line IV)

This transition is first order, similar to the anisotropic-
Haldane transition (line III). We cannot use the string order
parameter to detect the transition as it is zero in both phases,
as presented in Table I. We can, however, use the ferro-
magnetic order parameter to detect this transition. Another
useful quantity is the difference in bond strength (D), which

FIG. 8. String order parameter Ostring(δc1, N ) defined in Eq. (14)
as a function of N (δc1 − (δc1)∞) for different system sizes at
D = −6.2. It shows line III in Fig. 2(c) which tracks the transition
from the anisotropic to the Haldane phase.

FIG. 9. Difference in bond strength (D) defined in Eq. (15) as
a function of δc1 for different system sizes at D = −7.05. It shows
line IV in Fig. 2(c). The inset shows the discontinuity of D around
the phase transition with step size = 10−3.

was proposed to capture first-order quantum phase transitions
[47]. The quantity is related to the level crossing that occurs
when we vary a controlling parameter λ in the Hamiltonian
H (λ) = H0 + λH1, where H0 and H1 do not have to commute.
The nonanalyticity of the ground state energy can then be
captured using the difference between the expectation value
of the two Hamiltonians in the ground state of the system:
D : −e0 − λe1, where e0(e1) are the energies of the Hamilto-
nians H0(H1) per lattice site. In our case, we use

D(δc1) = 〈H〉N/2,N/2+1 − 2δc1
〈
Sz

N/2Sz
N/2+1

〉
, (15)

where 〈H〉N/2,N/2+1 is the energy of the full Hamiltonian
Eq. (1) evaluated at the bond between the sites N

2 and N
2 + 1.

The system was simulated using the DMRG algorithm for
sizes N ∈ {50, 60, 70, 80, 100, 110} and a maximum bond
dimension of χ = 200. The behavior of D characterizes a
first-order transition, as shown in Fig. 9. The inset shows
that the jump is still evident even when the step size in δc1

is of the order 10−3. The critical point is then estimated at
δ(c1)∞ = −4.490(0) using this information.

E. Antiferromagentic-large-D transition (line V)

We investigate this first-order transition at δc1 = 30. The
critical points for finite system sizes are obtained and then
extrapolated to N → ∞. The Binder cumulant is defined as
[48]

UN = 1 −
〈
Sz

4
〉
N

3
〈
S2

z

〉2
N

. (16)

The Binder cumulant measures the deviation of the distribu-
tion of local observables from the Gaussian distribution. We
observe that the Binder cumulant for Sz changes sign from
the antiferromagnetic phase to the large D phase. We can then
track the critical point for finite systems by the point where the
Binder cumulant crosses zero. We simulated the system for in-
creasing system sizes N ∈ {40, 50, 60, 70, 80, 100, 120, 150}
using the DMRG algorithm with a maximum bond dimension
of χ = 200. The critical points for the finite systems were then
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FIG. 10. Extrapolation of the critical point D∞ for the transition
from the antiferromagnetic phase to the large D phase at δc1 = 30
which is line V in Fig. 2(b). A straight line fit for the critical points
for finite sizes as a function of 1

N results in a fitted slope of a =
15.31. The inset shows the Binder cumulant as a function of D for
representative system sizes.

extrapolated using Dc(N ) = a
N + D∞. The data are shown in

Fig. 10, where the inset contains a representative subset of
the graphs of the Binder cumulant for finite system sizes. The
estimated critical point lies at D∞ = 48.7(6).

