
MTH 165: Linear Algebra with Differential Equations

Final Exam

May 4, 2015

NAME (please print legibly):

Your University ID Number:

Indicate your instructor with a check in the box:

Dummit TR 16:50-18:05

Friedmann MW 16:50-18:05

Petridis MWF 10:25-11:15

Rice MW 14:00-15:15

• You have 3 hours to work on this exam.

• No calculators, cell phones, other electronic devices, books, or notes are allowed during

this exam.

• Show all your work and justify your answers. You may not receive full credit for a

correct answer if insufficient work is shown or insufficient justification is given.

• You are responsible for checking that this exam has all 14 pages.

QUESTION VALUE SCORE

1 10

2 10

3 10

4 10

5 10

6 10

7 10

8 10

9 10

10 10

TOTAL 100
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1. (10 points) Find a solution (implicit solutions are acceptable) for the following initial

value problems on the domain (0,∞):

(a) 2y + xy′ = x−1, y(1) = A.

(b) 2x+ yy′ = x−1, y(1) = B.
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2. (10 points) Find a basis for the nullspace of each matrix.

(a) A =

[
0 1 0 0

0 0 0 0

]
.

(b) B =

[
1 −1 0 0

0 0 1 0

]
.

(c) C =

1 1 1 1

0 1 1 1

0 0 1 1

 .
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3. (10 points) Let M =

 k 0 k

0 1 0

1 0 k

, where k is a parameter.

(a) Find det(M).

(b) Find all value(s) of k such that M is not an invertible matrix.
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We continue taking M =

 k 0 k

0 1 0

1 0 k

, where k is a parameter.

(c) Find all value(s) of k such that λ = 2 is an eigenvalue of A.
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4. (10 points) Determine whether each given set S is a subspace of the given vector space

V . If so, give a proof; if not, explain why not.

(a) V = R3 and S = {(x, y, z) ∈ V |x+ y = z}.

(b) V = M2(R), the set of 2× 2 matrices, and S = {A ∈ V |A2 = 0}.
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5. (10 points) Let

A =


1 1 1 1

0 2 2 2

0 0 3 3

0 0 0 4

 .
(a) Find the eigenvalues of A, and determine (with justification) whether A is a defective

matrix. (In other words, determine whether R4 has a basis consisting of eigenvectors of

A.)

(b) Find the eigenvalues of A2, and determine (with justification) whether A2 is a defective

matrix. (In other words, determine whether R4 has a basis consisting of eigenvectors of

A2.)
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6. (10 points) Let M2×2(R) be the vector space of 2× 2 real matrices. Consider the linear

transformation T : M2×2(R)→M2×2(R) defined by

T

([
a b

c d

])
=

[
a+ d b− c
a− c b+ d

]
.

(a) Find a basis for the kernel of T , and the dimension of the kernel.
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Recall that

T

([
a b

c d

])
=

[
a+ d b− c
a− c b+ d

]
.

(b) Find the dimension of the range of T .

(c) Is the identity matrix I =

[
1 0

0 1

]
in the range of T? Justify why or why not.
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7. (10 points) Find the general solution for each differential equation:

(a) y′′ + 4y′ + 4y = 0.

(b) y(4) − y = 0.

(c) y′′′ − 2y′′ + 5y′ = 0.
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8. (10 points) Solve the equation

y′′ + 4y = 4 cos(2x) + 8e2x

with initial conditions y(0) = 3, y′(0) = 4.
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9. (10 points) Consider a spring-mass system with spring constant k = 4 N/m and a mass

m = 1 kg.

(a) Suppose there is no friction (or damping), and an external driving force of 6 sin(4t) N is

applied to the mass (in the positive direction). If at time t = 0 the mass is at rest in the

equilibrium position, find the position y(t) of the mass at time t for t ≥ 0.
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Continue to consider the spring-mass system with spring constant k = 4 N/m, a mass

m = 1 kg, and an external driving force of 6 sin(4t) N and no friction (or damping).

(b) What is the earliest time that the mass returns to its equilibrium position? (Hint: you

may need to use the identity sin(2θ) = 2 sin(θ) cos(θ).)
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10. (10 points) Solve the system of differential equations

x′1 = 2x1 + 2x2

x′2 = −x1 + 4x2

subject to the initial conditions x1(0) = 1 and x2(0) = 1.


