MTH 165: Linear Algebra with Differential Equations

2nd Midterm
April 5, 2012

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Dan-Andrei Geba	MWF 10:00-10:50 AM	
Ang Wei	MW 2:00-3:15 PM	

- The presence of of electronic devices (including calculators), books, or formula cards/sheets at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your simplified final answers.
- You are responsible for checking that this exam has all 7 pages.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
TOTAL	60	

1. (10 points) Find the determinants of the matrices A, B, and $B^{T} A$, where

$$
A=\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
1 & 2 & 2 & 1 \\
-2 & 0 & 4 & 1 \\
0 & -2 & 3 & 4
\end{array}\right], \quad B=\left[\begin{array}{cccc}
-3 & 5 & 6 & -14 \\
0 & 2 & 13 & -156 \\
0 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

2. (10 points) In each of the following, determine whether the subset S is a subspace of the given vector space V :
i) $V=M_{2 \times 2}(\mathbb{R})$ and S is the subset of all 2×2 invertible matrices;
ii) $V=P_{2}$, the vector space of real-valued polynomials of degree ≤ 2, and

$$
S=\left\{a x^{2}+b x: a, b \in \mathbb{R}\right\} .
$$

3. (10 points) Compute

$$
\operatorname{span}\{(1,0,-1),(2,0,4),(-5,0,2),(0,0,1)\}
$$

in the vector space \mathbb{R}^{3}.
4. (10 points) Using the Wronskian, determine whether or not the functions

$$
f_{1}(x)=e^{2 x}, f_{2}(x)=e^{3 x}, f_{3}(x)=e^{-x}
$$

are linearly independent on \mathbb{R}.
5. (10 points) Let S be the subspace of \mathbb{R}^{3} that consists of all (x, y, z) which satisfy the equation $x+3 y-2 z=0$. Determine a basis for S and find $\operatorname{dim}[S]$.
6. (10 points) For the matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & -1 & 5 \\
0 & 2 & -1 & 7 \\
4 & 2 & -3 & 13
\end{array}\right]
$$

find:
i) a basis and the dimension for colspace (A);
ii) a basis and the dimension for nullspace (A).

