# Math 201: Introduction to Probability 

Final Exam

October 7, 2021

NAME (please print legibly): $\qquad$
Your University ID Number: $\qquad$

## Instructions:

1. Indicate your instructor with a check in the appropriate box:

| Krishnan | MW 10:25 |  |
| :--- | :--- | :--- |
| Chio | MW 14:00 |  |

2. Read the notes below:

- The presence of any electronic or calculating device at this exam is strictly forbidden, including (but not limited to) calculators, cell phones, and iPods.
- Notes of any kind are strictly forbidden.
- Show work and justify all answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You do not need to simplify complicated numerical expressions such as $\binom{100}{30}$ and 50 ! to a number.
- You are responsible for checking that this exam has all 22 pages.

3. Read the following Academic Honesty Statement and sign:

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: $\qquad$

| Part A |  |  | Part B |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| QUESTION | VALUE | SCORE |  |  |  |
|  |  |  | QUESTION | VALUE | SCORE |
| 1 | 10 |  | 1 | 10 |  |
| 2 | 10 |  | 2 | 15 |  |
| 3 | 15 |  |  |  |  |
| 4 | 10 |  | 3 | 15 |  |
| 5 | 5 |  | 4 | 30 |  |
| 6 | 10 |  | 5 | 10 |  |
| TOTAL | 60 |  | TOTAL | 80 |  |

## Part A

1. (10 points) Recall that a standard deck of cards has 52 cards, divided into 4 suits (clubs, diamonds, hearts, spades), each suit having 13 values (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K). You play a poker game at the casino. From a deck of cards the dealer gives you 5 cards. These 5 cards constitute your hand.
(a) The deck of cards is defective. It does not have ace of spades, and instead has two aces of diamonds. How many different hands can you get?

Solution. case(1): have both ace of diamonds. The other 3 cards can be anything: $\binom{50}{3}$. case (2): exactly one ace of diamonds. The other 4 cards cannot be the other ace of diamonds: $\binom{50}{4}$. case(3): no ace of diamonds. $\binom{50}{5}$. The three cases are mutually exclusive and cover all scenarios, so the total number is

$$
\binom{50}{3}+\binom{50}{4}+\binom{50}{5} .
$$

(b) This time, the dealer deals out a hand of 5 cards from a normal deck. What is the probability that you have a hand two pairs (Example: (Ace hearts, Ace spade, 3 diamonds, 3 hearts, $X$ ) where $X$ is any card that is not an ace or 3.$)$ ?

## Solution.

First we choose the two values for the pairs: $\binom{13}{2}$. Each value has 4 suits, so there are $\binom{4}{2}$ choices. There are now $52-4=48$ choices for the 5 -th card, but we cannot use the 4 cards which have the same value as the pairs, there are $48-4=44$ choices left, so the total number is

$$
44\binom{4}{2}\binom{4}{2}\binom{13}{2}
$$

The probability of getting a hand with two pairs is

$$
\frac{44\binom{4}{2}\binom{4}{2}\binom{13}{2}}{\binom{52}{5}}
$$

2. (10 points) Let $X \sim N\left(\mu, \sigma^{2}\right)$, the normal distribution with mean $\mu$ and variance $\sigma^{2}$.
(a) What is the probability that $X$ is within 1 standard deviation from the mean? Hint: your answer must be a number.

Solution. By writing $X=\sigma Z+\mu$,

$$
\begin{aligned}
\mathbb{P}(\mu-\sigma<X<\mu+\sigma) & =\mathbb{P}(\mu-\sigma<\sigma Z+\mu<\mu+\sigma) \\
& =\mathbb{P}(-1<Z<1) \\
& =\Phi(1)-\Phi(-1) \\
& =\Phi(1)-(1-\Phi(1)) \\
& =2(0.8413)-1=0.6826
\end{aligned}
$$

(b) Let $Y \sim N(0,1)$ be a random variable independent of $X$. Find $\mathbb{E}[7 X(5 Y+1)]$. Hint: Your final answer must be in terms of $\mu$

## Solution.

$$
\begin{align*}
\mathbb{E}[7 X(5 Y+1)] & =\mathbb{E}[35 X Y+7 X]  \tag{1}\\
& =35 \mathbb{E}[X Y]+7 \mathbb{E}[X]  \tag{2}\\
& =35 \mathbb{E}[X] \mathbb{E}[Y]+7 \mathbb{E}[X]  \tag{3}\\
& =35 \cdot \mu \cdot 0+7 \mu=7 \mu . \tag{4}
\end{align*}
$$

3. (15 points) You want to find out how popular pineapple is on pizzas. You randomly called 90,000 people around the US and among them 42,000 said pineapple on a pizza is unacceptable.
(a) Give a $95 \%$ confidence interval for the true proportion who find pineapple on a pizza unacceptable.

