# MTH 201 

Midterm 1
March 12, 2020

Name: $\qquad$

UR ID:

## Circle your Instructor's Name:

$$
\text { Ian Alevy } \quad \text { Thomas Tucker }
$$

## Instructions:

- The presence of calculators, cell phones, and other electronic devices (other than a device for being on Zoom during the exam and uploading your exam afterwards) at this exam is strictly forbidden. Notes or texts of any kind are strictly forbidden.
- In your answers, you do not need to simplify arithmetic expressions like $\sqrt{5^{2}-4^{2}}$ and you can leave your answers in terms of $\binom{n}{k}$ or $k$ !. However, known values of functions should be evaluated, for example, $\ln e, \sin \pi, e^{0}$. Summations must also be evaluated, in particular, the symbols " $\sum$ " or "..." should not appear in final answers.
- This exam is out of 50 points. You are responsible for checking that this exam has all 10 pages. PLEASE COPY THE HONOR PLEDGE AND SIGN:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.
$\qquad$

1. (5 points) For this problem, justification is not required and partial credit will not be awarded.

Suppose an urn contains 5 red balls, 7 green balls and 9 orange balls. Five balls are drawn randomly one at a time without replacement from the urn.
(a) 2 pt : What is the probability that the sample contains exactly 3 red balls?
(b) 3 pts: What is the probability that the sample contains at least one red ball and one green ball?
2. (8 points) Peter and Mary take turns rolling a fair die. If Peter rolls 1 he wins and the game stops. If Mary rolls 3 or 6 , she wins and the game stops. They keep rolling in turn until one of them wins. Suppose Peter rolls first.
(a) 2 pts: What is the probability that Mary wins on her fifth roll?
(b) 6 pts: What is the probability that Mary wins? (To receive full credit, you must evaluate any infinite series in your answer.)
3. (8 points) Consider events $A, B$, and $C$ which are mutually independent (recall that this means that $A$ and $B$ are independent, $A$ and $C$ are independent, $B$ and $C$ are independent, and that $P(A \cap B \cap C)=$ $P(A) P(B) P(C))$ with $P(A)=1 / 2, P(B)=1 / 4$ and $P(C)=1 / 2$.
(a) 3 pts: Compute $P(A \cup B)$.
(b) 5 pts: Are the events $A \cup B$ and $C$ independent? Explain your answer carefully or no credit will be given.
4. (8 points) A fair coin is flipped four times. Let $A$ be the event that tails comes up at least three times. Let $B$ be the event that the first three flips are tails.
(a) 3 pts: Find $P(A)$.
(b) 5 pts : Find the conditional probability $P(B \mid A)$.

## 5. (8 points)

The continuous random variable $X$ is uniformly distributed on the interval $[-2,5]$.
(a) 4 pts: Find $P(X<0)$.
(b) 4 pts: Find $P\left(X^{2}>1\right)$.

## 6. (6 points)

Three numbers are chosen with replacement from the set $\{1,2,3\}$.
(a) 2 pts: Find the chance that no number is chosen twice.
(b) 4 pts: Find the chance that at least two different numbers are chosen.
7. (7 points) There are three types of coins in circulation. There are fair coins with $P(H)=1 / 2$, moderately biased coins with $P(H)=1 / 3$ and heavily biased coins with $P(H)=1 / 5$. Suppose $1 / 2$ of the coins are fair, $1 / 4$ are moderately biased and $1 / 4$ are heavily biased. A coin is flipped twice and the outcome is heads followed by tails. What is the probability that the coin is fair? You may leave your answer as a fraction.

