MTH 142: Calculus II

Practice Final Exam
December 17, 2017

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the appropriate box:

Crossen	MW 9-10:15	
Zhong	MW 3:25-4:40	

- You have 3 hours to work on this exam.
- You are responsible for checking that this exam has all 9 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers.
- Read the following Academic Honesty Statement and sign:

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: \qquad

Part A		
QUESTION	VALUE	SCORE
TOTAL	0	

Part B		
QUESTION	VALUE	SCORE
1	20	
2	20	
3	10	
4	15	
5	10	
TOTAL	75	

Part A

Please refer to Midterm 1\&2, together with their practice problems.

Part B

1. (20 points) Evaluate the following integrals:
(a) $\int_{0}^{3 \sqrt{3} / 2} \frac{x^{3}}{\left(4 x^{2}+9\right)^{3 / 2}} d x$
(b) $\int \frac{x}{\sqrt{3-2 x-x^{2}}} d x$
2. (20 points) Evaluate the following integrals:
(a) $\int \frac{x^{2}+3}{x^{3}-6 x^{2}+9 x} d x$.
(b) $\int_{-1}^{0} \frac{x^{3}-4 x+1}{x^{2}-3 x+2} d x$
3. (10 points) Set up the partial fraction decomposition for the following integral in terms of variables but do not solve for those variables.

$$
\int \frac{4 x^{3}+5 x^{2}-3 x+7}{\left(x^{3}+2 x^{2}+x\right)\left(x^{3}-x\right)\left(x^{3}+x\right)\left(x^{2}+x+1\right)} d x
$$

4. (15 points) For each of the following improper integrals, either evaluate the integral or show that it diverges.
(a) $\int_{0}^{5} \frac{w}{w-2} d w$
(b) $\int_{1}^{\infty} \frac{e^{-1 / x}}{x^{2}} d x$
5. (10 points)

Find the arc length of the curve

$$
y=1+6 x^{3 / 2}, \quad 0 \leq x \leq 1
$$

Blank page for scratch work

Formula Sheet

- $\sin ^{2} x+\cos ^{2} x=1$
- $1+\tan ^{2} x=\sec ^{2} x$
- $1+\cot ^{2} x=\csc ^{2} x$
- $\sin (2 x)=2 \sin x \cos x$
- $\sin ^{2} x=\frac{1-\cos (2 x)}{2}$
- $\cos ^{2} x=\frac{1+\cos (2 x)}{2}$
- $\sin (x+y)=\sin x \cos y+\cos x \sin y$
- $\cos (x+y)=\cos x \cos y-\sin x \sin y$
- $\sin x \cos y=\frac{\sin (x-y)+\sin (x+y)}{2}$
- $\sin x \sin y=\frac{\cos (x-y)-\cos (x+y)}{2}$
- $\cos x \cos y=\frac{\cos (x-y)+\cos (x+y)}{2}$