Solution. By the formula

$$
\begin{aligned}
2 \Phi(2 \epsilon \sqrt{n})-1 & =0.95 \\
\Phi(2 \epsilon \sqrt{n}) & =0.975
\end{aligned}
$$

Using the table we find $2 \epsilon \sqrt{n}=1.96$. Plug in $n=90000$ we solve $\epsilon=1.96 / 600=0.0033$. The observed proportion is $\hat{p}=\frac{42000}{90000}=\frac{7}{15}$. or 0.4667 , so the $95 \%$ confidence interval is

$$
\begin{aligned}
(\hat{p}-\epsilon, \hat{p}+\epsilon) & =(0.4667-0.0033,0.4667+0.0033) \\
& =(0.4634,0.47)
\end{aligned}
$$

(b) A national vote was held about pineapple on a pizza. The result says $40 \%$ of the people find pineapple on a pizza unacceptable. Alfredo's Pizza Cafe sells two kinds of pizza with the following prices
(i)A pizza with pineapple, $\$ 9$;
(ii)A pizza without pineapple, $\$ 10$.

Let $X_{n}$ be the money Alfredo's Pizza Cafe has from selling $n$ pizzas. Express $X_{n}$ in terms of a Binomial distribution.

Solution. Let $S_{n}$ be the number of pizzas sold without pineapple, then $S_{n} \sim \operatorname{Binom}(n, 0.4)$. Then

$$
\begin{aligned}
X_{n} & =10 S_{n}+9\left(n-S_{n}\right) \\
& =S_{n}+9 n .
\end{aligned}
$$

(c) Find

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}>9.5 n\right)
$$

## Solution.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}>9.5 n\right) & =\lim _{n \rightarrow \infty} \mathbb{P}\left(S_{n}+9 n>9.5 n\right) \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{S_{n}}{n}>0.5\right) \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{S_{n}}{n}-0.4>0.1\right) \\
& \leq \lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\frac{S_{n}}{n}-0.4\right|>0.1\right) \\
& =0
\end{aligned}
$$

by Law of Large Numbers.

## 4. (10 points)

Let $X \sim \operatorname{Geom}(1 / 5)$, that is, for any positive intger $k$,

$$
\mathbb{P}(X=k)=\left(\frac{4}{5}\right)^{k-1} \cdot\left(\frac{1}{5}\right)
$$

and $\mathbb{P}(X=k)=0$ for other values of $k$.
To receive full credit on the questions below, you must evaluate any infinite sums.
(a) Find $\mathbb{P}(X>2)$.

| Answer: |
| :--- |
|  |
|  |

(b) Find $\mathbb{P}(X$ is even $)$.
Answer:
5. (5 points) The stock price of company A can either go up, go down, or run flat tomorrow. Suppose the probability that the price will go up tomorrow is 0.6 . If it does not go up, then with probability 0.9 it will go down.
(a) Let $A_{1}$ be the event that the stock price will go up, and $A_{2}$ be the event it will go down. Fill in the blanks.

Answer:

$$
\mathbb{P}\left(A_{1}\right)=\underline{0.6}, \quad \mathbb{P}\left(A_{2} \mid A_{1}^{c}\right)=\underline{0.9} .
$$

(b) Fill in the blanks.

Answer:
Re-arranging the law of total probability,

$$
\mathbb{P}\left(A_{2} \cap A_{1}^{c}\right)=\mathbb{P}\left(A_{2}\right)-\underline{P\left(A_{2} \cap A_{1}\right)} .
$$

Combine this with the inclusion-exclusion formula,

$$
\begin{aligned}
\mathbb{P}\left(A_{1} \cup A_{2}\right) & =\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right)-\underline{P\left(A_{1} \cap A_{2}\right)} \\
& =\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2} \cap A_{1}^{c}\right) . \\
& =\mathbb{P}\left(A_{1}\right)+\underline{P\left(A_{2} \mid A_{1}^{c}\right)} \cdot \mathbb{P}\left(A_{1}^{c}\right)
\end{aligned}
$$

(c) Use (b) to find the probability that the stock price will run flat tomorrow.

