MTH 165: Linear Algebra with Differential Equations

1st Midterm

February 21, 2013

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Dan-Andrei Geba	MWF 10:00-10:50	
Giorgis Petridis	MWF 13:00-13:50	
Eyvindur Ari Palsson	MW 14:00-15:15	

- The presence of of electronic devices (including calculators), books, or formula cards/sheets at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your simplified final answers.
- You are responsible for checking that this exam has all 7 pages.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
TOTAL	60	

1. (10 points) Find the explicit solution for the initial value problem

$$
\frac{d y}{d x}=x^{2}+x^{2} y^{2}, \quad y(0)=1
$$

2. (10 points) Solve the initial value problem

$$
\frac{d y}{d t}+\frac{y}{2}-\frac{e^{t / 3}}{2}=0, \quad y(0)=\frac{6}{5}
$$

3. (10 points) Consider the $R C$ circuit which has

$$
R=2 \Omega, \quad C=\frac{1}{8} F, \quad \text { and } \quad E(t)=5 V .
$$

If $q(0)=7$ coulombs, determine the current in the circuit for $t \geq 0$.
4. (10 points) A 200-gal tank initially contains 100 gal of pure water. Brine enters the tank through two faucets: one containing $0.2 \mathrm{lb} / \mathrm{gal}$ of salt flows in at the rate of $1 \mathrm{gal} / \mathrm{min}$, while the second one containing $0.1 \mathrm{lb} / \mathrm{gal}$ of salt flows in at the rate of $3 \mathrm{gal} / \mathrm{min}$. The well-stirred mixture flows out of the tank at the rate of $2 \mathrm{gal} / \mathrm{min}$. How much salt is in the tank just before the solution overflows?
5. (10 points) Find the rank for the matrix

$$
A=\left[\begin{array}{ccc}
5 & 2 & -5 \\
9 & 4 & -7 \\
4 & 1 & -7
\end{array}\right]
$$

by computing its reduced row-echelon form.
6. (10 points) Solve the following linear system of equations:

$$
\left\{\begin{array}{l}
3 x_{1}+x_{2}+x_{3}+6 x_{4}=14 \\
x_{1}-2 x_{2}+5 x_{3}-5 x_{4}=-7 \\
4 x_{1}+x_{2}+2 x_{3}+7 x_{4}=17
\end{array}\right.
$$

