MATH 201 HW 1

Written by Nathanael Grand
ngrand@ur.rochester.edu
1
a) The sample space is the set of all possible outcomes. Let B and R denote blue and red balls respectively. Then,

$$
\Omega=\{B B, R B, R R\}
$$

Note that $B R=R B$.
b) There are $\binom{2 n}{2}$ ways of selecting 2 balls from $2 n$ balls. There are n ways of choosing red or blue balls. This then means there are n^{2} ways of selecting one red and one blue ball. The probability of selecting one red and one blue ball is

$$
P(R B)=\frac{n^{2}}{\binom{2 n}{2}}=\frac{n^{2}}{\frac{(2 n)!}{2!(2 n-2)!}}=\frac{n^{2}}{\frac{2 n(2 n-1)}{2}}=\frac{n^{2}}{n(2 n-1)}=\frac{n}{2 n-1}
$$

c) The probability of all of the events in the sample space must add to 1 . This requires that

$$
p_{n}=1-\frac{n}{2 n-1}=\frac{n-1}{2 n-1}
$$

Then,

$$
\lim _{n \rightarrow \infty} p_{n}=\lim _{n \rightarrow \infty} \frac{n-1}{2 n-1}=\frac{1}{2}
$$

2

8 squares in an 8×8 array can be selected in $\binom{64}{8}$ different ways. When selecting a square, we can think about selecting a row and a column. For the first square, there are 8 options for both rows and columns. This produces 64 possible squares. The next square has 7 options for rows and columns. This produces 49 possible squares. The pattern continues, and there are n^{2} options for the $n^{t h}$ square. Since the order that the squares are placed doesn't matter, we can get the number of combinations by calculating

$$
\frac{\left(8^{2}\right)\left(7^{2}\right) \ldots\left(2^{2}\right)(1)}{8!}=8!
$$

Hence, the probability of selecting 8 squares that don't share a column or a row is

$$
\frac{8!}{\binom{64}{8}}=\frac{8!}{\frac{64!}{8!(56!)}}=\frac{(8!)^{2}(56!)}{64!}
$$

There is another method. This method uses the fact that since there are 8 squares and 8 rows, each square must lie on a unique row. Then, select a row. There are 8 options for a square on this row. For the next selected row, there are 7 options, since 2 squares can't share a column. For the next row there are 6 options. This process continues, resulting in i possible options for the $i^{\text {th }}$ square. Multiplying the number of choices together, we get 8 ! total configurations for 8 squares placed on the grid (satisfying the condition that any two squares don't share a row and a column). Therefore the probability is

$$
\frac{8!}{\binom{64}{8}}=\frac{8!}{\frac{64!}{8!(56!)}}=\frac{(8!)^{2}(56!)}{64!}
$$

3

Suppose it is possible to uniformly choose a positive integer. If $P(A) \propto \# A$, then for all $a \in \mathbb{N}$,

$$
P(\{a\}) \propto 1 \Longrightarrow P(\{a\})=c
$$

Where $0 \leq c \leq 1$. We can decompose the natural numbers into the following countable union:

$$
\mathbb{N}=\{1\} \cup\{2\} \cup\{3\} \cup \ldots
$$

In order to have a probability measure on $\mathbb{N}, P(\mathbb{N})=1$. However, from the line above we see that

$$
P(\mathbb{N})=P(\{1\} \cup\{2\} \cup\{3\} \cup \ldots)=\sum_{i=1}^{\infty} P(\{i\})=\sum_{i=1}^{\infty} c
$$

If $c=0$, the sum above is 0 , implying that $P(\mathbb{N})=0$. This contradicts the assumption that $P(\mathbb{N})=1$. If $c>0$, then the above some must diverge. This would imply that $P(\mathbb{N})=\infty$. This also contradicts the assumption that $P(\mathbb{N})=1$. If one assumes that choosing a positive integer at random is possible, we get contradictions. Therefore it must be the case that it is not possible to uniformly choose a positive integer at random.

