MTH 165: Linear Algebra with Differential Equations

2nd Midterm
April 2, 2015

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Dummit	TR 16:50-18:05	
Friedmann	MW 16:50-18:05	
Petridis	MWF 10:25-11:15	
Rice	MW 14:00-15:15	

- You have 75 minutes to work on this exam.
- No calculators, cell phones, other electronic devices, books, or notes are allowed during this exam.
- Show all your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You are responsible for checking that this exam has all 6 pages.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
TOTAL	50	

1. (10 points)
(a) Let

$$
A=\left[\begin{array}{ccc}
-1 & 3 & -1 \\
-1 & 1 & 0 \\
1 & 0 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & 2 \\
1 & 1 & 2
\end{array}\right]
$$

Find the determinant of the matrix $C=A B A^{2} B^{T}$.
(b) Use the Wronskian to determine whether the functions $f_{1}(x)=\cos (x), f_{2}(x)=\sin (x)$, and $f_{3}(x)=x$ are linearly independent.
2. (10 points) Determine whether each given set S is a subspace of the given vector space V. If so, give a proof; if not, explain why not.
(a) $V=\mathbb{R}^{3}$, and $S=\left\{(x, y, z) \in V \mid x^{2}+y^{2}+z^{2}=1\right\}$.
(b) $V=M_{2}(\mathbb{R})$, the set of 2×2 matrices, and $S=\{A \in V \mid \operatorname{det}(A)=0\}$.
(c) $V=P_{2}(\mathbb{R})$, the set of polynomials of degree ≤ 2, and $S=\{f \in V \mid f(2)=2 f(1)\}$.
3. (10 points) Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}0 \\ -1 \\ 2\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$, and $\mathbf{v}_{4}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$.
(a) Do these vectors span \mathbb{R}^{3} ? Explain why or why not.
(b) Are these vectors linearly independent? If so, justify why; if not, find an explicit linear dependence between them.
4. (10 points) Consider the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 1 & 3 \\
2 & 4 & 0 & 0
\end{array}\right]
$$

(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
5. (10 points) Answer the following about a 6×17 matrix A (that is, a matrix with 6 rows and 17 columns) such that $\operatorname{rank}(A)=6$.
(a) $\operatorname{rowspace}(A)$ is a \qquad -dimensional subspace of \mathbb{R}^{d} with $d=$
(b) colspace (A) is a \qquad -dimensional subspace of \mathbb{R}^{d} with $d=$ \qquad
(c) nullspace (A) is a \qquad -dimensional subspace of \mathbb{R}^{d} with $d=$ \qquad
(d) Are the rows of A linearly independent? Explain why or why not.
(e) Are the columns of A linearly independent? Explain why or why not.

