MATH 201 HW 4

Written by Nathanael Grand
ngrand@ur.rochester.edu
1
a) Let $\Omega=\mathbb{R}$, and X be a random variable with the pdf

$$
f(x)= \begin{cases}1 / x^{2} & x \geq 1 \\ 0 & x<1\end{cases}
$$

. Then,

$$
E X=\int_{-\infty}^{\infty} x f(x) d x=\int_{1}^{\infty} x f(x) d x=\int_{1}^{\infty} \frac{x}{x^{2}} d x=\int_{1}^{\infty} \frac{1}{x} d x=\infty
$$

This random variable is continuous, as the cdf

$$
F(c)=P(X \leq c)= \begin{cases}0 & c<1 \\ \int_{1}^{c} \frac{1}{x^{2}} d x=\left(1-\frac{1}{c}\right) & c \geq 1\end{cases}
$$

Is continuous (for all $c \in \mathbb{R}$).
b) Let $\Omega=\mathbb{R}$, and Y be a random variable with the pdf

$$
g(x)= \begin{cases}1 / x^{3} & x \geq 1 \\ 0 & x<1\end{cases}
$$

Then,

$$
E Y=\int_{-\infty}^{\infty} x g(x) d x=\int_{1}^{\infty} \frac{1}{x^{3}} d x=-\left.\frac{1}{2 x^{2}}\right|_{1} ^{\infty}=\frac{1}{2}
$$

The variance is

$$
E\left[Y^{2}\right]-(E[Y])^{2}=\int_{-\infty}^{\infty} x^{2} g(x) d x-\frac{1}{4}
$$

This simplifies to

$$
\int_{1}^{\infty} \frac{1}{x} d x-\frac{1}{4}=\infty
$$

This random variable is continuous, as the cdf

$$
G(c)=P(Y \leq c)= \begin{cases}0 & c<1 \\ \int_{1}^{c} \frac{1}{x^{3}} d x=\frac{1}{2}\left(1-\frac{1}{c^{2}}\right) & c \geq 1\end{cases}
$$

Is continuous for all $c \in \mathbb{R}$.
2
b) Let X be the random variable counting the number of flips. The distribution of X will be the geometric distribution,

$$
P(X=k)=p^{k-1}(1-p)
$$

Therefore the expectation of X is

$$
E X=\sum_{k=0}^{\infty} k P(X=k)=\sum_{k=1}^{\infty} k\left(p^{k-1}\right)(1-p)=(1-p) \sum_{k=1}^{\infty} k p^{k-1}=(1-p) \frac{d}{d p} \sum_{k=1}^{\infty} p^{k}
$$

Evaluating this geometric series, we get that

$$
E X=(1-p) \frac{d}{d x}\left(\frac{p}{1-p}\right)=(1-p) \frac{1}{(1-p)^{2}}=\frac{1}{1-p}
$$

In our case, there are no issues with dividing by 0 as $p=1 / 2$. Therefore $E X=2$. We expect to see the game stop after two flips, which means that we would expect Batman to give Two-face one dollar.