## Answer:

The probability is: $\qquad$

Solution. Let $A_{1}$ be the event that the stock price will go up, and $A_{2}$ be the event it will go down. The information provided are

$$
\mathbb{P}\left(A_{1}\right)=0.6, \quad \mathbb{P}\left(A_{2} \mid A_{1}^{c}\right)=0.9
$$

First we find $\mathbb{P}\left(A_{1} \cup A_{2}\right)$. By law of total probability,

$$
\mathbb{P}\left(A_{2}\right)=\mathbb{P}\left(A_{2} \cap A_{1}\right)+\mathbb{P}\left(A_{2} \cap A_{1}^{c}\right) .
$$

Using this, we find

$$
\begin{aligned}
\mathbb{P}\left(A_{1} \cup A_{2}\right) & =\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right)-\mathbb{P}\left(A_{1} \cap A_{2}\right) \\
& =\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2} \cap A_{1}^{c}\right) \\
& =\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2} \mid A_{1}^{c}\right) \mathbb{P}\left(A_{1}^{c}\right) \\
& =0.6+0.9(0.4)=0.96 .
\end{aligned}
$$

The probability that the stock price will run flat tomorrow is

$$
\mathbb{P}\left(\left(A_{1} \cup A_{2}\right)^{c}\right)=1-\mathbb{P}\left(A_{1} \cup A_{2}\right)=1-0.96=0.04
$$

6. (10 points) Let $X$ be a random variable with probability density function

$$
f_{X}(x)=\left\{\begin{array}{lc}
e^{-x}+2 c x & \text { if } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

where $c$ is a constant.
(a) Find $c$.

Solution. Since $f_{X}$ is a pdf, its integral over the real line is equal to 1 .

$$
\begin{aligned}
\int_{0}^{1} e^{-x}+2 c x d x & =1 \\
{\left[-e^{-x}+c x^{2}\right]_{0}^{1} } & =1 \\
\left(-e^{-1}+c\right)-(-1+0) & =1 \\
c & =e^{-1} .
\end{aligned}
$$

(b) Find $\mathbb{E}[X]$.

## Solution.

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{1} x\left(e^{-x}+2 e^{-1} x\right) d x \\
& =\int_{0}^{1} x e^{-x}+2 e^{-1} x^{2} d x \\
& =\left[-x e^{-x}-e^{-x}+\frac{2 e^{-1}}{3} x^{3}\right]_{0}^{1} \\
& =\left(-e^{-1}-e^{-1}+\frac{2 e^{-1}}{3}\right)-(0-1+0) \\
& =1-\frac{4}{3 e} .
\end{aligned}
$$

## Part B

1. (10 points) In each of the following questions identify the described random variable as either Bernoulli, Binomial, Poisson, Geometric, or Exponential and describe a reasonable numerical value for all its parameters. Please use the conventional notation for the parameters i.e., $p, \lambda, n$, etc. No explanation is necessary for this problem. Only give your answers.
2. Two 6 -sided dice are simultaneously rolled over and over again. Each time the product of the dice is 6 or 12 , someone gives you 1 dollar. Let $X_{1}$ be the amount of money you have received after 50 rolls. What type of random variable is $X_{1}$ and what are its parameters?

Answer: Binomial(50, 2/9)

The $p$ parameter for the Binomial comes from the calculation $P\left(X_{1} \cdot X_{2} \in\{6,12\}\right)=$ $|\{(2,3),(3,2),(6,1),(1,6),(6,2),(2,6),(4,3),(3,4)\}| / 36=2 / 9$.
2. Han loves to play basketball in his driveway. On average, he scores a basket about 3 out of 5 attempts. His mother calls him in for dinner, but Han is determined to score one more basket before going inside. Let $X_{2}$ be the number of attempts before he comes inside. What type of random variable is $X_{2}$ and what are its parameters?

