MTH 165: Linear Algebra with Differential Equations

Midterm 2

November 22, 2016

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Bobkova	MWF 10:25-11:15	
Lubkin	MWF 9:00-9:50	
Rice	TR 14:00-15:15	
Vidaurre	MW 14:00-15:15	

- You have 75 minutes to work on this exam.
- No calculators, cell phones, other electronic devices, books, or notes are allowed during this exam.
- Show all your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You are responsible for checking that this exam has all 11 pages.

QUESTION	VALUE	SCORE
1	21	
2	18	
3	21	
4	20	
5	20	
TOTAL	100	

1. (21 points) Determine whether each given set S is a subspace of the given vector space V. If so, give a proof; if not, provide a counterexample.
(a) $V=P_{2}(\mathbb{R})$, the set of polynomials of degree at most 2 , and $S=\left\{p \in V: p^{\prime}(0)=1\right\}$.
(b) $V=M_{2}(\mathbb{R})$, the set of 2×2 matrices, and

$$
S=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in V \right\rvert\, a-4 b=c-5 d\right\} .
$$

(c) $V=\mathbb{R}^{2}$, and $S=\{(x, y) \in V:|y|=|x|\}$.
2. (18 points) Answer the following questions, with justification, about a given collection of vectors in a given vector space.
(a) Do the polynomials $p_{1}(t)=1+t^{2}, p_{2}(t)=t^{3}$, and $p_{3}(t)=4-t$ span all of $V=P_{3}(\mathbb{R})$, the set of polynomials of degree at most 3 ?
(b) Are the functions $f(t)=e^{t}, g(t)=t^{2}$, and $h(t)=\sin (t)$ linearly independent in $V=$ $\mathcal{C}^{2}(\mathbb{R})$, the set of functions with everywhere-continuous second derivatives?
(c) Do the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
4 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
5 \\
7 \\
1
\end{array}\right]
$$

form a basis for $V=\mathbb{R}^{3}$?
3. (21 points) Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 7 & 9 \\
3 & 7 & 26 & 28 \\
5 & 11 & 40 & 46
\end{array}\right]
$$

(a) Determine a basis for the row space of A.
(b) Determine a basis for the column space of A.
(c) Determine a basis for the nullspace of A.
4. (20 points) Answer the following about a 31×14 matrix A (that is, a matrix with 31 rows and 14 columns) with $\operatorname{rank}(A)=14$. No justification is required for parts (a)-(c).
(a) $\operatorname{rowspace}(A)$ is a \qquad -dimensional subspace of \mathbb{R}^{d} with $d=$
(b) colspace (A) is a \qquad -dimensional subspace of \mathbb{R}^{d} with $d=$
(c) $\operatorname{null}(A)$ is a \qquad -dimensional subspace of \mathbb{R}^{d} with $d=$ \qquad
(d) Are the rows of A linearly independent? Why or why not?
(e) Are the columns of A linearly independent? Why or why not?
5. (20 points) Answer the following, with justification, about the function

$$
T: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})
$$

defined by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
a & a+d \\
b+c & a+b+c+d
\end{array}\right]
$$

(a) Show that T is a linear transformation.
(b) Is $A=\left[\begin{array}{cc}0 & 5 \\ -5 & 0\end{array}\right]$ in the kernel of T ?
(c) Is $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ in the range of T ?
(d) What is $\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{Rng}(T))$?