VII. OUTLOOK

We constructed and analyzed the rich topological phase
diagram for a spin-1 system hosting six different phases and
six triple points. The effects of dimerization [49] or different
trap geometries for Rydberg excitons [50,51] are expected to
exhibit exotic phenomena such as fifth-order transitions [52].
It would also be interesting to examine these new phase transi-
tions using the photoluminescence spectra of the exciton chain
[53] to explore possible applications in the field of quantum
simulations.
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APPENDIX: DETECTION OF THE HALDANE PHASE

Since Haldane’s conjecture in 1983 [12], many properties
of the Haldane phase were understood gradually. First of all,
the existence of the gap itself can be used to detect the phase
when all other phases are gapless. After the AKLT model, we
know that the edge states will have spin- 1

2 , which can also be
used to detect the phase. A hidden Z2 × Z2 symmetry was
shown to illustrate how symmetry breaking in one model can
be related to the string order in another [54]. The string order
parameter was also developed as a way of detecting the long-
range order while having no long-range entanglement [35].
The entanglement spectrum of the state, while short-ranged,

FIG. 11. Schematic drawing of the ground state of the AKLT
model. The red dots represent virtual spin- 1

2 particles. The green
circle designates a symmetrization of the two virtual spins on one
site into a physical spin-1 on site i. The blue lines represent a singlet
state of the two virtual spins on neighboring sites.

was shown to have at least double degeneracy [55]. The string
order parameter was later shown to work only in the specific
case of an abelian symmetry with at least two generators [56].
The renormalization-group flow of the state is a powerful tool
that can also be used to detect and classify nontrivial SPTs
[57]. The Haldane phase in spin-1 chains in 1D belongs to the
class of symmetry-protected topological phases; the ground
state is only topological if a symmetry is imposed on the
perturbations of the Hamiltonian. In the absence of symmetry,
the ground state can be connected adiabatically to the trivial
product state |0〉 ⊗ |0〉 . . . [23]. It was shown that the Haldane
phase can be protected by spatial inversion centered along a
bond, time-reversal symmetry, or Z2 × Z2 internal symmetry
[23]. Moreover, qualifying Haldane’s original conjecture, it
will only be a nontrivial SPT phase in spin chains with odd
integer spins [23].

1. The Haldane phase in the AKLT model

The AKLT model presented the first exactly solvable real-
ization of the Haldane phase:

HAKLT =
∑

i

[
1

2
Si · Si+1 + 1

6
(Si · Si+1)2 + 1

3

]
.

In the AKLT model, the Hamiltonian is the projection of
each two neighboring spin-1 particles into the spin-2 sector:
H = ∑

i P2(Si + Si+1). Since the Hamiltonian is a projection,
the ground state will have zero energy. The ground state can
be formed by ensuring that any two neighboring spins have
a total spin of 1 or 0. The method to ensure this is to write
the physical spin-1 sites as a symmetric combination of two
spin- 1

2 virtual particles. These spin- 1
2 particles are then taken

to form a singlet bond between neighboring sites, as shown in
Fig. 11.

2. Matrix-product states

Matrix-product states (MPS) play a crucial role in repre-
senting 1D systems and offers the theoretical basis for efficient
1D algorithms like DMRG [36]. An MPS is a representation
of certain wave functions, typically in 1D, as

|ψ〉 = Tr(Ap1 Ap2 · · · ApN ) |p1〉 ⊗ |p2〉 · · · ⊗ |pN 〉 . (A1)

Here, we represent a translationally invariant periodic state for
simplicity. In general, the matrices and their dimensions can
be site-dependent. The index pi runs over the physical degrees
of freedom. For a specific i, Api is a χ×χ matrix. χ is called
the bond dimension or the virtual dimension. The object Ap1

α1α2

as a whole can be treated as a rank-three tensor. It is often
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FIG. 12. (a) The graphical representation of a rank-three tensor
A with the physical index p1 and virtual indices i, j. (b) Represen-
tation of the rank-four tensor

∑
j Ap1

i, jA
p2
j,k , with two physical and two

virtual indices, just as Einstein’s convention, any connected legs are
assumed to be summed over. (c) MPS representation of a general
translationally invariant state with periodic boundary conditions.

more convenient to use a graphical representation to express
MPS operations where tensors are represented by a certain
shape and the legs correspond to indices. Linking legs is a
convention for summation. See Fig. 12.

