MATH 201 HW 9

Written by Nathanael Grand ngrand@ur.rochester.edu

1
a) The moment generating function is

$$
M_{X}(t)=E\left[e^{t X}\right]=\sum_{k=0}^{n} e^{t k} P\left(e^{t X}=e^{t k}\right)=\sum_{k=0}^{n} e^{t k} P(X=k)=\sum_{k=0}^{n} e^{t k}\binom{n}{k} p^{k}(1-p)^{n-k}
$$

This can be rewritten as

$$
M_{X}(t)=\sum_{k=0}^{n}\binom{n}{k}\left(p e^{t}\right)^{k}(1-p)^{n-k}=\left(p e^{t}+1-p\right)^{n}=\left(p e^{t}-p+1\right)^{n}
$$

b) Moments can be found by taking derivatives of the moment generating function and evaluating those derivatives at $t=0$:

$$
E\left[X^{3}\right]=\left.\frac{d^{3}}{d t^{3}} M_{X}(t)\right|_{t=0}
$$

First,

$$
\begin{gathered}
\frac{d}{d x} M_{X}(t)=n\left(p e^{t}-p+1\right)^{n-1} p e^{t} \\
\Longrightarrow \frac{d^{2}}{d x^{2}} M_{X}(t)=(n)(n-1)\left(p e^{t}-p+1\right)^{n-2} p^{2} e^{2 t}+n\left(p e^{t}-p+1\right)^{n-1} p e^{t} \\
\Longrightarrow \frac{d^{3}}{d x^{3}} M_{X}(t)=(n)(n-1)(n-2)\left(p e^{t}-p+1\right)^{n-3} p^{3} e^{3 t}+2(n)(n-1)\left(p e^{t}-p+1\right)^{n-2} p^{2} e^{2 t} \\
+n(n-1)\left(p e^{t}-p+1\right)^{n-1} p^{2} e^{t^{2}}+n\left(p e^{t}-p+1\right)^{n-1} p e^{t}
\end{gathered}
$$

This evaluated at $t=0$ is

$$
\begin{gathered}
E\left[X^{3}\right]=(n)(n-1)(n-2) p^{3}+2(n)(n-1) p^{2}+(n)(n-1) p^{2}+n p \\
=(n)(n-1)(n-2) p^{3}+3 n(n-1) p^{2}+n p
\end{gathered}
$$

2
a) Markov's inequality gives us

$$
P(X \geq 16) \leq \frac{E[X]}{16}=\frac{10}{16}=\frac{5}{8}
$$

b) Chebyshev's Inequality inequality gives us

$$
P(|X-10| \geq 6) \leq \frac{\operatorname{Var}(X)}{6^{2}}
$$

Then, $\{X-10 \geq 6\} \subseteq\{|X-10| \geq 6\}$ implies that

$$
P(X \geq 16)=P(X-10 \geq 6) \leq P(|X-10| \geq 6) \leq \frac{\operatorname{Var}(X)}{6^{2}}=\frac{3}{6^{2}}=\frac{1}{12}
$$

c) Define the random variable

$$
S=\sum_{i=1}^{300} Y_{i}
$$

Since each Y_{i} and Y_{j} are identical and independent,

$$
E[S]=\sum_{i=1}^{300} E\left[Y_{i}\right]=300(10)=3000, \quad \operatorname{Var}(S)=\sum_{i=1}^{300} \operatorname{Var}\left(Y_{i}\right)=300(3)=900
$$

We can then use Chebyshev's inequality to estimate:

$$
P(S \geq 3031) \leq P(|S-3000| \geq 31) \leq \frac{\operatorname{Var}(\mathrm{S})}{31^{2}}=\frac{900}{961} \approx .937
$$

We can also try with Markov's:

$$
P(S \geq 3031) \leq \frac{E[S]}{3031}=\frac{3000}{3031} \approx .99
$$

Again we see that Chebyshev's inequality is sharper. Sharper than both will be the bound we get via the CLT. Let $\mu=3000, \sigma^{2}=900$

$$
P\left(\frac{S-\mu}{\sigma} \leq z\right) \approx \Phi(z)
$$

Therefore

$$
1-\Phi(z) \approx P\left(\frac{S-\mu}{\sigma}>z\right)=P(S>z \sigma+\mu)
$$

Since we want $S>3030$, we solve for $z \sigma+\mu=3030$,

$$
z(30)+3000=3030 \Longrightarrow z=1
$$

Therefore we want to find $1-\Phi(1) \approx 1-0.8413=0.1587$.

3

Let X_{i} be the random variable which describes the time it takes Nate to eat the $i^{t h}$ hotdog in the competition. What we want to inspect is

$$
S=\sum_{i=1}^{64} X_{i}
$$

The random variable S describes the time that it takes for Nate to eat 64 hotdogs. Since it is the sum of normal random variables, S is also normally distributed with

$$
E[S]=64(15)=960, \quad \operatorname{Var}(S)=64(16)=1024
$$

Then, if we let $\mu=E[S], \sigma^{2}=\operatorname{Var}(S)$, the CLT gives us

$$
P\left(\frac{S-\mu}{\sigma} \leq z\right) \approx \Phi(z)
$$

We then want to solve for z. What we will look for is

$$
P(S \leq z \sigma+\mu)
$$

Since we want $S \leq(15)(60)=900$ (converting minutes to seconds), we solve for

$$
z \sigma+\mu=900 \Longrightarrow z=\frac{900-\mu}{\sigma}=\frac{900-960}{32}=-\frac{60}{32}=-\frac{30}{16}=-1.875
$$

Therefore we can estimate this probability as

$$
\Phi(-1.875) \approx .0301
$$

