MATH 201 HW 7

Written by Nathanael Grand
ngrand@ur.rochester.edu

1
a) Let I_{j} be the random variable equal to 1 if any students step out at the $j^{\text {th }}$ floor and 0 otherwise. Then, $N=\sum_{j=1}^{11} I_{j}$. The probability that nobody leaves the elevator on the $j^{t h}$ floor is

$$
P\left(I_{j}=0\right)=\left(\frac{10}{11}\right)^{7}
$$

This comes from the uniformity of the floor selection as well as the independence of each person. This means that

$$
P\left(I_{j}=1\right)=1-\frac{10^{7}}{11^{7}}
$$

Therefore,

$$
E\left[I_{j}\right]=0\left(\frac{10}{11}\right)^{7}+1\left(1-\frac{10^{7}}{11^{7}}\right)=1-\frac{10^{7}}{11^{7}}
$$

By the linearity of expectation

$$
E[N]=E\left[\sum_{j=1}^{11} I_{j}\right]=\sum_{j=1}^{11} E\left[I_{j}\right]=11-\frac{10^{7}}{11^{6}}=\frac{11^{7}-10^{7}}{11^{6}} \approx 5.4
$$

b) The random variable X_{j} follows a binomial distribution with parameters $n=7, p=1 / 11$. Therefore,

$$
P\left(X_{j}=k\right)=\binom{7}{k}\left(\frac{1}{11}\right)^{k}\left(\frac{10}{11}\right)^{7-k}=\binom{7}{k} \frac{10^{7-k}}{11^{7}}=\frac{7!}{k!(7-k)!} \frac{10^{7-k}}{11^{7}}
$$

The expectation of a random variable following the binomial distribution is $n p$. Therefore

$$
E\left[X_{j}\right]=\frac{7}{11}
$$

c) The covariance between X_{1} and X_{2} is

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]
$$

Let the seven people be labeled $\{1,2, \ldots, 7\}$. Let J_{i} be a random random variable which is 1 if the $i^{t h}$ person steps out of the elevator on the first floor, and 0 otherwise. Define K_{n} in the same way for the second floor. Then,

$$
X_{1}=\sum_{i=1}^{7} J_{i}, \quad X_{2}=\sum_{n=1}^{7} K_{n} \Longrightarrow X_{1} X_{2}=\sum_{i=1}^{7} \sum_{n=1}^{7} J_{i} K_{n}
$$

Expectation is linear, so we just need to figure out $E\left[J_{i} K_{n}\right]$. If $i=n$, the only outcome is 0 , as one person can only get out on one floor. Therefore this sum can be simplified to be over $i \neq n$. Then,

$$
E\left[J_{i} K_{n}\right]=(1) P\left(J_{i}=1, K_{n}=1\right)+(0) P\left(J_{i}=0 \text { or } K_{n}=0\right)=P\left(J_{i}=1, K_{n}=1\right)
$$

Since each person is independent, this is just the product

$$
P\left(J_{i}=1\right) P\left(K_{n}=1\right)=\frac{1}{11} \frac{1}{11}=\frac{1}{121}
$$

If $j \neq n$, there are $7^{2}-7=42$ terms. Therefore

$$
E\left[X_{1} X_{2}\right]=\frac{42}{121}
$$

The covariance is then

$$
\frac{42}{121}-\frac{7}{11} \frac{7}{11}=\frac{42-49}{121}=-\frac{7}{121}
$$

2

We can write

$$
X=\sum_{i=1}^{20} Y_{i}
$$

Where Y_{i} is the random variable which is 1 if the $i^{t h}$ student is American, and 0 otherwise. First, it is the case, that $P\left(Y_{i}\right)=\frac{4}{5}$ for all i. This follows from the exchangability of sampling without replacement. With this fact,

$$
E[X]=\sum_{i=1}^{20} E\left[Y_{i}\right]=\sum_{i=1}^{20} P\left(Y_{i}=1\right)=20 P\left(Y_{i}=1\right)=\frac{20(4)}{5}=\frac{80}{5}=16
$$

For the variance, we use the fact that X is described by the Hypergeometric distribution. This has a variance of

$$
\frac{N-n}{N-1} n p q
$$

Where $N=40$ is the total number of people, $n=20$ is the number of trials, $p=\frac{4}{5}$ is the ratio between Americans and Non-Americans, and $q=1-p$. Therefore

$$
\operatorname{Var}(X)=\frac{30}{49} \frac{20(4)}{5^{2}}=\frac{(6)(16)}{49}=\frac{96}{49}
$$

For more information on the derivation for this, check examples 8.7 and 8.30 from the textbook.

3

The covariance is given by

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

First,

$$
\begin{gathered}
E[X]=\int_{-\infty}^{\infty} p_{X}(x) x d x=0 \\
E[X Y]=\int_{-\infty}^{\infty} p_{X}(x) x f(x) d x=0
\end{gathered}
$$

As $p_{X}(x) x$ and $p_{X}(x) x f(x)$ are odd functions. This is the case since $p_{X}(x)$ and $f(x)$ are even, while x is odd. The product of even and odd functions are odd. Therefore the covariance is 0 provided that $E[Y]$ is finite. Suppose that $f(x) \neq c$, where c is a constant. Then, X and Y are not independent, as information about X completely determines Y. If f is constant, then knowledge about X does not influence the output of f, and they are independent.

