MATH 201 HW 3

Written by Nathanael Grand ngrand@ur.rochester.edu

1
a) First, the law of total probability yields

$$
\begin{aligned}
P\left(H_{1} H_{2}\right) & =P\left(H_{1} H_{2} \mid F\right) P(F)+P\left(H_{1} H_{2} \mid A\right) P(A)+P\left(H_{1} H_{2} \mid B\right) P(B) \\
& =P\left(H_{2} \mid F\right) P\left(H_{1} \mid F\right) P(F)+P\left(H_{2} \mid A\right) P\left(H_{1} \mid A\right) P(A)+P\left(H_{2} \mid B\right) P\left(H_{1} \mid B\right) P(B) \\
& =\frac{1}{4} \frac{7}{10}+\frac{9}{16} \frac{1}{5}+\frac{1}{16} \frac{1}{10}=\frac{28+18+1}{160}=\frac{47}{160}
\end{aligned}
$$

Similarly, for $i=1,2$,

$$
\begin{aligned}
P\left(H_{i}\right) & =P\left(H_{i} \mid F\right) P(F)+P\left(H_{i} \mid A\right) P(A)+P\left(H_{i} \mid B\right) P(B) \\
& =\frac{1}{2} \frac{7}{10}+\frac{3}{4} \frac{2}{10}+\frac{1}{4} \frac{1}{10}=\frac{21}{40}
\end{aligned}
$$

This means that $P\left(H_{1}\right) P\left(H_{2}\right)=\frac{441}{1600} \neq \frac{47}{160}$. Therefore you don't get independence without conditioning! Another way to see this is to compute

$$
P\left(H_{2} \mid H_{1}\right)=\frac{P\left(H_{1} H_{2}\right)}{P\left(H_{1}\right)}=\frac{\frac{47}{160}}{\frac{21}{40}}=\frac{47}{160} \frac{40}{21}=\frac{47}{84}>\frac{21}{40}
$$

Since $P\left(H_{2} \mid H_{1}\right) \neq P\left(H_{2}\right)$, you don't get independnce.
b) If you see a heads on the first flip, you could reason that there's a better chance that the coin is heads biased. As a result, the probability that you will get a heads on the second flip increases. You can see this above in the math. Given H_{1}, the probability $P\left(H_{2} \mid H_{1}\right)>P\left(H_{2}\right)$.

2

Let $n, k \geq 1$. By the geometric distribution,

$$
P(X>n)=\sum_{m=n+1}^{\infty}(1-p)^{m-1} p=(1-p)^{n} p \sum_{m=1}^{\infty}(1-p)^{m-1}=(1-p)^{n} p\left(\frac{1}{1-(1-p)}\right)=(1-p)^{n}
$$

Then, since $\{X=n+k\} \subset\{X>n\}$,

$$
P(\{X=n+k\} \cap\{X>n\})=P(X=n+k)=(1-p)^{n+k-1} p
$$

Then,

$$
P(X=n+k \mid X>n)=\frac{P(\{X=n+k\} \cap\{X>n\})}{P(X>n)}=\frac{(1-p)^{n+k-1} p}{(1-p)^{n}}=(1-p)^{k-1} p=P(X=k)
$$

