MTH 165: Linear Algebra with Differential Equations

Final Exam

May 6, 2013

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Dan-Andrei Geba	MWF 10:00-10:50	
Giorgis Petridis	MWF 13:00-13:50	
Eyvindur Ari Palsson	MW 14:00-15:15	

- The presence of electronic devices (including calculators), books, or formula cards/sheets at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your simplified final answers.
- You are responsible for checking that this exam has all 11 pages.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
TOTAL	100	

1. (10 points) Solve the following initial value problems:
(a) (5 points)

$$
\left(x^{2}+1\right) \frac{d y}{d x}+3 x y=6 x, \quad y(0)=3
$$

(b) (5 points)

$$
y^{\prime}+\frac{y}{x^{2}}=\frac{2}{x^{2}}, \quad y(1)=1
$$

2. (10 points)

(a) (5 points) Find the value of k which satisfies

$$
\operatorname{det}\left[\begin{array}{ccc}
2 a_{1} & 2 a_{2} & 2 a_{3} \\
3 b_{1}+5 c_{1} & 3 b_{2}+5 c_{2} & 3 b_{3}+5 c_{3} \\
7 c_{1} & 7 c_{2} & 7 c_{3}
\end{array}\right]=k \cdot \operatorname{det}\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right] .
$$

(b) (5 points) Construct two matrices A and B of appropriate dimensions such that

$$
\operatorname{rank}(A B)<\min \{\operatorname{rank}(A), \operatorname{rank}(B)\}
$$

3. (10 points) For each of the following subsets of P_{2} (i.e., the vector space of polynomials with real coefficients and degree at most 2) determine whether it is a subspace. If that is the case, find its dimension.
(a) (5 points) S is the set of polynomials $p \in P_{2}$ satisfying

$$
p^{\prime}(x)+p(x)=x^{2} .
$$

(b) (5 points) S is the set of polynomials $p \in P_{2}$ verifying

$$
p(x)+p(-x)=0
$$

4. (10 points) Compute the reduced row-echelon form for the matrix

$$
\left[\begin{array}{llll}
7 & 4 & 1 & 7 \\
4 & 3 & 2 & 4 \\
3 & 2 & 1 & 3
\end{array}\right]
$$

and deduce from there a basis and the dimension of its row space.
5. (10 points) Let $M_{2 \times 2}(\mathbb{R})$ denote the vector space of 2×2 square matrices with real entries. Define $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ by

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a+b & 0 \\
c & a+d
\end{array}\right)
$$

(a) (3 points) Show that T is a linear transformation.
(b) (3 points) Determine a basis for $\operatorname{Ker}(T)$. What is $\operatorname{dim}[\operatorname{Ker}(T)]$?
(c) (2 points) Find $\operatorname{dim}[\operatorname{Rng}(T)]$.
(d) (2 points) Is the matrix $\left(\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right)$ in the range of T ? Explain.
6. (10 points) Consider the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) (4 points) Determine its eigenvalues and their multiplicities.
(b) (4 points) Compute the eigenspaces corresponding to each of the eigenvalues and their dimensions.
(c) (2 points) Conclude, with explanation, whether A is a defective or non-defective matrix.
7. (10 points) Solve the initial value problem

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=0, \quad y(0)=2, \quad y^{\prime}(0)=3, \quad y^{\prime \prime}(0)=5 .
$$

8. (10 points) Determine the general solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x e^{-x} .
$$

9. (10 points) Find the general solution to

$$
y^{\prime \prime}+2 y^{\prime}=e^{-x}+x
$$

10. (10 points) Solve the initial value problem

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-2 x_{1}+x_{2}, \quad x_{2}^{\prime}=x_{1}-2 x_{2} \\
x_{1}(0)=3, \quad x_{2}(0)=1
\end{array}\right.
$$