Answer: $X_{2} \sim$ Geometric(3/5)

Assuming his attempts are independent, the probability he makes a basket is $3 / 5$.
3. An urn contains 1 red, 2 black, and 3 white balls. You choose 2 balls uniformly, without replacement. If you chose the red ball, you win 1 dollar, otherwise you win nothing. Let $X_{3}$ be the amount of money you win. What type of random variable is $X_{3}$ and what are its parameters?

```
Answer: }\mp@subsup{X}{3}{}~\operatorname{Bernoulli}(p
```

The probability of choosing the red ball is $p=1 \cdot\binom{5}{1} /\binom{6}{2}=1 / 3$
4. Suppose that $X_{4}$ is a continous random variable with mean equal to 2 with the property that for any real numbers $s$ and $t$ we have $P\left(X_{4}>s\right)=P\left(X_{4}>t+s \mid X_{4}>t\right)$ (this is sometimes called the "memoryless" poperty). What type of random variable is $X_{4}$ and what are its parameters?

Answer: $X_{4} \sim \operatorname{Exp}(1 / 2)$

We have used the fact that $\operatorname{Exp}(\lambda)$ has mean $1 / \lambda$.
5. Suppose $X_{5}$ represents the number of people coming into a store on a certain day. On average the owner sees 5 customers per day. What type of random variable would you use to model $X_{5}$ and what are its parameters?

```
Answer: }\mp@subsup{X}{5}{}~\mathrm{ Poisson(5)
```

2. (15 points) Suppose $(X, Y)$ are uniformly distributed on the triangular region

$$
D=\{(x, y): x+y \leq 1, x \geq 0, y \geq 0\}
$$

1. Find the marginal density function $f_{X}(t)$ of $X$ :

$$
f_{X}(s)=\int_{-i n f t y}^{\infty} f_{X Y}(s, t) d t=\int_{0}^{1-s} 2 d t=2(1-s)
$$

Answer:
2. Find $M_{X}(t)$.

$$
\begin{aligned}
M_{X}(t) & =\int_{0}^{1} 2(1-s) e^{s t} d s \\
& =2\left[\left[\frac{e^{s t}}{t}\right]_{0}^{1}-\left.s e^{s t} t\right|_{0} ^{1}+\int_{0}^{1} \frac{e^{s t}}{t} d s\right] \\
& =2\left[\frac{\left(e^{t}-1\right)}{t}-\frac{e^{t}}{t}+\frac{e^{t}-1}{t^{2}}\right]
\end{aligned}
$$

Answer:
3. Find the correlation coefficient $\operatorname{Corr}(X, Y)$

$$
\begin{aligned}
& \mathbb{E}[X Y]=\frac{1}{12} \\
& \mathbb{E}[X]=\mathbb{E}[Y]=\frac{1}{3} \\
& \mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[Y^{2}\right]=\frac{1}{6} \\
& \operatorname{Corr}(X, Y)=-\frac{1}{2}
\end{aligned}
$$

Answer:
4. Determine whether $X$ and $Y$ are independent or not. Mathematically justify your answer.

Solution: If $X$ and $Y$ were independent, then $f_{X}(s) f_{Y}(y)=f_{X Y}(s, t)$ for all $s, t$. By reflection symmetry of the triangle across the line $y=x$, we see that $f_{Y}(s)=f_{X}(s)$. Clearly $f_{X}(3 / 4)=2(1-3 / 4)=1 / 2$. However, $f_{X Y}(3 / 4,3 / 4)=0$ since $(3 / 4,3 / 4)$ lies outside of the triangle. Therefore

$$
f_{X}(3 / 4) f_{Y}(3 / 4) \neq f_{X Y}(3 / 4,3 / 4)
$$

and shows that they are not independent.
3. (15 points) Suppose $X$ and $Y$ are independent random variables.

1. Show that

$$
\mathbb{E}\left[e^{s X+t Y}\right]=\mathbb{E}\left[e^{s X}\right] \mathbb{E}\left[e^{t Y}\right]
$$

Solution: Using independence of $X$ and $Y$ we know that $\mathbb{E}[f(X) g(Y)]=\mathbb{E}[f(X)] \mathbb{E}[g(Y)]$. Thus

$$
\begin{aligned}
\mathbb{E}\left[e^{s X+t Y}\right] & =\mathbb{E}\left[e^{s X} e^{t Y}\right] \\
& =\mathbb{E}\left[e^{s X}\right] \mathbb{E}\left[e^{t Y}\right]
\end{aligned}
$$

Answer:
2. Suppose $X$ and $Y$ are independent, and

$$
\mathbb{E}\left[e^{s X+t Y}\right]=\frac{1}{3} e^{-s+2 t}+\frac{1}{6} e^{-s+3 t}+\frac{1}{6} e^{2 s+2 t}+\frac{1}{3} e^{2 s+3 t}
$$

find the joint pmf of $X$ and $Y$ and enter it in the table below.
There was a typo in the above mgf, it should have been

$$
\frac{1}{3} e^{-s+2 t}+\frac{1}{6} e^{-s+3 t}+\frac{1}{6} e^{2 s+3 t}+\frac{1}{3} e^{2 s+2 t}
$$

So, whichever covariance you calculated (one that is consistent with the mgf given), or one that is consistent with the fact that $X$ and $Y$ are independent will get you points.