There is a large gauge freedom Ap1 → XAp1 X −1 in
the representation of any wave function using MPS. This
gauge freedom can be exploited to put the matrices in the
right-canonical form:

∑
pi

Api A†pi = I to facilitate both com-
putational and theoretical evaluations of the MPS. If we
also define the transfer matrix Eii′, j j′ = ∑

p Ap
i jA

†p
i′ j′ , then the

right-canonical form means that I is a right fixed point for
the transfer matrix given in Fig. 13. Injective MPS are a
finer restriction after this initial gauge fixing. They intuitively
represent finitely correlated ground states, which have only
short-ranged entanglement. They exclude the so-called cat
states which are a superposition of macroscopically differ-
ent states such as the GHZ state: |GHZ〉 = 1√

2
(|000 · · ·〉 +

|111 · · ·〉.
The right-canonical form along with injectivity implies the

following properties [39,40].
(i) There exists n0 such that Ap1 Ap2 · · · Apn for (n � n0)

span the D × D matrices.
(ii)

∑
pi

Api Api† = I and for the dual map
∑

pi
Api†�Api =

�, where � is a full-rank positive diagonal matrix with unit
trace.

(iii) I is the only right eigenvector with eigenvalue |λI| =
1 and all other eigenvalues have strictly smaller magnitudes.

3. MPS representation of the AKLT Ground State

The ground state of the AKLT model has a nice description
in terms of three 2×2 matrices Ap, where p stands for the spin

FIG. 13. (a) The graphical representation of the rank-four tensor
E representing the transfer matrix with the implicit summation over
the physical index p. Matrix A in the bottom row is understood to
represent A†

i′ j′ . (b) The right-canonical condition Eii′, j j′δ j j′ = δii′ .

index in the standard basis Sz = {−1, 0, 1} [39,58]:

A1 =
(

0 0
− 1√

2
0

)
, A0 =

(
1
2 0
0 − 1

2

)
, A−1 =

(
0 1√

2
0 0

)
.

(A2)

These matrices can be combined into a rank-three tensor Ap1
i j ;

here p1 represents the physical spin index p1 ∈ {−1, 0, 1}
and i, j are virtual indices i, j ∈ {1, 2}. It can be checked that
these matrices represent the ground state for open or periodic
boundary conditions, respectively:

|�AKLT 〉OBC =
∑

α

Ãp1
α1

Ap2
α1α2

· · · ÃpN
αN

|p1〉 ⊗ · · · ⊗ |pN 〉, (A3)

|�AKLT 〉PBC = Tr(Ap1 Ap2 · · · ApN )|p1〉 ⊗ · · · ⊗ |pN 〉. (A4)

Here the summation is over all αi. For open boundary con-
ditions, Ãp1

α1 is equivalent to Aα0α1 , where α0 is a free index
representing the unlinked virtual spin- 1

2 at the left end of the
open chain. Similarly, ÃpN

αN is equivalent to AαN αN+1 , with αN+1

being a free index.

4. String order parameter in the AKLT model

The string order parameter is a nonlocal order parameter
that characterizes the Haldane phase. It was first motivated by
the roughening phase transitions of crystals and related to the
AKLT model [35]:

Ostring = lim
|i− j|→∞

〈
Sz

i

[
�

j−1
k=i+1eiπSz

k
]
Sz

j

〉
. (A5)

The configuration of the ground state of the AKLT model
amounts to taking the superposition of all states satisfying
two rules: there is no restriction on the number or position
of sites with spin Sz = 0, and no two consecutive sites with
spin Sz = 1 or Sz = −1 are allowed (even if separated by
sites with Sz = 0). A representative term in the ground state
is |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |−1〉 ⊗ |1〉 ⊗ |−1〉 ⊗ |1〉 ⊗ |−1〉. This is
the usual antiferromagnetic order as realized in the Néel state,
but with arbitrary zeros in between, which is called diluted
antiferromagnetic order.

5. Hidden Z2×Z2 symmetry breaking

Another perspective on the Haldane phase and the string
order parameter can be seen through a unitary, nonlocal
transformation at each site j [54,59]: UKT = ∏

j<k eiπSz
j S

x
k .

