MTH 165: Linear Algebra with Differential Equations

2nd Midterm
April 4, 2013

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Dan-Andrei Geba	MWF 10:00-10:50	
Giorgis Petridis	MWF 13:00-13:50	
Eyvindur Ari Palsson	MW 14:00-15:15	

- The presence of of electronic devices (including calculators), books, or formula cards/sheets at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your simplified final answers.
- You are responsible for checking that this exam has all ?? pages.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
TOTAL	60	

1. (10 points) Find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
-7 & -3 & 1 \\
2 & 1 & 0 \\
-28 & -13 & 3
\end{array}\right]
$$

2. (10 points) Use cofactor expansion and/or row reduction to evaluate the determinant of the following matrix

$$
\left[\begin{array}{cccc}
1 & 2 & 2 & 4 \\
-2 & 2 & -2 & 2 \\
2 & 1 & -1 & -2 \\
-1 & -4 & 4 & 2
\end{array}\right]
$$

3. (10 points) In each of the following, determine whether the subset S is a subspace of the given vector space V :
i) $V=\mathbb{R}^{4}$ and $S=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1} x_{4}=0\right\}$;
ii) $V=M_{2 \times 2}(\mathbb{R})$ and $S=\left\{A \in M_{2 \times 2}(\mathbb{R}) \mid A=2 A^{T}\right\}$.
4. (10 points) Using the Wronskian, determine whether or not the functions

$$
f_{1}(x)=\sin x, f_{2}(x)=\sin 2 x, f_{3}(x)=e^{x}
$$

are linearly independent on \mathbb{R}.
5. (10 points) Find a subset of

$$
S=\left\{\left(\begin{array}{l}
3 \\
2 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
4 \\
3 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)\right\}
$$

that forms a basis for the subspace of \mathbb{R}^{4} generated by S, i.e., span S.
6. (10 points) For the matrix

$$
A=\left[\begin{array}{ccccc}
3 & 1 & -3 & 11 & 10 \\
5 & 8 & 2 & -2 & 7 \\
2 & 5 & 0 & -1 & 14
\end{array}\right]
$$

find a basis and the dimension for nullspace (A).