3. Compute $\operatorname{Cov}(X, Y)$.

$$
\begin{aligned}
\mathbb{E}[X] & =\frac{1}{2} \\
\mathbb{E}[Y] & =\frac{5}{2} \\
\mathbb{E}[X Y] & =\frac{3}{2} \\
\operatorname{Cov}(X, Y) & =\frac{1}{4}
\end{aligned}
$$

## 4. (30 points)

A computer store manager has employed us as her analyst. She has a fixed stock of 1900 items in her store for the year, coming from the manufacturer. She has tasked us with estimating the probability that she will run out of stock this year, so that she can decide whether or not to order extra stock. On average, they see around 1825 customers a year.

Number the days of the year $\{1, \ldots, 365\}$, and let $X_{i}$ be the number of customers buying a computer on day $i$ for $i=1, \ldots, 365$. Assume that $X_{i} \sim \operatorname{Poisson}(\lambda)$, where $\lambda$ is an unknown parameter that is to be determined. It is also reasonable to assume that $\left\{X_{1}, \ldots, X_{365}\right\}$ are independent, since if a customer arrives on day 5 , it's unlikely that they will come again on day 20. Let

$$
S=X_{1}+X_{2}+\cdots+X_{365}
$$

represent the total number of customers arriving in the year.

1. What is $\lambda$, the Poisson parameter of $X_{i}$ ? Hint: find the mean of $S$.

Solution:

$$
\begin{aligned}
\mathbb{E}[S] & =365 \mathbb{E}\left[X_{1}\right]=365 \lambda=1825 \\
\lambda & =5
\end{aligned}
$$

Answer:
2. What is the moment generating function of $S$ ?

$$
\begin{aligned}
\mathbb{E}\left[e^{t S}\right] & =\mathbb{E}\left[e^{t X_{1}}\right]^{365} \\
& =e^{1825\left(e^{t}-1\right)}
\end{aligned}
$$

Answer:
3. What is the distribution of $S$ ? You can either give its pdf, or if it is a standard distribution, you can name it with the correct parameter.

## Solution:

$S \sim$ Poisson(1825)

$$
P(S=k)=\frac{(1825)^{k} e^{-1825}}{k!}
$$

Answer:
4. What is the exact probability that (strictly) more than 1900 people come to the store and buy a computer that year? Your answer can be an infinite sum. Solution:

$$
P(S>1900)=\sum_{k=1901}^{\infty} \frac{e^{-1825}(1825)^{k}}{k!}
$$

Answer:
5. What is the variance of $S$ ?

Solution:

$$
\operatorname{Var}(S)=1825
$$

Answer:
6. Numerically estimate the probability that $P(S>1900)$. State any theorems that you used for your approximation.
Solution:

$$
\begin{aligned}
& P\left(\frac{S-1825}{\sqrt{1825}}>\frac{1900-1825}{\sqrt{1825}}\right) \approx 1-\Phi\left(\frac{75}{\sqrt{1825}}\right) \\
& 1-\Phi(1.756)
\end{aligned}
$$

Answer:
5. (10 points) Let $X_{i}$ be the amount of money earned by a restaurant on Park Avenue on day $i$.
(a) Given that the owner only knows that $E\left[X_{i}\right]=\$ 4000$, give the best possible upper bound for the probability that the restaurant will earn at least $\$ 5000$ tomorrow.
Solution:

$$
P(X>5000) \leq \frac{\mathbb{E}\left[X_{i}\right]}{5000}=\frac{4}{5}
$$

$\square$
(b) Answer part (a) again with the extra knowledge that $\operatorname{Var}\left(X_{i}\right)=\$ 3000$.

## Solution:

$$
P\left(X_{i}-4000>1000\right) \leq P\left(\left|X_{i}-4000\right|>1000\right) \leq \frac{\operatorname{Var}\left(X_{i}\right)}{1000^{2}}=\frac{3000}{1000^{2}}
$$

Answer:

