MATH 201 HW 6

Written by Nathanael Grand
ngrand@ur.rochester.edu

1

The probability density function of an exponential random variable with parameter λ is

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

A random variable X with this pdf is such that $E[X]=1 / \lambda$. If X represents the lifetime of the 60 watt bulb with an expected lifetime of 200 days, it has a pdf

$$
f_{X}(x)= \begin{cases}\frac{e^{-x / 200}}{200} & x \geq 0 \\ 0 & x<0\end{cases}
$$

For Y representing the lifetime of the 100 watt bulb with an expected lifetime of 100 days we get

$$
f_{Y}(y)= \begin{cases}\frac{e^{-y / 100}}{100} & y \geq 0 \\ 0 & y<0\end{cases}
$$

To calculate the cdf, we find (for $a \geq 0$)

$$
F_{X}(a)=P(X \leq a)=\int_{-\infty}^{a} p_{X}(x) d x=\frac{1}{200} \int_{0}^{a} e^{-x / 200} d x=-\left.e^{-x / 200}\right|_{0} ^{a}=1-e^{-a / 200}
$$

Since $P(X \leq 0)=0$, we get the cdf

$$
F_{X}(a)= \begin{cases}1-e^{-a / 200} & a \geq 0 \\ 0 & a<0\end{cases}
$$

Similarly, for $b \geq 0$

$$
F_{Y}(b)=P(Y \leq b)=\int_{-\infty}^{b} p_{Y}(y) d y=\frac{1}{100} \int_{0}^{b} e^{-y / 100} d y=-\left.e^{-y / 100}\right|_{0} ^{b}=1-e^{-b / 100}
$$

Since $P(Y \leq 0)=0$, we get the cdf

$$
F_{Y}(b)= \begin{cases}1-e^{-b / 100} & b \geq 0 \\ 0 & a<0\end{cases}
$$

From the above computations,

$$
P(X<Y)=\int_{0}^{\infty} \frac{e^{-x / 200}}{200}\left(1-\left(1-e^{-x / 100}\right)\right) d x=\frac{1}{200} \int_{0}^{\infty} e^{-3 x / 200} d x=-\left.\frac{1}{3} e^{-3 x / 200}\right|_{0} ^{\infty}=\frac{1}{3}
$$

If they both run for more than 10 days, the probability remains the same. Recall the memory-less property of the exponential distribution:

$$
P(X>a+x \mid X>a)=P(X>x)
$$

The same situation holds here:

$$
P(Y>X \mid X, Y>10)=\frac{P(\{Y>X\} \cap\{X, Y>10\})}{P(X, Y>10)}=\frac{P(\{Y>X\} \cap\{X>10\})}{P(X>10) P(Y>10)}
$$

The numerator is the integral

$$
\int_{10}^{\infty} f_{X}(x)\left(1-F_{Y}(x)\right) d x=-\left.\frac{1}{3} e^{-3 x / 100}\right|_{10} ^{\infty}=\frac{1}{3} e^{-30 / 200}
$$

The denominator is the integral

$$
\int_{10}^{\infty} \int_{10}^{\infty} f_{X}(x) f_{Y}(y) d x d y=\left(1-F_{X}(10)\right)\left(1-F_{Y}(10)\right)=e^{-10 / 200} e^{-10 / 100}=e^{-30 / 200}
$$

Therefore

$$
P(Y>X \mid X, Y>10)=\frac{\frac{1}{3} e^{-30 / 200}}{e^{-30 / 200}}=\frac{1}{3}
$$

2
If X and Y are independent, then

$$
P(Y>X)=\sum_{k=1}^{\infty}(1-p)^{k-1} p \sum_{j=k+1}^{\infty}(1-r)^{j-1} r=\sum_{k=1}^{\infty}(1-p)^{k-1} p(1-r)^{k} r \sum_{j=1}^{\infty}(1-r)^{j-1}
$$

This simplifies to

$$
\sum_{k=1}^{\infty}(1-p)^{k-1} p(1-r)^{k} r \frac{1}{r}=\sum_{k=1}^{\infty}(1-p)^{k-1} p(1-r)^{k}=p(1-r) \sum_{k=1}^{\infty}((1-p)(1-r))^{k-1}
$$

This simplifies to

$$
\frac{p(1-r)}{1-(1-p)(1-r)}
$$

