MATH 201 HW 7

Written by Nathanael Grand
ngrand@ur.rochester.edu
1
a) The marginal distributions are defined by

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

Given that $f(x, y)$ is non-zero for $0<y<1$ and $y<x<2-y$, the domain of $f(x, y)$ is an triangle with vertices $(0,0),(2,0),(1,1)$. However, these vertices are not part of the domain. From this, we get

$$
\begin{gathered}
f_{X}(x)=\int_{0}^{x} 3(2-x) y d y=\left.\frac{3(2-x)}{2} y^{2}\right|_{0} ^{x}=\frac{3(2-x) x^{2}}{2} \quad(0<x \leq 1) \\
f_{X}(x)=\int_{0}^{2-x} 3(2-x) y d y=\left.\frac{3(2-x)}{2} y^{2}\right|_{0} ^{2-x}=\frac{3(2-x)^{3}}{2} \quad(1 \leq x<2)
\end{gathered}
$$

Therefore we get

$$
f_{X}(x)= \begin{cases}\frac{3(2-x) x^{2}}{2} & 0<x \leq 1 \\ \frac{3(2-x)^{3}}{2} & 1 \leq x<2 \\ 0 & \text { else }\end{cases}
$$

The marginal distribution f_{Y} is calculated similarly, although with different integral bounds:

$$
f_{Y}(y)=\int_{y}^{2-y} 3(2-x) y d x=-3 \int_{2-y}^{y} u y d u=-\left.3 \frac{u^{2} y}{2}\right|_{2-y} ^{y}=\frac{3(2-y)^{2} y-3 y^{3}}{2} \quad(0<y<1)
$$

Therefore

$$
f_{Y}(y)= \begin{cases}\frac{3(2-y)^{2} y-3 y^{3}}{2} & 0<y<1 \\ 0 & \text { else }\end{cases}
$$

b) The formula for expectation is

$$
E[X Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y=\int_{0}^{1} \int_{0}^{x} 3 x y^{2}(2-x) d y d x+\int_{1}^{2} \int_{0}^{2-x} 3 x y^{2}(2-x) d y d x
$$

This simplifies to

$$
\left.\int_{0}^{1} x y^{3}(2-x)\right|_{0} ^{x} d x+\left.\int_{1}^{2} x y^{3}(2-x)\right|_{0} ^{2-x} d x=\int_{0}^{1} x^{4}(2-x) d x+\int_{1}^{2} x(2-x)^{4} d x
$$

The first integral evaluates to

$$
\frac{2 x^{5}}{5}-\left.\frac{x^{6}}{6}\right|_{0} ^{1}=\frac{2}{5}-\frac{1}{6}=\frac{7}{30}
$$

After a u substitution of $u=2-x$, the second integral evaluates to

$$
-\int_{1}^{0}(2-u) u^{4} d u=\int_{0}^{1}(2-u) u^{4} d u
$$

This is the same as the integral above. Therefore we get a total of

$$
\frac{7}{30}+\frac{7}{30}=\frac{14}{30}=\frac{7}{15}=E[X Y]
$$

c) First, $P(X+Y \leq 1)=P(X \leq 1-Y)$. This can be computed using the joint distribution:

$$
P(X \leq 1-Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{1-y} f(x, y) d x d y=\int_{0}^{1 / 2} \int_{y}^{1-y} 3(2-x) y d x d y
$$

The upper bound for the integration with respect to y is $1 / 2$, as the joint distribution is nonzero when $y<x<2-y$. If $x>y$, then $y<1 / 2$ in order for $X+Y \leq 1$. Evaluating the integral above produces:

$$
\left.3 \int_{0}^{1 / 2} y\left(2 x-x^{2} / 2\right)\right|_{y} ^{1-y} d y=3 \int_{0}^{1 / 2} y\left(2(1-y)-(1-y)^{2} / 2-2 y+y^{2} / 2\right) d y
$$

This simplifies to

$$
3 \int_{0}^{1 / 2} y\left(2-2 y-\left(1-2 y+y^{2}\right) / 2-2 y+y^{2} / 2\right) d y
$$

Which becomes

$$
3 \int_{0}^{1 / 2} y(3 / 2-3 y) d y=\left.3\left(\frac{3 y^{2}}{4}-y^{3}\right)\right|_{0} ^{1 / 2}=3\left(\frac{3}{16}-\frac{1}{8}\right)=\frac{3}{16}
$$

2

The trinomial coefficient counts the number of ways one can partition n into three sets. A specific ordering of W lectures with white chalk, Y lectures with yellow chalk and G lectures with green chalk occurs with a probability of $p_{1}^{W} p_{2}^{Y} p_{3}^{G}$ (Independence is used here). The trinomial coefficient counts the number of sequences of lectures for which W, Y, G white yellow and green chalks are used. Therefore

$$
p(W, Y, G)=\binom{n}{W Y G} p_{1}^{W} p_{2}^{Y} p_{3}^{G}=\frac{n!}{W!Y!G!} p_{1}^{W} p_{2}^{Y} p_{3}^{G}
$$

This idea extends to an arbitrary selection of chalk colors. If there is also red chalk,

$$
P(W, Y, G, R)=\binom{n}{W Y G R} p_{1}^{W} p_{2}^{Y} p_{3}^{G} p_{4}^{R}=\frac{n!}{W!Y!G!R!} p_{1}^{W} p_{2}^{Y} p_{3}^{G} p_{4}^{R}
$$

