MATH 201 HW 10

Written by Nathanael Grand
ngrand@ur.rochester.edu

1

Let t be the random element which is takes values $\{x, y\}$ with probability $1 / 2$ each. One element is definitely larger than the other. Without loss of generality assume that $x<y$. Sampling r from \mathbb{Z}, we can consider $P(r<x)$ and $P(r \geq x)=1-P(r<x)$. If $t=x$, and $r \geq x$, then our plan is to switch to y. The same strategy will be implemented if $t=y$. Therefore if x is chosen, there is a probability of $1-P(r<x)$ to switch. Let A be the event where a correct guess is made.

$$
\begin{gathered}
P(A)=P(A \mid t=x) P(t=x)+P(A \mid t=y) P(t=y) \\
=P(r \geq x) \frac{1}{2}+P(r<y) \frac{1}{2}=(1-P(r<x)) \frac{1}{2}+P(r<y) \frac{1}{2}
\end{gathered}
$$

This can be rewritten as

$$
\frac{1}{2}+\frac{1}{2}(P(r<y)-P(r<x))=\frac{1}{2}+\frac{1}{2} P(x<r<y)
$$

Since P is a continuous probability distribution, this probability will be non-zero, so we can let $\varepsilon(x, y)=\frac{1}{2} P(x<r<y)$. This gives $P(A)=\frac{1}{2}+\varepsilon$.

2

a) In order for a polynomial $a x^{2}+b x+c$ to have two real roots, the discriminant $b^{2}-4 a c>0$. In our case, we require that $A-4 B>0$. We then compute

$$
P(A>4 B)=\int_{0}^{\infty} \int_{4 y}^{\infty} \lambda^{2} e^{-\lambda(x+y)} d x d y=\int_{0}^{\infty}-\left.\lambda e^{-\lambda(x+y)}\right|_{4 y} ^{\infty} d y=\int_{0}^{\infty} \lambda e^{-5 y \lambda} d y
$$

This then simplifies to

$$
P(A>4 B)=-\left.\frac{e^{-5 y \lambda}}{5}\right|_{0} ^{\infty}=\frac{1}{5}
$$

b) In order for a polynomial $a x^{2}+b x+c$ to have no real roots, $b^{2}-4 a c<0$. In our case we require that $C^{2}-4 D<0$. We then find

$$
P\left(C^{2}-4 D<0\right)=P\left(C^{2} / 4<D\right)=\int_{0}^{1} \int_{y^{2} / 4}^{1} d x d y=\int_{0}^{1} 1-y^{2} / 4 d y
$$

This becomes

$$
P\left(C^{2}-4 D<0\right)=y-\left.\frac{y^{3}}{12}\right|_{0} ^{1}=1-\frac{1}{12}=\frac{11}{12}
$$

3
a) We have that

$$
M_{Z_{1}^{2}}(t)=E\left[e^{t Z_{1}^{2}}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t z^{2}} e^{-z^{2} / 2} d z=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{z^{2}(t-1 / 2)} d z
$$

This becomes (assuming that $t<1 / 2$).

$$
\frac{1}{\sqrt{2 \pi}} \frac{\sqrt{\pi}}{\sqrt{1 / 2-t}}=\frac{1}{\sqrt{1-2 t}}
$$

b) We can find the mean and variance of Z_{1}^{2}. Since Y is the sum of independent random variables, we just have to sum over the mean/variance of each Z_{i}.

$$
E\left[Z_{1}^{2}\right]=\left.\frac{d}{d t} M_{Z_{1}^{2}}(t)\right|_{t=0}
$$

Then,

$$
\frac{d}{d t} M_{Z_{1}^{2}}(t)=\frac{1}{(1-2 t)^{3 / 2}}
$$

This is equal to 1 when $t=0$. Therefore $E\left[Z_{1}^{2}\right]=1$. For the variance, we have to find

$$
E\left[Z_{1}^{4}\right]=\left.\frac{d^{2}}{d t^{2}} M_{Z_{1}^{2}}(t)\right|_{t=0}=\left.\frac{3}{(1-2 t)^{5 / 2}}\right|_{t=0}=3
$$

The variance is then $E\left[Z_{1}^{4}\right]-E\left[Z_{1}^{2}\right]=3-1=2$. Since each variable is independent, $E[Y]=k$ and $\operatorname{Var}(Y)=2 k$
c) By definition and via independence:

$$
M_{Y}(t)=E\left[e^{t Y}\right]=E\left[\prod_{i=1}^{k} e^{t Z_{i}^{2}}\right]=\prod_{i=1}^{k} E\left[e^{t Z_{i}^{2}}\right]=\prod_{i=1}^{k} \frac{1}{\sqrt{1-2 t}}=\frac{1}{(1-2 t)^{k / 2}}
$$

d) To get the third moment, we find the third derivative of the moment generating function:

$$
\frac{d}{d t} M_{Y}(t)=\frac{k}{(1-2 t)^{\frac{k+2}{2}}} \Longrightarrow \frac{d^{2}}{d t^{2}} M_{Y}(t)=\frac{k(k+2)}{(1-2 t)^{\frac{k+4}{2}}}
$$

This then implies that

$$
\frac{d^{3}}{d t^{3}} M_{Y}(t)=\frac{k(k+2)(k+4)}{(1+2 t)^{\frac{k+6}{2}}}
$$

This evaluated at $t=0$ is $E\left[Y^{3}\right]=k(k+2)(k+4)$.

