MATH 201 HW 5

Written by Nathanael Grand ngrand@ur.rochester.edu

1

First,

$$
P(X \geq k)=\sum_{n=k}^{\infty} P(X=n)
$$

Then,

$$
\sum_{k=1}^{\infty} \sum_{n=k}^{\infty} P(X=n)
$$

Can be visualized in the following way:

$$
\begin{array}{r}
=P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+\ldots \\
+P(X=2)+P(X=3)+P(X=4)+P(X=5)+\ldots \\
+P(X=3)+P(X=4)+P(X=5)+\ldots \\
+P(X=4)+P(X=5)+\ldots \\
\\
+P(X=5)+\ldots
\end{array}
$$

Where each row is the sum $\sum_{n=k}^{\infty} P(X=n)$ (the first row $k=1$, the second row $k=2$ and so on). We can notice that there is n copies of $P(X=n)$ in each column. Therefore we can see that

$$
\sum_{k=1}^{\infty} P(X \geq k)=\sum_{k=1}^{\infty} \sum_{n=k}^{\infty} P(X=n)=\sum_{k=1}^{\infty} k P(X=k)
$$

For the geometric series,

$$
P(X \geq k)=\sum_{n=k}^{\infty}(1-p)^{n-1} p=(1-p)^{k-1} p \sum_{n=0}^{\infty}(1-p)^{n}=(1-p)^{k-1} p\left(\frac{1}{1-(1-p)}\right)=(1-p)^{k-1}
$$

Then,

$$
\sum_{k=1}^{\infty} P(X \geq k)=\sum_{k=1}^{\infty}(1-p)^{k-1}=\frac{1}{1-(1-p)}=\frac{1}{p}=E[X]
$$

2
The normal distribution $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ has the density function

$$
P(X \in A)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{A} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x
$$

If $Z \sim \mathcal{N}(0,1)$,

$$
P(Z \in A)=\frac{1}{\sqrt{2 \pi}} \int_{A} e^{-z^{2} / 2} d z
$$

Then,

$$
E\left[Z^{3}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} z^{3} e^{-z^{2} / 2} d z
$$

Next, we can do integration by parts by letting $u=z^{2}$, and $d v=z e^{-z^{2} / 2}$. An antiderivative of $d v$ is $v=-e^{-z^{2} / 2}$. Also, $d u=2 z d z$. Then,

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(z^{2}\right)\left(z e^{-z^{2} / 2}\right) d z=\left.\frac{1}{\sqrt{2 \pi}}\left(z^{2}\right)\left(-e^{-z^{2} / 2}\right)\right|_{-\infty} ^{\infty}-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} 2 z\left(-e^{-z^{2} / 2}\right) d z
$$

The term on the left evaluates to 0 , as the exponential term dominates z^{2} for large $|z|$. We are then left with

$$
\frac{2}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} z e^{-z^{2} / 2} d z=\left.\frac{2}{\sqrt{2 \pi}}\left(-e^{-z^{2} / 2}\right)\right|_{-\infty} ^{\infty}=0
$$

Another way to see this is that $E\left[Z^{3}\right]$ involves integrating the product of an even and odd function, producing the integral of an odd function over \mathbb{R}. Next,

$$
E\left[X^{3}\right]=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{3} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x
$$

We can do a change of variables and let $y=\frac{x-\mu}{\sigma}$. This then yields

$$
E\left[X^{3}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(\sigma y+\mu)^{3} e^{-y^{2} / 2} d y
$$

This is close to the integral done previously. We can simplify the cube term to

$$
(\sigma y+\mu)^{3}=\sigma^{3} y^{3}+3 \sigma^{2} y^{2} \mu+3 \sigma y \mu^{2}+\mu^{3}
$$

Then, we look at the integral

$$
\begin{gathered}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\sigma^{3} y^{3}+3 \sigma^{2} y^{2} \mu+3 \sigma y \mu^{2}+\mu^{3}\right) e^{-y^{2} / 2} d y \\
=\frac{\sigma^{3}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} y^{3} e^{-y^{2} / 2} d y+\frac{3 \sigma^{2} \mu}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} y^{2} e^{-y^{2} / 2} d y+\frac{3 \sigma \mu^{2}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} y e^{-y^{2} / 2} d y+\frac{\mu^{3}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y
\end{gathered}
$$

The first term disappears, as this is just the integral we calculated previously. The second integral is some constant terms multiplying $E\left[Z^{2}\right]=1$. The third term is constants multiplying $E[Z]=0$. The last term will simplify to μ^{3}. Therefore we get

$$
3 \sigma^{2} \mu+\mu^{3}
$$

3

This will follow the binomial distribution. Let $p=.00025, n=10000$. The probability that exactly k people win is

$$
P(W=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Notice that

$$
n p(1-p)=(10000)(1 / 4000)(3999 / 4000) \approx 2.5<10
$$

Therefore the exponential distribution should not be accurate. On the other hand

$$
n p^{2}=10000 /\left(4000^{2}\right) \approx 0.00063<0.01
$$

Therefore an approximation via the Poisson distribution should be more accurate. Lets do this to calculate the probability that the Joker doesn't lose his cool. We can approximate

$$
P(W=k) \approx e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Where $\lambda=E[W]=n p=2.5=5 / 2$. Then,

$$
P(W<3)=P(W=0)+P(W=1)+P(W=2) \approx e^{-5 / 2} \frac{(5 / 2)^{0}}{0!}+e^{-5 / 2} \frac{(5 / 2)^{1}}{1!}+e^{-5 / 2} \frac{(5 / 2)^{2}}{2!}
$$

This simplifies to produce the approximation

$$
P(W<3) \approx .54
$$