The transformation is symmetric under the Z2 × Z2 sym-
metry, which is represented in our case by the π rotations
around the three spin axes. The transformation maps the
local Hamiltonian [AKLT or Eq. (1)] with open boundary
conditions into another short-ranged Hamiltonian. In the new
Hamiltonian, the Haldane phase is mapped to a ferromagnetic
phase which spontaneously breaks the Z2 × Z2 symmetry.
The ferromagnetic phase is well understood under the Landau
symmetry-breaking picture. The correlation function in the
infinite limit lim|i− j|→∞〈Si

zS
j
z 〉 will have a nonzero value for

the ferromagnetic phase. Using the reverse transformation
and noting UKTUKT = I, we find that this correlation function
is mapped to the string order parameter associated with the
Haldane phase in the original Hamiltonian. This nonlocal
transformation UKT then relates the symmetric topological
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FIG. 14. (Top) General string order parameter Ôgeneral string ap-
plied in the physical space. (Middle) We can put the left and middle
matrices in the left-canonical form Bpi . The two forms are related by
Api = �−1Bpi �. (Bottom) For a sufficiently long string, the leftmost
and rightmost canonical matrices can be replaced with the identity
matrix. The string in the middle can also be seen as acting projec-
tively with unitaries Vg that will cancel except on the edges.

Haldane phase to a ferromagnetic phase, where the symmetry
is spontaneously broken.

6. General string order parameter for Abelian symmetries

In the general setup, we have two symmetries that com-
mute in the physical space, i.e. g, g2 ∈ G and [u(g), u(g2)] =

0, where G is the symmetry group of the Hamiltonian. In
the virtual space, however, they only commute projectively:
Vg2Vg = eiφVgVg2 . Then we can find another operator g1 which
satisfies u(g2)u(g1) = eiσ u(g1)u(g2). Our general string oper-
ator will then be

Ôgeneral string = lim
N→∞

u(g1)1
[
�N−1

j=2 u(g) j
]
u(g1)N . (A6)

In the bulk of the string, we can use injectivity to make ug

act projectively on the virtual dimensions. These unitaries will
cancel except on the two edges. If this string is long enough,
we can again use injectivity to effectively separate it into
two terms. This will give 0 if σ �= φ in the two symmetry-
respecting phases. In Fig. 14, the string order parameter is
broken down using the exchange of some right-canonical ma-
trices to left-canonical matrices using Api = �−1Bpi�, where
this � is the same matrix appearing in Sec. A 2. If the string
is long enough, we can exploit the canonical form to reduce
the left and right infinite chains to identity [56,60]. We only
pick up some �(�−1) due to the shift of the orthogonality
center. It should be noted that � will commute with any
symmetry operator, as it represents the entanglement spectrum
and this should remain invariant under the symmetry. If we
define Lg1 = ∑

ii′ �
2
ii′E

ug1
ii′, j j′ and Rg1 = ∑

j E
ug1
ii′, j j for the left

and right transfer matrices taking into account the extra �, we
arrive at

Ogeneral string = Tr(Lg1Vg�
−2)Tr(V †

g Rg1�
2). (A7)

Since u(g2) commutes with u(g1) up to a phase σ but, projec-
tively, it commutes with Vg up to another phase φ. The left
trace then obeys Tr(Lg1Vg�

−2) = ei(σ−φ)Tr(Lg1Vg�
−2) and

thus it will vanish for σ �= φ as desired [56]. In the Haldane
phase, we have the elements g → eiπSx , g2 → eiπSz and g1 →
Sz. Because the phase is topologically nontrivial, we have
σ = π so eiπSz and eiπSx have to anti-commute virtually to give
nonzero string order. The two π -rotations would commute
for physical spin-1 edges. However, owing to the topological
nature of the phase, the edges are effectively spin- 1

2 states
whose rotation matrices form a representation of SU(2) and
anticommute.
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