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for a correct answer if insufficient work is shown or insufficient justification

is given.

• Clearly circle or label your simplified final answers.
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1. (10 points) Solve the following initial value problems:

(a) (5 points)

(x2 + 1)
dy

dx
+ 3x y = 6x, y(0) = 3;

(b) (5 points)

y′ +
y

x2
=

2

x2
, y(1) = 1.
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2. (10 points)

(a) (5 points) Find the value of k which satisfies

det

 2a1 2a2 2a3

3b1 + 5c1 3b2 + 5c2 3b3 + 5c3

7c1 7c2 7c3

 = k · det

a1 a2 a3

b1 b2 b3

c1 c2 c3

 .

(b) (5 points) Construct two matrices A and B of appropriate dimensions such that

rank(AB) < min{rank(A), rank(B)}.
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3. (10 points) For each of the following subsets of P2 (i.e., the vector space of polynomials

with real coefficients and degree at most 2) determine whether it is a subspace. If that is

the case, find its dimension.

(a) (5 points) S is the set of polynomials p ∈ P2 satisfying

p′(x) + p(x) = x2.

(b) (5 points) S is the set of polynomials p ∈ P2 verifying

p(x) + p(−x) = 0.
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4. (10 points) Compute the reduced row-echelon form for the matrix7 4 1 7

4 3 2 4

3 2 1 3


and deduce from there a basis and the dimension of its row space.
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5. (10 points) Let M2×2(R) denote the vector space of 2 × 2 square matrices with real

entries. Define T : M2×2(R)→M2×2(R) by

T

(
a b

c d

)
=

(
a + b 0

c a + d

)
.

(a) (3 points) Show that T is a linear transformation.

(b) (3 points) Determine a basis for Ker(T ). What is dim[Ker(T )]?

(c) (2 points) Find dim[Rng(T )].

(d) (2 points) Is the matrix

(
1 0

2 3

)
in the range of T? Explain.
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6. (10 points) Consider the matrix

A =

0 1 1

1 0 1

1 1 0

 .

(a) (4 points) Determine its eigenvalues and their multiplicities.

(b) (4 points) Compute the eigenspaces corresponding to each of the eigenvalues and their

dimensions.

(c) (2 points) Conclude, with explanation, whether A is a defective or non-defective matrix.
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7. (10 points) Solve the initial value problem

y′′′ − 4y′′ + 5y′ − 2y = 0, y(0) = 2, y′(0) = 3, y′′(0) = 5.
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8. (10 points) Determine the general solution to

y′′ + 4y′ + 4y = x e−x.
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9. (10 points) Find the general solution to

y′′ + 2y′ = e−x + x.
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10. (10 points) Solve the initial value problemx′1 = −2x1 + x2, x′2 = x1 − 2x2,

x1(0) = 3, x2(0) = 1.
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