MTH 165: Linear Algebra with Differential Equations

Final Exam

May 7, 2012

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Dan-Andrei Geba	MWF 10:00-10:50 AM	
Ang Wei	MW 2:00-3:15 PM	

- The presence of electronic devices (including calculators), books, or formula cards/sheets at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your simplified final answers.
- You are responsible for checking that this exam has all 11 pages.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
TOTAL	100	

1. (10 points) Solve the following initial value problems:
(a) (5 points)

$$
\left(e^{t}+1\right) \frac{d y}{d t}+e^{t} y=1, \quad y(0)=1
$$

(b) (5 points)

$$
y^{\prime}=1+x+y+x y, \quad y(0)=0
$$

2. (10 points) Consider an RC circuit which has $R=4 \Omega, C=1 / 8 F$, and $E(t)=$ $12 \sin 3 t V$. If the capacitor is uncharged initially, determine the current in the circuit for $t \geq 0$.

3. (10 points)

(a) (5 points) Construct two matrices A and B of the same dimensions, for which

$$
\operatorname{rank}(A+B) \neq \operatorname{rank}(A)+\operatorname{rank}(B)
$$

(b) (5 points) Construct two matrices A and B of appropriate dimensions, such that

$$
\operatorname{rank}(A B) \neq \operatorname{rank}(A) \cdot \operatorname{rank}(B)
$$

4. (10 points) For each of the following subsets of $M_{3 \times 3}(\mathbb{R})$, determine whether it is a subspace. If that is the case, find its dimension.
(a) (5 points) S is the set of matrices $A \in M_{3 \times 3}(\mathbb{R})$ satisfying

$$
A^{T}=2 A
$$

(b) (5 points) S is the set of matrices $B \in M_{3 \times 3}(\mathbb{R})$ verifying

$$
B^{T}+3 B=5 I_{3 \times 3} .
$$

5. (10 points) Show that the vectors $v_{1}=(2,-3,5), v_{2}=(8,-12,20), v_{3}=(1,0,-2)$, $v_{4}=(0,2,-1)$, and $v_{5}=(7,2,0)$ span \mathbb{R}^{3}. Find a subset of the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ which is a basis for \mathbb{R}^{3}.
6. (10 points) Let P_{2} denote the vector space of polynomials with real coefficients and degree at most 2 . Define $T: P_{2} \rightarrow P_{2}$ by

$$
T(f)=f(0) x+f^{\prime}(2) x^{2} .
$$

(a) (3 points) Show that T is a linear transformation.
(b) (3 points) Determine a basis for $\operatorname{Ker}(T)$. What is $\operatorname{dim}[\operatorname{Ker}(T)]$?
(c) (2 points) Find $\operatorname{dim}[\operatorname{Rng}(T)]$.
(d) (2 points) Is the polynomial $5 x+3$ in the range of T ? Explain.
7. (10 points) Consider the matrix

$$
A=\left[\begin{array}{lll}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right]
$$

(a) (4 points) Determine its eigenvalues and their multiplicities.
(b) (4 points) Compute the eigenspaces corresponding to each of the eigenvalues and their dimensions.
(c) (2 points) Conclude, with explanation, whether A is a defective or non-defective matrix.
8. (10 points) Solve the initial value problem

$$
y^{\prime \prime}-4 y^{\prime}+8=0, \quad y(0)=3, \quad y^{\prime}(0)=10
$$

9. (10 points) Determine the general solution to

$$
y^{\prime \prime}-5 y^{\prime}+6 y=4 x e^{2 x}
$$

10. (10 points)
(a) (5 points) Determine the annihilator for the function

$$
F(x)=x e^{-x}+2 \cos x .
$$

(b) (5 points) Using the information obtained previously, find the general solution to

$$
y^{\prime \prime \prime}-y^{\prime}=x e^{-x}+2 \cos x .
$$

