
MTH 165: Linear Algebra with Differential Equations
Final Exam

May 5, 2014

NAME (please print legibly):
Your University ID Number:
Indicate your instructor with a check in the box:

Friedmann MW 16:50 - 18:05
Karapetyan MW 14:00-15:15
Petridis MWF 10:00 - 10:50

• You have 3 hours to work on this exam.

• No calculators, cell phones, other electronic devices, books, or notes are allowed.

• Show all your work and simplify your answers. You may not receive full credit for a
correct answer if insufficient work is shown or insufficient justification is given.

• You are responsible for checking that this exam has all 11 pages.

QUESTION VALUE SCORE

1 10

2 10

3 10

4 10

5 10

6 10

7 10

8 10

9 10

10 10

TOTAL 100

By taking this exam, you are acknowledging that the following is prohibited by
the College’s Honesty Policy: Obtaining an examination prior to its administra-
tion. Using unauthorized aid during an examination or having such aid visible to
you during an examination. Knowingly assisting someone else during an exami-
nation or not keeping your work adequately protected from copying by another.
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1. (10 points) Find the explicit solution to the following initial value problem showing all
your work

y′ − x y2 = x , y(0) = 1 .
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2. (10 points) (i) Let A be an invertible n×n. Is it true that the system of linear equations
Ax = b has a unique solution for all b ∈ Rn? It it is, carefully explain why. If it is not
provide an explicit example that disproves the claim.

(ii) Is there a system of three distinct linear equations in two unknowns that has a unique
solution? If there is, provide an explicit example. If there is not, explain carefully why this
is the case.

(iii) Is there a system of two distinct linear equations in three unknowns that has a unique
solution? If there is, provide an explicit example. If there is not, carefully explain why this
is the case.
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3. (10 points) Let A and B be the following matrices

A =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 and B = −2


a1 + c1 c1 −1 b1
a2 + c2 c2 3 b2

0 0 2 0
a3 + c3 c3 7 b3

 .
Find det(B) in terms of det(A) showing all your work.

Page 4 of 11



May 5, 2014 Final Exam MTH 165

4. (10 points) Let M2(R) be the vector space of 2× 2 matrices with real components, 02

be the zero 2× 2 matrix, B be the following matrix

B =

[
2 −4
−1 2

]
,

and S be the following subset of M2(R)

S = {A ∈M2(R) : AB = 02} .

Prove that S is a subspace of M2(R); find a basis for it; and determine its dimension.
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5. (10 points) Let A be the following matrix

A =

[
1 3 1
−1 2 4

]
.

Define a linear transformation T by Tx = Ax.

(i) The kernel of T is a subspace of Rd for what value of d?

d =

(ii) Find a basis for the kernel of T showing all your work.

(iii) The range (or image) of T is a subspace of Rd for what value of d?

d =

(iv) What is the dimension of the range of T? Justify your answer.
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6. (10 points) Consider the matrix

A =

2 −1 0
1 0 0
0 0 3

 .
(i) Determine its eigenvalues and their (algebraic) multiplicities showing all your work.

(ii) Find a basis for each eigenspace showing all your work.

(iii) Conclude, with explanation, whether A is a defective or non-defective matrix.
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7. (10 points) Find the general solution to each of the following differential equations
showing all your work.

(i) t2 y′′ − 8 t y′ + 20 y = 0 .

[Hint: try powers of t as solutions.]

(ii) y(4) + 4 y(3) + 10 y′′ + 12 y′ + 9 y = 0 .

[Hint: r4 + 4r3 + 10r2 + 12r + 9 = (r2 + 2r + 3)2.]
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8. (10 points) Find the general solution to the following differential equation showing all
your work.

y′′′ − y′′ = 12 x2 .
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9. (10 points) A spring with spring constant 8 N/m is loaded with a 2 kg mass and allowed
to reach equilibrium. It is then displaced and released. Suppose that after π/2 seconds the
mass is 1 m below the equilibrium position and moving upward with speed 2

√
3 m/s.

Find the equation of motion of the displacement y(t) from the equilibrium position, the
amplitude, and the phase. Neglect friction. Show all your work.
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10. (10 points) Solve the following initial value problem showing all your work.

x′1 = x1 + 3x2, x1(0) = 2

x′2 = −3x1 + x2, x2(0) = 3.
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