MTH 201 ## Midterm 1 March 12, 2020 | Name: | | |--|--| | UR ID: | | | Circle your Instructor's Name: | | | Ian Alevy | Thomas Tucker | | Instructions: The presence of calculators, cell phones, and other Zoom during the exam and uploading your exam aft texts of any kind are strictly forbidden. In your answers, you do not need to simplify arity your answers in terms of (ⁿ_k) or k!. However, known in e, sin π, e⁰. Summations must also be evaluated, if appear in final answers. This exam is out of 50 points. You are responsible PLEASE COPY THE HONOR PLEDGE AND SIGNATURE A | threads) at this exam is strictly forbidden. Notes or chmetic expressions like $\sqrt{5^2 - 4^2}$ and you can leave values of functions should be evaluated, for example, in particular, the symbols " \sum " or " \cdots " should not for checking that this exam has all 10 pages. | | I affirm that I will not give or receive any unauthorize | zed help on this exam, and all work will be my own. | | YOUR SIGNATURE: | | | 1. (5 points) For this problem, justification is not required and partial credit will not be awarded. | |--| | Suppose an urn contains 5 red balls, 7 green balls and 9 orange balls. Five balls are drawn randomly one at a time without replacement from the urn. | | (a) 2 pt: What is the probability that the sample contains exactly 3 red balls? | (b) 3 pts: What is the probability that the sample contains at least one red ball and one green ball? | 2. (8 points) Peter and Mary take turns rolling a fair die. If Peter rolls 1 he wins and the game stops. Mary rolls 3 or 6, she wins and the game stops. They keep rolling in turn until one of them wins. Supporter rolls first. | | |---|-----| | a) 2 pts: What is the probability that Mary wins on her fifth roll? | | | | | | | | | | | | | | | | | | b) 6 pts: What is the probability that Mary wins? (To receive full credit, you must evaluate any infinite seri in your answer.) | es. | 3. (8 points) Consider events A, B, and C which are mutually independent (recall that this means that | |--| | A and B are independent, A and C are independent, B and C are independent, and that $P(A \cap B \cap C) =$ | | P(A)P(B)P(C)) with $P(A) = 1/2$, $P(B) = 1/4$ and $P(C) = 1/2$. | | | (a) 3 pts: Compute $P(A \cup B)$. (b) 5 pts: Are the events $A \cup B$ and C independent? Explain your answer carefully or no credit will be given. | 4. (8 points) A fair coin is flipped four times. Let A be the event that tails comes up at least three times. Let B be the event that the first three flips are tails. | Эе | |---|----| | (a) 3 pts: Find $P(A)$. | (b) 5 pts: Find the conditional probability $P(B A)$. | | | | | | | | | | | | | | | | | ## 5. (8 points) The continuous random variable X is uniformly distributed on the interval [-2,5]. (a) 4 pts: Find P(X < 0). (b) 4 pts: Find $P(X^2 > 1)$. | 6. | 6 | points |) | |----|----------|--------|---| | | | | | Three numbers are chosen with replacement from the set $\{1, 2, 3\}$. (a) 2 pts: Find the chance that no number is chosen twice. (b) 4 pts: Find the chance that at least two different numbers are chosen. 7. (7 points) There are three types of coins in circulation. There are fair coins with P(H) = 1/2, moderately biased coins with P(H) = 1/3 and heavily biased coins with P(H) = 1/5. Suppose 1/2 of the coins are fair, 1/4 are moderately biased and 1/4 are heavily biased. A coin is flipped twice and the outcome is heads followed by tails. What is the probability that the coin is fair? You may leave your answer as a fraction.