MTH 165: Linear Algebra with Differential Equations

First Midterm ANSWERS

March 4, 2015

1. (10 points) Solve the following initial value problem on the interval $[0, \infty)$

$$
2 y\left(1+x^{3}\right) y^{\prime}-x^{2} y^{2}=a x^{2}, y(0)=a
$$

where $a>0$ is a positive constant. Give your answer in implicit form.
This is a separable differential equation.

$$
2 y y^{\prime}\left(1+x^{3}\right)=x^{2}\left(y^{2}+a\right) \Longleftrightarrow \frac{2 y d y}{y^{2}+a}=\frac{x^{2} d x}{1+x^{3}}
$$

Integrating gives

$$
\int \frac{2 y d y}{y^{2}+a}=\int \frac{x^{2} d x}{1+x^{3}}
$$

which implies

$$
\ln \left(\left|y^{2}+a\right|\right)=\frac{1}{3} \ln \left(\left|1+x^{3}\right|\right)+C .
$$

All quantities are positive so the absolute values are eliminated. Setting $x=0$ gives $C=$ $\ln \left(a^{2}+a\right)$. Therefore the solution is given by

$$
\ln \left(y^{2}+a\right)=\frac{1}{3} \ln \left(1+x^{3}\right)+\ln \left(a^{2}+a\right)
$$

Other correct solutions include

$$
y^{2}+a=\left(a^{2}+a\right)\left(1+x^{3}\right)^{1 / 3} \text { and } y=\sqrt{\left(a^{2}+a\right)\left(1+x^{3}\right)^{1 / 3}}-a .
$$

2. (10 points) Find the general solution to

$$
\left(e^{k x}-\frac{y}{x}\right) d x-d y=0
$$

on the interval $(0, \infty)$ where $k \neq 0$ is a non-zero constant. Give your answer in explicit form. This is a first order linear differential equation.

$$
y^{\prime}+\frac{y}{x}=e^{k x}
$$

Th integrating factor is

$$
I(x)=e^{\left(\int \frac{d x}{x}\right)}=e^{\ln (x)}=x
$$

Multiplying both sides of the equation by x and applying the product rule of differentiation gives

$$
[x y]^{\prime}=x e^{k x}
$$

Integrating

$$
x y=\int x e^{k x} d x=x \frac{e^{k x}}{k}-\int \frac{e^{k x}}{k} d x=x \frac{e^{k x}}{k}-\frac{e^{k x}}{k^{2}}+C
$$

Therefore

$$
y=\frac{e^{k x}}{k}-\frac{e^{k x}}{k^{2} x}+\frac{C}{x}
$$

3. (10 points) A tank initially contains 10 L of a salt solution. Pure water flows into the tank at a rate of $2 \mathrm{~L} / \mathrm{min}$, and the well-stirred mixture flows out at a rate of $3 \mathrm{~L} / \mathrm{min}$. After 5 min , the concentration of salt in the tank is $25 \mathrm{~g} / \mathrm{L}$. Find:
(a) The amount of salt in the tank initially.
(b) The volume of solution in the tank when the concentration of salt is $4 \mathrm{~g} / \mathrm{L}$.

Let $A(t)$ be the amount of salt at time t in g and $V(t)$ be the volume at time t in L .

$$
V(t)=10-t
$$

and

$$
A^{\prime}=\operatorname{rate}_{\mathrm{in}}-\operatorname{rate}_{\mathrm{out}}=0-3 \frac{A}{V}=-3 \frac{A}{10-t}
$$

This is both a separable and first order linear differential equation. We solve it by separating variables

$$
\frac{d A}{A}=3 \frac{-d t}{10-t} \Longrightarrow \ln (A)=3 \ln (10-t)+C_{1} \Longrightarrow A=C \ln (10-t)^{3}
$$

To find C we set $t=5$ and consider the concentration. Observe first that the concentration at time t equals

$$
\frac{A(t)}{V(t)}=C(10-t)^{2}
$$

So

$$
25=C(10-5)^{2} \Longrightarrow C=1
$$

Therefore
(a) $A(0)=(10-0)^{3}=1000 \mathrm{~g}$.
(b) Note that the concentration is the square of the volume. Therefore, when the concentration is $4 \mathrm{~g} / \mathrm{L}$, the volume is $\sqrt{4} L=2 \mathrm{~L}$.
4. (10 points) Determine all values of the constant a for which the following system has i) no solution, ii) an infinite number of solutions, iii) a unique solution.

$$
\begin{array}{r}
x_{1}+x_{2}-x_{3}=3 \\
2 x_{1}+5 x_{2}-4 x_{3}=10 \\
2 x_{1}+3 x_{2}+a x_{3}=0
\end{array}
$$

We row-reduce the augmented matrix

$$
\begin{aligned}
{\left[\begin{array}{ccc:c}
1 & 1 & -1 & 3 \\
2 & 5 & -4 & 10 \\
2 & 3 & a & 0
\end{array}\right] } & \sim\left[\begin{array}{ccc:c}
1 & 1 & -1 & 3 \\
0 & 3 & -2 & 4 \\
0 & 1 & a+2 & -6
\end{array}\right] \\
& \sim\left[\begin{array}{ccc:c}
1 & 1 & -1 & 3 \\
0 & 1 & a+2 & -6 \\
0 & 3 & -2 & 4
\end{array}\right] \\
& \sim\left[\begin{array}{ccccc}
1 & 1 & -1 & 3 \\
0 & 1 & a-2 & -6 \\
0 & 0 & -3 a-8 & 22
\end{array}\right] .
\end{aligned}
$$

i) When $a=-8 / 3$, the system is inconsistent (the last row implies $0 x_{1}+0 x_{2}+0 x_{3}=22$).
iii) When $a \neq-8 / 3$, the system has a unique solution (by back substitution).
ii) So there is no value of a for which the system has infinitely many solutions.

Alternatively can use the rank of the augmented matrix, which is always equal to 3 (the "right side" gives three non-zero rows).
iii) When $a \neq 8 / 3$, the rank of the matrix is also 3 and so the system has a unique solution.
i) When $a=8 / 3$, the rank of the matrix is $2<3$ and so the system has no solution.
ii) There is no value of a for which the rank of the augmented matrix is strictly smaller than 3 and so no value gives infinitely many solutions.
5. (10 points)
(a) Determine the inverse of the following matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

Row reduction gives

$$
A^{-1}=\left[\begin{array}{ccc}
0 & 2 & -1 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

It is always a good idea to check that the A^{-1} you calculated indeed satisfies, say, $A A^{-1}=I_{3}$.
(b) Let

$$
B=\left[\begin{array}{ccc}
3 & -2 & 1 \\
0 & 0 & -2 \\
-1 & 3 & 2
\end{array}\right]
$$

Find the 3×3 matrix X that satisfies the matrix equation $X A+B=0$, where 0 is the 3×3 zero matrix.
$X A+B=0 \Longrightarrow X A=-B \Longrightarrow X A A-1=-B A^{-1} \Longrightarrow X=-B A^{-1}=\left[\begin{array}{ccc}-1 & -8 & -6 \\ 2 & 0 & 5 \\ -2 & -2 & -2\end{array}\right]$.
(c) What is the rank of the matrix A ? Justify your answer briefly.

The rank of A is 3 because the matrix is invertible.

Page 5 of 5

